
Automated Construction of Diagnosis Rules
from DNA Samples

Ha-Young Jang and Byoung-Tak Zhang

Biointelligence Laboratory, Seoul National University, Seoul 151-742, Korea
{hyjang, btzhang}@bi.snu.ac.kr

http://bi.snu.ac.kr/

Abstract. We propose a molecular computing algorithm for construct-
ing diagnosis rules from blood sample automatically. Different to disease
diagnosis based on microarray, proposed method can make a diagnosis
without statistical analysis of sample. Every operator in the proposed
method can be implemented with conventional wet-lab techniques such
as Polymerase Chain Reaction (PCR), hybridization and affinity separa-
tion. Tested on a real disease data, simulation results show not only the
feasibility of proposed method but also the possibility of biological infor-
mation processing. The use of huge population in molecular evolutionary
algorithm also can give various insights to evolutionary computation.

1 Introduction

The microarray technology has many applications such as gene discovery, dis-
ease diagnosis, drug discovery and toxicological research. For example, with the
evolution of microarray technology, it will be possible for the researchers to fur-
ther classify the types of cancer on the basis of the patterns of gene activity in
the tumor cells. This will tremendously help the pharmaceutical community to
develop more effective drugs as the treatment strategies will be targeted directly
to the specific type of cancer [9]. Typical approach is the selection of discrimi-
nating genes in specific disease. But the selection of discriminating genes is not
enough to make a diagnosis, because these genes are co-related with each other.

For this kind of microarray analysis, biological signal should be transformed
into optical signal. Then optical signal should be transformed into numerical
data. As a result of this procedure, the microarray data have noise or error
inevitably. If we can process the biological signal directly without transformation,
we can analysis more clean data without noise or error.

We propose novel method to construct diagnosis rules from patient’s DNA
Samples automatically and show that the diagnosis rules can be learned from
training examples using DNA computing. The probabilistic nature of the compu-
tation performed by DNA computing makes it robust against uncertainty arising
from both internal and external sources. The general setting for proposed method
is similar to the genetic programming framework where the programs for digital
computers are evolved using the principle of natural selection [5]. But our method

is much simpler than genetic programming, because we want to implement our
method with real DNA molecules. Simulation result shows the feasibility of our
method and the possibility of implementation with DNA molecules.

There are some similarities and differences between the standard genetic
programming and the molecular programming. Molecular programming (MP) is
similar to a standard GP in that its representation is of variable-length, which is
a defining characteristic that distinguishes GP from other evolutionary computa-
tion methods. The use of decision lists as the representation of program structure
is distinguished from other GP approaches, including the linear GP [8]. The use
of DNA computing technology makes the design of the evolutionary operators
very different from the conventional GP and other evolutionary computation
methods. The possibility of synthetic DNA molecules and their manipulation by
biochemical techniques in a test tube allows for the use of huge population size.

The paper is organized as follows. In section 2, representation of the individ-
ual is described. Learning algorithm of the proposed method is in section 3. In
section 4 and 5, experimental design and simulation results are reported. Section
6 draws conclusions.

2 Decision List

Each individual represents not a tree but a decision list (rule). These decision
lists constitute whole decision forest. In other words each decision list represents
a certain path from root to leaf in the decision tree. And the decision is made by
the decision forest which is composed of decision lists or decision trees. The aim
is to find these decision lists and build a decision-making system f that makes a
diagnosis. In the decision tree in Figure 1, possible decision lists are as follows:
(36822 at = yes, 32815 at = yes, 1915 at =yes, class = yes), (36822 at = yes,
32815 at = no, 38982 at = no, class = no), (36822 at = no, 1915 s at = yes,
class = yes), (36822 at = no, 1915 s at = no, 1894 f at = yes, 38072 at = yes,
36950 at = yes, class = no), etc.

To be more specific, consider a DNA-based diagnosis problem. Given a train-
ing set D of K labeled DNA samples in the form

D = {(xi, yi)}K
i=1 (1)

xi = (xi1 , xi2 , ..., xin) ∈ {0, 1}n (2)
yi ∈ {0, 1}. (3)

Here xi represents the DNA markers (subsequences of genes) in sample i and yi

is its associated diagnosis. For example, a training example (10101, 1) means the
sample is diagnosed positive (y = 1) if it contains the DNA markers numbered 1,
3, and 5 (x1 = 1, x3 = 1, x5 = 1) and does not contain the rest (x2 = 0, x4 = 0).

