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Abstract. In the field of Genetic Programming (GP), there has been a growing 
interest in the effects of loss of genetic diversity, which causes the whole popu-
lation prematurely converge to local optima. Improving diversity of the popula-
tion is always an implicit goal of almost any basic genetic programming system. 
Most research in this area suggests a diversity measurement and controls this 
quantitative metric to maintain genetically diverse populations. This paper brief 
overviews of the measures used in Genetic Programming for diversity mainte-
nance and promotion.

1   Introduction

Diversity is a crucial factor in the theory of natural selection, and when being used 
in genetic programming, it indicates the difference in structures or behaviours of indi-
vidual in a population. In Genetic Programming (GP), population diversity has been 
long considered as an important research issue [4]. In general, genetic search will be 
more robust if the population contains more various individuals. The reason for this is 
that population diversity will encourage the exploration phase of the search and pre-
vent the population from converging prematurely to local optima. 

Unfortunately, the loss of diversity of the population at an early stage of the evolu-
tion is usually observed in GP [4]. Therefore, an implicit attempt to improve or main-
tain the population diversity is in almost every genetic programming systems [5], [7],
[14],.. Those authors have proposed a numbers of measures for quantifying the GP 
population diversity according to some properties.
   The focus of this paper is to give a brief review on the metrics (measures) which 
have been used in GP literature for measuring and controlling population diversity.
Therefore, the organization of the paper is as follows. Section 2 first gives a classifica-
tion and details of some diversity measures that have been used in Genetic Program-
ming with discussion on the advantages and disadvantages of each measure. Finally, in 
section 3, we state my conclusions and some possible future research problems and 
directions in this area.  



2   An Overview of Population Diversity Measures in GP

In order to maintain genetic diversity during the evolution of Genetic Programming 
population, it is a common way to measure diversity by a metric and to control this
value if necessary [1-5] . Diversity metric studied in genetic programming is usually 
accomplished by defining a measure over some population features such as the indi-
vidual fitness values, structures, or even the combination of the two [4]. Banzhaf et al.
[33] logically classified all of these measures into two classes: genotypic diversity, 
which measures the structural differences between individual genotypes, and pheno-
typic diversity, which measures the differences in individual phenotypes. This section 
gives an overview of the up-to-date genotypic and phenotypic measures used in GP.
We also give some personal comments and thoughts on the advantages and disadvan-
tages of those measures. For the ease of comprehension, Figure 1 summarizes our 
further classification (developed from the some what rather simple and out-of-date 
classification of Banzhaf [33]).

Fig. 1. A GP diversity classification scheme.

2.1   Genotypic diversity

This approach measures the population diversity as the quantification of the variety 
among the actual structures in the GP population – the tree, the graphs, or the linear 
genomes. It was perhaps originated from the term variety that Koza [10] used to indi-
cate “is the percentage of individuals for which no exact duplicate exists elsewhere in 
the population”. Although Koza’s concept of genotypic diversity [10] is easy to under-
stand and relatively exact for GP population diversity, it is probably too difficult to 
implement in practice due to time complexity of the proposed algorithm. Instead, in 
the genetic programming community, a number of ‘approximate’ genotypic diversity 
measures have been proposed. This paper proposes to classify those measures in to 
three classes: edit-distance based measures, subtree based measures, and other geno-
typic measures. They are subsequently reviewed and discussed in this subsection.



2.1.1 Edit-distance based measures

The idea of using genotypic edit-distance in GP was originated from Genetic Algo-
rithms (GAs), which seen by some researchers as the successor of GP.  An example of 
such edit-distance in binary-coded GAs is the Hamming distance, in which the dis-
tance between two genotypes is measured by the number their different bits [33]. In 
other word, the Hamming distance between two GA binary chromosomes determines 
how many ‘edit’ operations (by bit flipping) needed to transform one chromosome to 
the other.  However, while GAs usually use linear and fixed-length chromosomes 
(genotypes), most GP systems employ non-linear structured (e.g tree or graph) and 
length-variant chromosomes. Therefore, it is expected that the edit-distance based 
measures in GP tend to be more various and complicated than in GAs.

