
A Memetic Evolutionary Algorithm

Vu Manh Xuan1, Nguyen Thanh Thuy2

1 Natural Science Department of Thai Nguyen University
2 Information Technology Department of Ha Noi University of Technology

Abstract. One of the important properties of evolutionary algorithms is to keep
the diversity of the population. This paper presents an algorithm which can be
regarded as the integration between Genetic Algorithm (GA) and Evolutionary
Strategy (ES). This algorithm has many good properties, especially it satisfies
the above important property.

1. Introduction

Evolutionary algorithms can be regarded as the reproduction of the natural
evolution process in computer. They also belong to probabilistic algorithms, but the
searching solution is found by a population, not by an individual. From an initial
population, we can apply genetic operators (selection, crossover, and mutation) to
create new individuals which inherit the previous generation’s properties and have
new properties, then select good individuals for the next generation. Hence, one of the
important factors of algorithm is to keep the diversity of the population. In the genetic
operators, only crossover and mutation create new individuals. However, algorithms
use the different operators as their main evolutionary workhorse, GA specially cares
about crossover whereas ES mainly uses mutation.

This paper presents an algorithm that can be regarded as the integration between
GA and ES called Blend Evolutionary Algorithm (BEA). Similarly as GA and ES,
this algorithm has many good properties, especially it still maintains the diversity of
the population. Moreover, BEA has more advantage properties than that of GA and
ES.

The paper is organized as follows. In the next section, we review some important
aspects of GA and ES. In section 3, we present Blend Evolutionary Algorithm.
Section 4 includes experiment results and finally section 5 concludes the paper with a
few remarks.

2. Related Works

Binary-coded Genetic Algorithm

Under the initial formulation of GAs, the search space solutions are coded by using
the binary alphabet, an individual is binary string of fixed length; genetic operators
are selection, crossover and mutation ([2], [3], [6]).

Selection operator includes proportion selection based Roulette wheel, tournament
selection and rank selection. Crossover operator includes one-point crossover, N-point
crossover and uniform crossover. Mutation operator is bitwise inversion.

Real-Coded Genetic Algorithm (RCGA)

In a RCGA, an individual is represented as an N-dimensional vector of real numbers
(x1, x2, …, xN) ([2], [4], [5]). As selection does not involve in the particular coding,
no adaptation needs to be made-all selection schemes discussed so far are applicable
without any restriction.

Crossover operator for RCGA has many different forms. The following are the two
rather popular forms:

Arithmetic crossover ([3]): Given two parents u =),...,(11
1 Nxx ; v =),...,(22

1 Nxx ,

then children are)1(211
iiiii xxc   and 212)1(iiiii xxc   (for all i=1, ..., N),

where i is chosen as a uniformly distributed random value from the interval (0,1).

BLX- (Blend Crossover) ([1], [5]) crossover creates offspring in the following
way: each offspring allele ci is chosen as a uniformly distributed random value from
the interval

]*),max(,*),[min(2121  IxxIxx iiii  ,

where),min(),max(2121
iiii xxxxI  . The parameter  has to be chosen in advance and

the best is 0.5.

Mutation operators that are the most common for RCGA are as following ([3], [5]):
Random mutation (uniform): for a randomly chosen gene i of individual x, the

allele xi is replaced by a randomly chosen value from a predefined interval [ai, bi].
Non-uniform mutation: assume that Tmax is the predefined maximum number of

generations, the allele xi is replaced by one of two values
x’i = xi + (t,bi - xi) ,
x”i = xi - (t,xi - ai) .

where random variable (t,x) determines a mutation step from the range [0, x] in the

following way: 




 

 r
Txxt

)max
11(

1.),( . In this formula,  is a uniformly distributed

random value from the unit interval. The parameter r determines the influence of the
generation index t on the distribution of mutation step sizes over the interval [0, x].

Evolutionary Strategies (ESs)

ESs were developed in the late 1960s mainly by Rechenberg independently from
Holland’s works on genetic algorithms ([5], [6]). Like RCGA, evolutionary strategies
aim at solving real-valued optimization problems. In ESs, an individual is represented
as a 2N-dimensional real vector which is composed of two vectors (x1, ..., xN; 1, ...,
N). The first half (x1, ..., xN) corresponds to the potential solution like in RCGA. The
second half (1, ..., N) defines the vector of standard deviations for mutation
operation. Unlike GAs, mutation plays a more central role in ESs.