To solve the diagnosis problem, a test tube of DNA molecules representing
the genetic programs or diagnosis rules is maintained. Given is a set D of training
data consisting of pairs of DNA-sample and its associated label. The goal is to
find a population of decision lists (or a decision forest) that can predict the

36822_at

32815_at 1915_s_at

38982_at

39332_at

1915_at

Yes

Yes

Yes Yes

No

No

Yes

No

No

No

1915_s_at

1894_f_at

38072_at 38982_at

36950_at

Yes No

34836_at

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Class = 1

Class = 1

Class = 1

Class = 0 Class = 1

Class = 0

Class = 0

Class = 1Class = 0

Class = 0Class = 1 Class = 0Class = 1

Fig. 1. Decision tree using ID3: each path from root to leaves represents the decision
list.

correct diagnosis label for a future DNA-sample. The generic form of a decision
list is (x1 = 1, x3 = 1, x5 = 1, y = 1), where the commas are interpreted as
logical ANDs. Each attribute-value pair is encoded as a sequence of nucleotides
(A, T, G, and C). The output label can also be encoded as a DNA sequence.

The whole population consists of multiple copies of the decision lists and the
number of copies is proportional to the importance of the decision list. That is
to say, the number of copies means the weight of each decision tree in decision
forest. The goal of molecular genetic programming is to find the probabilistic
distribution of the decision lists to solve the diagnosis problem. Since each de-
cision list represents a conjunction, the population represents a disjunction of
conjunctions where each conjunction may have multiple copies. This represen-
tation has some similarity with the decision tree [7] or decision forest [4] in that
the whole population represents a disjunction of conjunctions of attribute-value
pairs. However, our ensemble representation allows for probabilistic computa-
tion of decision labels rather than deterministic as in conventional decision tree
methods.

3 Design for Wet-lab Experiment

Due to the limitation of handling DNA molecules, variation operators are not
used. We only use selection and amplification to change the probability distri-
bution of decision lists. Some recent genetic and evolutionary algorithms build
explicit probabilistic models for the population [6]. These distribution-estimation
algorithms (EDAs) generate offspring by sampling from the probabilistic model
rather than using crossover and mutation. Like EDAs, our method generates

AAAACCAATTGGAATTGGATGCGG

TTTTGGTTAACC

AATTGGCCTTGGATGCGG

TTAACC

AATTGGAAGGCCATGCCC

AATTGGATGCCC

TTAACC

TTAACC

TTCCGGGGTTGG

GGTTGG

TTTTGG GGTTGG

AAAACCAATTCCAAGGGGATGCCC

GGAA

GGAA

GGAA

GGAA

GGAA

AATTGGCCTTGGATGCGG

TTAACC

AATTGGCCTTGGATGCGG

TTAACC

GG

GG

TTTTGG GGTTGG

AAAACCAATTCCAAGGGGATGCCC

GG

GG

TACG

AAAACCAATTGGAATTGGATGCGG

TTTTGGTTAACC TACG

TACG

Fig. 2. Affinity separation by magnetic beads: Selection operator to the specific DNA
sequence can be implemented with its complement sequence attached to magnetic
bead. After the DNA sequence hybridize with its complement, we can separate it
with magnetic.

the offspring by sampling from a probability distribution. Unlike in EDAs, no
extra probabilistic model is built. The population of linear lists itself represents
a probability distribution. The use of a huge number of molecules (1015 or more)
enables the test tube to represent the empirical probability distribution.

Polymerase chain reaction (PCR) is a molecular biology technique, for en-
zymatically replicating DNA without using a living organism, such as E. coli
or yeast. Like amplification using living organisms, the technique allows a small
amount of the DNA molecule to be amplified exponentially. However, because it
is an in vitro technique, it can be performed without restrictions on the form of
DNA and it can be extensively modified to perform a wide array of genetic ma-
nipulations. PCR is commonly used in medical and biological research labs for
a variety of tasks, such as the detection of hereditary diseases, the identification
of genetic fingerprints, the diagnosis of infectious diseases, the cloning of genes,
paternity testing, and DNA computing.