In the GP literature, there have been a number of measures based on edit-distance 
for genotypic diversity:

Distance metric 1

O’Reilly [30] used Levenshtein distance to give an insight in to the genetic opera-
tors of GP. Hereafter, we denote this edit distance as distance metric 1. In distance 
metric 1, the amount of syntactic differences between two genetic programming trees 
is calculated as the shortest cost sequence of primitive operations used to transform
from one tree to the other. These transformations include:

 Substitution: change label of one node in the tree to an other
 Insertion: add one node to the tree
 Deletion: remove a node from the tree
Figure 2 shows an example of distance metric 1.

Fig. 2. A number of primitive operations to transform from left tree to right tree is 3 – (de-
lete(b), delete(c), substitute(b, e) )

Although Levenshtein has been proven to be a genuine metric on discrete tree 
structures [30], the implementation of this distance is complicated and its computing 
algorithm is time consuming if the tree size is big (O(|T1|*|T2|-[34]), whereas There-
fore, it has not been used broadly in subsequent work on GP population diversity.

Distance metric 2

Alternative to Levenshtein edit distance, in [7], genotypic distance between two 
program trees is defined as the sum of the distance of the corresponding nodes. The 
corresponding nodes in the two compared trees are the nodes in the ‘common area’ of 



the two trees when they are aligned. The distance value between the two trees is then 
normalized by dividing by the size of the smaller tree of the two. Content distance 
between the two corresponding nodes is computed as follows. If the corresponding 
nodes are identical the distance is zero and otherwise is one. Figure 3 depicts an ex-
ample of distance metric 2. 

In [7], the population diversity value is calculated as the average squared distance 
to the other members of the population. This individual diversity value is then used as 
a second objective to GP. In other word, the original single objective problem is then 
changed to multi-objective problem where GP is required to find the solutions to the 
original problem and maintain the population diversity (based on distance metric 2) at 
the same time. 

Fig. 3. The distance between these trees is 5/5.

The algorithm in [7] for computing distance between the two trees is simple and 
low time complexity (O(|T1|+|T2|)). However, one possible weak point of distance 
metric 2 compared to distance metric 1 could be figured out - the structural difference 
is calculated on the corresponding nodes only. While it makes the computation much 
easier and quicker (compared to distance metric 1), it also makes the distance as a less 
exact measure of differences since the overlapping is heavily dependent on the arities 
of the functions used in the function sets. It the arities of the function set is uniform 
(e.g binary), it is expected that this distance metric is a good and true measure of dif-
ferences. On the other hand, if there are different arities in the function set, this dis-
tance tends to overestimate the distances between the two trees, compared to distance 
metric 1. Up to date, this distance has only been used in the frame work of multi-
objective optimization.

Distance metric 3

Ekárt and Németh [1] investigated a distance of two genetic program trees (assum-
ing that they are all binary trees), which is calculated in three following steps:

1. Making two genetic programs to be compared to the same tree-structure 
(adding NULL nodes if needed)

2. Counting the distance between any two symbols located at the same posi-
tion in the two trees.

3. Combining the distances which computed in the previous step in a 
weighted sum to form the distance of the two trees.

Figure 4 presents an example of this distance metric. 



Fig. 4. The trees are completed by NULLs to have the same layout.