Mutation in ESs is given as:
x’i = xi + N(0, i

2)
’i = i.exp(’.N(0, 1)+.N(0, 1))

Selection and sampling in ESs are as the following:

 (+)ES:  parents are selected from current population, these parents are used to
generate a number of  offsprings. Out of union of parents and offsprings (+
individuals), the best  are kept for the next generation.

 (, )ES: in this scheme,  parents are selected from current population and used
to generate  offsprings (  ). The parents are discarded completely and the
best  offsprings are kept for the next generation.

3. Blend Evolutionary Algorithm

In this section, we present an algorithm which can be regarded as the integration
between Genetic Algorithm (GA) and Evolutionary Strategy (ES) called Blend
Evolutionary Algorithm (BEA). Similarly with GA and ES, this algorithm has many
good properties, especially it still maintains the diversity of the population. Moreover,
BEA has more advantageous properties than that of GA and ES.

The algorithm is as follow:

1. Generate the initial population of M individuals P={x1, ... , xM}

2. Create population Q of 2M individuals by the following way:

2.1. Copy M individuals of P to Q;
2.2. Choose randomly two parents; applying crossover operator to generate
 one child addition to Q (repeat M times).

3. Each x of Q, creates an offspring x’ by mutation operator, choose best one of
{x, x’} replaced x.

4. Select the M individuals out of Q to replace P by tournament selection.

5. Stop if stopping criterion is satisfied; otherwise, go to step 2.

This algorithm uses both crossover and mutation in two phases. First crossover
operator performs M times, two parents create only one child, which is added in
intermediate population. Then mutation operator performs with all individuals of
population by schema (1+1)ES. The crossover is arithmetic crossover; the mutation is
uniform mutation. However, can used the another forms of crossover or mutation.

Therefore, the individuals of intermediary population do not only inherit their
parents’ properties, but also change with high random which makes the higher
diversity by the mutation operator.

So BEA is not only similar to RCGA in coding and the way of using crossover, but
is like as ES in using mutation and generative scheme. Moreover, BEA is different
from RCGA, it does not set up a big size population but still maintains the
population’s diversity. It is also different from ES in performing crossover operator
for the setting up it’s intermediary population step to inherit the parents’ good
characteristics of the former population.

4. Experiment

Test Functions

Test functions included: f1(x) (Sphere function); f2(x); f3(x) (Rosenbrock function);
f4(x) (Rastringin function); f5(x) (Griewangk function) and f6(x) function ([1], [3],
[6]). Table 1 shows that functions.

Table 1. Test functions

Function n S fmin





n

i
ixxf

1

2
1)(30 [-5.12, 5.12] 0





n

i
i

n

i
i xxxf

11
2)(30 [-5.12, 5.12] 0





 

1

1

222
13))1()(100()(

n

i
iii xxxxf 30 [-5.12, 5.12] 0





n

i
ii xxnxf

1

2
4))2cos(10(10)( 30 [-5.12, 5.12] 0

1)cos(
4000

1
)(

11

2
5  



n

i

i
n

i
i

i

x
xxf 30 [-5.12, 5.12] 0





n

i
ii xxxf

1
6)||sin()(30 [-500,500] -12569.5

 f1 is a continuous, strictly convex, and uni-modal function.

 f2 is a continuous, and unimodal function with one global minimum.

 f3 continuous, and unimodal function. Its difficulty concerns the fact that
searching along the coordinate axes only gives a poor rate of convergence,
since the gradient is not oriented along the axes.

 f4 is a scalable, continuous, and multimodal function, which is made from f1 by
modulating it with 10cos(2xi).

 f5 is a continuous, and multimodal function. This function is difficult to
optimize because it is non-separable and search algorithm has to climb a hill to
reach the next valley.

 f6 is multimodal function and the global minimum is at (420.968, ..., 420.968),
very close to one corner of the search space.

Experiment Setup

Because the BEA is regarded as the RCGA’s improvement, the experiment program
is compared with RCGA. The parameters include:

RCGA with the fixed population size of 20 and 100 individuals. Each individual is
n-dimensional real vector. The program repeated 30 runs independently uses
crossover with probability pc = 0.9, and the uniform mutation operator with
probability pm = 0.1. In each runs, first created randomly initial population, then
performed 2500 times, in each step chosen random two parents, used crossover
operator generate two offsprings with probability pc , mutation with probability pm one
of these offsprings and chosen two best individuals from parents and offsprings
replaced two parents. In the first experiments, we used arithmetic crossover and
uniform mutation. In the second experiments, we used BLX- crossover and uniform
mutation.