Hybridization is the process of combining complementary, single-stranded
nucleic acids into a single molecule. Nucleotides will bind to their complement
under normal conditions, so two perfectly complementary strands will bind to
each other readily. Conversely, due to the different geometries of the nucleotides,
a single inconsistency between the two strands will prevent them from binding.
The process can be reversed by heating the molecule.

Figure 2 shows implementation of selection operator using complement DNA
attached to magnetic beads.

4 Evolving the Decision List

In this section we describe the molecular algorithm for learning the decision list.
The goal is to learn a decision list that best fits to a data set. To learn the
formula we initialize a library of DNA molecules representing random combina-
torial decision list. Let this library at the step t be Lt. Given a query pattern xq

we extract from the library all the molecules (terms) that match the query. The
extraction can be implemented using hybridization reaction in the same way to
check which markers exist. The idea is to chop the query sequence into subse-
quences for individual variables. These chopped query sequences hybridize with
the decision list in the population. Only the fully double-stranded sequences are
then separated.

These molecules will have class labels from which we decide the majority
label as the class of the query pattern. To perform the matching between xi and
xq for i = 1, ..., N in parallel, we present multiple copies (up to the number of
the library size) of it. That is, we generate a collection

Q = {∆c(x1),∆c(x2), ...,∆c(xn),∆c(y)}, (4)

where ∆c(·) denotes copies made by PCR (learning rate). The class decision is
made by comparing the number of elements in class 1, N1, with that in class 0,
N0: where y takes 0 or 1.

For learning, we prepare two collections, M+ and M−, consisting of library
elements that correctly (or incorrectly) classifies the query sample as follows:

– M+ = {(ui, vi)|ui consists of xi for i = 1, ..., n and vi = y}
– M− = {(ui, vi)|ui consists of xi for i = 1, ..., n and vi 6= y}.

Now, we describe how the library is revised to learn from newly observed
data. As a new training example (x, y) is given, we extract from the library
the terms whose x-part matching with x. The class y∗ of x is determined by
the classification procedure described above. Then, the matching terms (library
patterns) are modified in their frequency depending on their contribution to the
correct or incorrect classification of x. If the label v of the library pattern (u, v)
matching x is correct, i.e. v = y, it is reproduced:

Lt ← Lt + ∆c(M+). (5)

If the label v is incorrect, i.e. v 6= y, the matching library pattern is removed
from the library:

Lt ← Lt −∆c(M−). (6)

The update of the library in this way is more or less like evolutionary com-
putation with the additional feature that the presentation of a training example

– 1. Let the library L0 = {(ui, vi)} contain the initial decision lists. Let t = 0.
– 2. Let t ← t + 1.
– 3. Get a training example (x, y) = (x1, x2, ..., xn, y).
– 4. Let Q = {∆c(x1), ∆c(x2), ..., ∆c(xn), ∆c(y)}.
– 5. Classify x using Lt as described in the text and construct the following:

• M+ = {(ui, vi)|ui consists of xi for i = 1, ..., n and vi = y}.
• M− = {(ui, vi)|ui consists of xi for i = 1, ..., n and vi 6= y}.

– 6. Update the library L as follows:
• Lt ← Lt−1 + Q.
• Lt ← Lt + ∆c(M+).

Optionally, Lt ← Lt −∆c(M−).
– 7. Go to Step 2 if not terminated.

Fig. 3. Learning procedure of decision lists from training examples [12].

proceeds one generation of the library (as a population). This is also a learning
procedure since the library improves its classification performance as new exam-
ples are presented. The molecular algorithm for the whole evolutionary learning
procedure is summarized in Figure 3 and the cycle of learning procedure is shown
in Figure 4. Addition operation can be implemented by PCR and removal can
be done by extraction of the corresponding molecules. The update process relies
upon the reliability of DNA extraction technology.