The first step of the above algorithm is to ensure that the two program trees are in
the same in shape (totally overlapped). In the second step, to compute the distance 
between the corresponding tree nodes, they proposed that the program symbols are 
grouped in to n classes A0, A1,…, An , which are problem dependent.  An example of 
this classification is A0 being the set including NULL. The distance between the nodes 
is computed based on their class membership (Eq. 2). The distance between tree T1

and T2 is calculated in step 3 as:
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where K ≥ 1 is a constant and T1 = p(s1, s2, …,sm) has its root p and subtrees si, 
i=1,..,m, T2 = q(t1, t2,…, tn) has root q and subtrees ti, i=1,..,n 
d(x, y) – the distance between two node symbols xAi and yAj is calculated as:
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where C is a constant, (i, j) is a function defined as follows:
Let : {0, 1, …, n} x {0, 1, …, n} → (0, +) be a function satisfies properties:
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The time complexity of the algorithm for computing distance between two trees is 
small [1] ((|T1|+|T2|)). The metric was general in the way that the user could use 
his/her problem dependent knowledge to define the quantitative semantic component 
in the differences between two trees. However, the metric defined in [1] does not take 
into account some aspect of the function nodes, such as commutativity.  In the case 
that the operator presented by a function node is commutative, distance metric 3 could 
produce different values (where as they should not be counted as different). Example, 
if the two tree fragments X+ s1 and s1+X are compared they will add to the weighted 
sum of the distances a value more than zero, even though that these two fragments are 
actually the same. 

Space mapping distance

In [21], a complex algorithm was proposed to measure the population diversity. 
Firstly, each of genotypes in the population is mapped to a point (x, y) in the coordi-
nated two-dimensional space DG. The origin of coordinate is the image of the most 
primitive tree – OG - built from the function and terminal set. For each genotype h, its 
corresponding point (xh, yh) is calculated as follows. xh is the number of positive node 
operations and yh is the number of positive label operations to transform from Og into 
h. The operations are similar to the transformations in [30], but they are classified into 
positive and negative mode.
i)  Node operation: Append an unlabeled node to certain node (positive mode); Delete 
an unlabeled terminal node (negative mode).
ii) Label operation: Increment the label of a node – the label with lower coding is 
replaced the label with higher coding (positive mode); Decrement the label of a node –
the label with higher coding is replaced the label with lower coding (negative mode).

Next, the population diversity measure at generation g is computed as:
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where DG denotes the two-dimensional distance space for genospace G; LERg (larg-
est-area rectangle) is the largest of all rectangle R that its opposite corners of R are the 
two image points in DG and that there is no image point of any genotype in G con-

tained in R,
GD is approximate of DG, which is the smallest rectangle containing all 

image points DG. Figure 5 depicts this process.

GD�

g

LER

Fig. 5. The genospace-distance-space mapping.



The time complexity of the algorithm for computing the image points of DG is no 
less than the time complexity of Levenshtein distance algorithm. In addition, it is also 
time-consuming to compute LER. Moreover, it is an open question as whether the 
two-dimensional space expresses completely the structural space.

2.1.2 Subtree distances

Alternative to edit-distance based measures, a number of authors have proposed 
some ways to compute genotypic tree distance for GP, based on subtrees. It is noted 
that almost all edit-distance based measures describes in subsection 2.1.1 are node-
based. It means that, in order to compute how long a tree could be transformed to the 
other, those algorithms calculate and accumulate the differences on node-to-node 
basis. On the contrary, subtree distances, which are reviewed in this subsection, were
directly subtree-based.  

Keijzer distance

Keijer [12] investigated the distance dag(X,Y) of two trees X and Y as:
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where D is defined as the set of all subtrees in a program tree; |D(X)| is the cardinality 
of the set D(X);  and  are respectively the intersection and the union of two sets.

The population diversity is measured by summing the total number of subtrees that 
are removed in the previous generation and the number of subtrees that have just been 
created in the current generation.

Tackett diversity

Similar to [12], Tackett also used a subtree-based measure for qualitifying population 
diversity. He calculated the population diversity by dividing the number of newly
created subtrees in the current generation compared to the previous generation by the 
population size. To keep track the newly created subtrees at from generation to gen-
eration, [31] used a list to maintain all generated subtree, which makes the algorithm is 
memory consuming.

Subtree entropy

In [13], the authors used a subtree-based measure for computing the population 
genotypic diversity. However, the thing that distinguishes this work from the above is 
that, an information content measure (entropy – described in the next subsection) was 
employed. 