BEA has the population size of 10 individuals (M=10) which use the above genetic
operators. It performs 30 runs independently, each runs 100 generations. In each
generation, chosen two parent randomly, used crossover operator generate one
offspring, this offspring adds to intermediary population; then each individual of
intermediary population performs mutation generate one offspring, if new individual
is better then replaced to old individual. Then, M individuals from intermediary
population by the way tournament selection are kept for the next generation.

The results are shown in table 2 and table 3. In this tables, columns (2), (5) and (8)
show the average time of each run. Columns (3), (6) and (9) show average value of
best individual of each run. Columns (4), (7) and (10) show the function value of best
individual of 30 runs.

Results

Table 2 shows the experiment’s results, in this experiment used arithmetical crossover
and uniform mutation. RCGA with population’s size M=20 and M=100 individuals.

Table 2. Result of experiment used arithmetical crossover.

BEA (M=10) RCGA (M=20) RCGA (M=100)

Time Average Best Time Average Best Time Average Best

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

f1(x) 2.80 0.075 0.017 4.41 5.981 2.784 4.08 1.8529 1.1945

f2(x) 3.02 0.829 0.568 4.85 8.873 5.510 4.68 5.2765 3.5479

f3(x) 2.83 106.27 35.951 4.30 1173.153 506.290 4.16 266.392 156.34

f4(x) 3.13 14.697 7.353 5.00 80.722 44.246 4.95 106.3285 58.007

f5(x) 3.28 0.011 0.002 5.04 0.263 0.141 4.93 0.09925 0.0461

f6(x) 3.68 -12083 -12429 5.84 -5039.29 -6641.2 5.76 -3338.7 -4277.8

Table 3 shows the experiment’s results, in this experiment used BLX- crossover
(=0.5) and uniform mutation. RCGA with population’s size M=20 and M=100
individuals.

Table 3. Result of experiment used BLX- crossover (=0.5).

BEA (M=10) RCGA (M=20) RCGA (M=100)

Time Average Best Time Average Best Time Average Best

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

f1(x) 2.96 0.0466 0.0136 4.68 4.4899 1.5331 4.30 0.8599 0.3843

f2(x) 3.28 0.5457 0.2872 4.88 4.7829 2.7015 4.85 2.7552 2.0459

f3(x) 2.94 146.401 61.538 4.55 939.1193 267.55 4.36 224.7713 103.02

f4(x) 3.39 15.7433 6.7345 5.15 74.0886 46.952 5.36 181.3437 152.19

f5(x) 3.78 0.0259 0.0009 5.35 0.2042 0.0583 5.21 0.0484 0.0230

f6(x) 3.82 -12425.6 -12513 5.77 -8692.7 -10655 6.12 -4698.4 -6086.1

This result shows that with the shorter time, BEA gives better results than that of
RCGA and used BLX- crossover better than arithmetical crossover.

5. Discussion of Results

Since the searching solution of evolutionary algorithms is searched by a population,
the diversity of the population is an important factor. GAs specially care about
crossover whereas ES mainly uses mutation, whereas BEA uses both operators in two
phases with probability 1. RCGA with large population’s size (higher diversity) has
better result, whereas BEA needs little population’s size. The tournament selection
operator increases the diversity of the population and it also increases the speed of
population convergence.

This idea can be further advanced by choosing genetic operators or evolutionary
strategies, for example (+)ES with ,  > 1. This algorithm can also use another
forms of crossover, mutation operator or selection. We preserve these as our future
work.

Acknowledgement

The authors would like to thank Dr Nguyen Xuan Hoai for his useful suggestions
and discussions during the completion of this paper.

References

[1] Kalyanmoy Deb, Hans-Georg Beyer (1999), Self-Adaptive Genetic Algorithms with
Simulated Binary Crossover, Technical Report No. CI-61-99.

[2] Goldberg, D.E. (1989), Genetic algorithms in search, optimization and machine learning,
Addison-Wesley, Reading, MA.

[3] Michalewicz, Z. (1992), Genetic Algorithms + Data Structures = Evolution Program.
Springer Verlag.

[4] M. Lozano,F. Herrera, Natalio Krasnogor, Daniel Molina (2004), Real-Code Memetic
Algorithms with Crossover Hill-Climbing, Evolutionary Computation 12(3), 273-302.

[5] Unlrich Bodenhofer (2004), Genetic Algorithms: Theory and Applications, Lecture Notes.
[6] Xin Yao and Yong Liu (1997), Fast Evolution Strategies, Contr. Cybern. Vol26, 467-496.