Note also that the learning rule has a parameter ∆c that reflects the strength
of learning for each training example. This is also related to the reproduction
rate. Big ∆c imposes high reproduction rate while small ∆c forces a low repro-
duction rate. How to set this parameter is an important issue for the stability
and the adaptability of the algorithm. δ is expressed as the amplification ratio of
the number ∆c(x, y) of additional copies of molecules to the number of current
copies cn−1(x, y), i.e.

δ =
∆c(x, y)

cn−1(x, y)
. (7)

Since ∆c(x, y) is determined by the number of PCR cycles for signal amplifica-
tion, the reproduction rate δ can be set indirectly by controlling the number of
PCR cycles or its fraction.

5 Experimental Results

5.1 Data

Microarray gene expression data are used to evolve molecular genetic programs
for making diagnosis based on DNA. Since molecular programming is based on
DNA molecules, it is very natural to solve the problem based on DNA. Mi-
croarrays or DNA chips are a new technology for measuring gene expression
intensities at the cDNA (i.e. the DNA sequence complementary to the mRNA

Library of combinatorial
molecules

Population Example

Select the terms
matching the example

Amplify the matched
terms by PCR

Next generation

i

i

Hybridize

Fig. 4. Schematic diagram of learning procedure

sequence) level. Gene expression data are collected from microarray experiments
for ALL/AML leukemia [3]. It should be noted that the microarray gene expres-
sion data contain much noise and this application can be a good test bed problem
for the molecular programming approach against uncertainty.

Because ID3 prunes nodes (attribute), the microarray data are preprocessed
and 10 genes were selected out of 12600 genes for the purpose of comparing
simulation results with the results of ID3. The genes are chosen according to the
information gain measure for extracting features [7]. The training set consists of
120 examples each composed of 10 genes plus the associated leukemia class which
is AML or ALL. A 6-fold cross-validation is used for testing the performance.
That is, the whole data set of 120 examples is partitioned into 6 subsets and a
total of six sessions were run, where each run used a subset of 20 examples for
test and the remaining 100 examples (5 subsets) for training.

5.2 Simulation Results

For the simulation of in vitro evolution of the molecular genetic programs, the
population size of 118, 096 × 106 ≈ 1.2 × 1011 was used, where 118,096 is the
number of different library elements and 106 is the number of their copies. The
library was initialized to contain each and every conjunction of order 1 through
10. These include (x1 = 0, y = 0), (x1 = 0, y = 1), (x1 = 1, y = 0), (x1 = 1, y =
1), (x1 = 0, x2 = 0, y = 0), (x1 = 0, x2 = 0, y = 1), (x1 = 1, x2 = 0, y = 0),
Thus, the total number of the different library elements is N =

∑10
k=1 10Ck ·

2k · 2 = 118, 096, where 10Ck denotes the number of cases choosing k variables
out of 10. For the simulation of in vitro computation, we used the library size

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10

Number of epochs

C
la

s
s
fi
c
a
ti
o
n
 r

a
ti
o

Fig. 5. Fitness evolution. Shown are the average classification rates over the 6-fold
cross-validation runs. Though there are fluctuations the fitness values tend to converge
96 % accuracy. The reproduction rate was 0.01.

of 118, 096 × 106, i.e. the initial library was generated by copying each element
106 times. Thus, the library consists of multiple copies of the same terms and
we evolved the distributions of the terms through the molecular programming
procedure.

After the learning procedure, only the rules whose concentration (weight)
shows a rise of 10 times over initial concentration are selected. In order to com-
pare with ID3, those whose length is shorter than maximum depth of decision
tress are selected once more. 426 rules are selected finally. The rules agree exactly
with the rules found by ID3 are as below:

– (36822 at = no, 1915 s at = yes, class = yes)
– (36822 at = yes, 32815 at = no, 38982 at = no, class = no)
– (36822 at = yes, 32815 at = no, 38982 at = yes, 1915 s at = no, class = no)
– (36822 at = no, 1915 s at = no, 1894 f at = no, 38982 at = yes, class = yes)

It is not so surprise that only 4 rules agree with those of ID3. ID3 executes
greedy local search. On the other hand, our method executes global search. It
does not mean low performance that only 4 rules agree with ID3’s. As shown in
Figure 5, weighted sum of rules shows high classification accuracy. Because our
method maintains huge population, the efficiency of learning process is much
worse than ID3. But the objective of our algorithm is automatic construction

of rules not in silico but in vitro. Its simplicity in the learning process makes it
possible to implement molecular algorithm with DNA test tube.