2.1.3 Other genotypic diversity measures

History diversity

Another approach to measuring genotypic diversity was presented [14]. The meth-
odology is to keep track each individual nodes from the initial population to the end. It 



is noted that as a result of GP crossover between two trees, a newly created tree is 
formed by two parts. One of these parts is inherited from the root parent – the parent 
that contributes the root to the offspring. This part is called the root part. The other
part is inherited from the not-root parent and called the not-root part. To implement 
this, every node in the tree is assigned a label as ID:memID, where ID, memID are 
two integer numbers denoting its root parent ID and the ID of the newly created sub-
tree through crossover. It means that when a child is produced by crossover, only 
nodes along the path from the root parent to the crossover point are tagged with the
same ID as before crossover but their memID are newly created.  Figure 6 depicts an 
example of this tagging scheme.

Fig. 6. The root parent and the non-root parent and the child resulting from crossover of two 
trees for an example.

Population genetic diversity is then calculated by counting a number of distinct 
IDs (either ID or memID) values appear in the population.  

Frequency signature 

While addressing the simulation of robot tanks, Patrik [18] et al explored another 
way to investigate population genotypic diversity. In his experiments, each of the 
terminal and function sets has six elements defining the possible actions and branch 
controls of the tanks. He then defined the frequency signature as the frequency of 
occurrences for each of the twelve elements. The average of frequency signatures was 
then used to determine the population genotypic diversity.



2.2 Phenotypic diversity

The genotypic and structural approach to diversity presented in 2.1 could be prob-
lematic if introns are abundant in the population. Introns [33] are code (tree) frag-
ments that do not affect the fitness of individual program trees.  Consequently, two 
semantically identical program trees could be treated as two very different trees by 
genotypic measures described in 2.1, even though one program tree is just the other 
adding with introns. Therefore, there have been a number of attempts from GP re-
searchers to measure the population diversity by calculating the variance in the per-
formance of the phenotype. In other word, instead of measuring how differently the 
two (or more) programs look like, they measure how differently those program be-
have. In addition, one of the main advantages of phenotypic diversity approach over 
the genotypic diversity one is the ease of computation. The algorithms for computing 
phenotypic diversity usually use the fitness values of the individuals only. Therefore 
the computation is often much more straight forward and much less time-consuming 
compared to the genotypic diversity approaches.  In this subsection, we briefly over-
viewed some of such phenotypic diversity measure proposed in GP literature.

2.2.1 Behaviour signature

In robot tanks problem [18] mentioned above, the authors also investigated the 
population phenotypic diversity based on behaviour of each individual when trying it
in combat against each of the thirteen seed tanks. Comparing this value for every two 
individuals in the population determines the phenotypic diversity.

2.2.2 Entropy measures

The concept of entropy, as a degree of thermodynamic equilibrium, was used 
firstly by Clausius in 1865 in order to interpret the irreversibility in some kinds of 
transformations [24]. In 20th century, entropy was also used as a measure for informa-
tion (started with work from Shanon [28]). In the context of G, entropy represents the 
amount of disorder of the GP population. 

In [11], Rosca  treated population phenotypic diversity as:
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where the population are partitioned according to fitness value, and pk is the propor-
tion of the population that have the fitness value in the fitness partition kth.  

3. Conclusion and future work 
Similar to biological counterpart, population diversity also plays a very important 

role in the success of evolutionary algorithms in general, and GP in particular. The 



desire to adaptively control this diversity has attracted a number of GP researchers to 
study different quantitative measures for it. 

In this paper, we tried to review and reclassify work in GP literature on different 
quantitative population diversity measures. Furthermore, the paper also showed that 
there are many measures used to define GP population diversity and that each of them 
has advantage and disadvantage sides, which GP-users should be aware of when using 
for different problem domains.  

Our future work will include some comprehensive experimental comparison be-
tween those different population diversity measures and a study of the combinations of 
some of them. 
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