Figure 5 shows the fitness evolution of population. The accuracy converges
about 96%. This result is competitive to the result of ID3 (96.7%). The fitness
is evaluated by the classification performance to the training set. For decision
making, we used a sigmoid squashing function:

f(x) =
1

1 + exp(−βx)
(8)

where β is a constant which reflects the level of noise and sets the decision
boundary. We count the number of each term which answers positive or negative.
Then, the proportion of the positives and the negatives is calculated. This result
is the input to the sigmoid function. We make a decision probabilistically based
on the output of the sigmoid function. In the test tube, we cannot count the
exact number of DNA molecules. We can only know the rough estimation of
them. In order to simulate it, we use sigmoid function.

6 Conclusion

We presented an evolutionary method to construct diagnosis rules from DNA
samples. Our simulation results on the leukemia problem shows the feasibility
of automatic construction of diagnosis rules based on DNA computing. Recent
research of Benenson et al. [1] also demonstrates the possibility of diagnosis
based on DNA computing. Our results on DNA-based diagnosis also suggest the
possibility of biological information processing.

The simplicity of our algorithm shows its potential molecular implementa-
tion. It needs no computation and all of the operators can be implemented with
bio-lab techniques easily. We are preparing real DNA experiment based on pro-
posed algorithm. It is also an interesting future work to study the connection
between the huge size of the population and the complexity of the learning al-
gorithm.

7 Acknowledgements

This research was supported by the Molecular Evolutionary Computing (MEC)
Project of MICE and by Seoul Research and Business Development Program
0534-200.

References

1. Benenson, Y., Gil, B., Ben-Dor, U., Adar, R., Shapiro, E. “An autonomous molec-
ular computer for logical control of gene expression,” Nature, 429, 423-429, 2004.

2. L. Breiman, Bagging predictors, Machine Learning, 24:123-140, 1996.

3. M.̋. Cheok et al., Treatment-specific changes in gene expression discriminate in
vivo drug response in human leukemia cells,Nature Genetics, 34:85-90, 2003.

4. T. K. Ho, The Random Subspace Method for Constructing Decision Forests, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 20(8):832-844, 1998.

5. J. R. Koza, Genetic Programming: On the Programming of Computers by Means
of Natural Selection, MIT Press, Cambridge, MA, USA, 1992.

6. P. Larranaga, : A Review on Estimation of Distribution Algorithms. In: Larranaga,
P., Lozano, J.A. (eds.), Estimation of Distribution Algorithms: A New Tools for
Evolutionary Computation. Kluwer Academic Publishers (2001) 57-100

7. T. M. Mitchell, Machine Learning, The McGrow-Hill Companies, Inc., 1997.
8. P. Nordin, W. Banzhaf, and F. Francone, Efficient evolution of machine code for

CISC architectures using blocks and homologous crossover, Proc. Third Annual Ge-
netic Programming Conference (GP-99), L. Spector, W. Langdon, U.-M. O’Reilly
and P. Angeline (eds.), 275-299, Morgan Kaufmann, 1999.

9. J. Petrik, Diagnostic applications of microarrays, Transfusion Medicine, 16(4):233-
247, 2006.

10. B.-T. Zhang, A unified Bayesian framework for evolutionary learning and optimiza-
tion, Advances in Evolutionary Computation, Chapter 15, pages 393-412, Springer-
Verlag, 2003.

11. B.-T. Zhang and H.-Y. Jang, A Bayesian algorithm for in vitro molecular evolution
of pattern classifiers, Lecture Notes in Computer Science, 3384:458-467, 2005.

12. B.-T. Zhang and H.-Y. Jang, Molecular learning of wDNF formulae, Lecture Notes
in Computer Science, DNA 11, 3892:427-437, 2006.

