
A Brief Overview of Population Diversity Measures in
Genetic Programming

Nguyen Thi Hien1, Nguyen Xuan Hoai2

School of IT, VietNamese Military Technical Academy
100 Hoang Quoc Viet Str, Ha Noi, VietNam

1 hiennt@vnu.edu.vn
2 nxhoai@gmail.com

Abstract. In the field of Genetic Programming (GP), there has been a growing
interest in the effects of loss of genetic diversity, which causes the whole popu-
lation prematurely converge to local optima. Improving diversity of the popula-
tion is always an implicit goal of almost any basic genetic programming system.
Most research in this area suggests a diversity measurement and controls this
quantitative metric to maintain genetically diverse populations. This paper brief
overviews of the measures used in Genetic Programming for diversity mainte-
nance and promotion.

1 Introduction

Diversity is a crucial factor in the theory of natural selection, and when being used
in genetic programming, it indicates the difference in structures or behaviours of indi-
vidual in a population. In Genetic Programming (GP), population diversity has been
long considered as an important research issue [4]. In general, genetic search will be
more robust if the population contains more various individuals. The reason for this is
that population diversity will encourage the exploration phase of the search and pre-
vent the population from converging prematurely to local optima.

Unfortunately, the loss of diversity of the population at an early stage of the evolu-
tion is usually observed in GP [4]. Therefore, an implicit attempt to improve or main-
tain the population diversity is in almost every genetic programming systems [5], [7],
[14],.. Those authors have proposed a numbers of measures for quantifying the GP
population diversity according to some properties.
 The focus of this paper is to give a brief review on the metrics (measures) which
have been used in GP literature for measuring and controlling population diversity.
Therefore, the organization of the paper is as follows. Section 2 first gives a classifica-
tion and details of some diversity measures that have been used in Genetic Program-
ming with discussion on the advantages and disadvantages of each measure. Finally, in
section 3, we state my conclusions and some possible future research problems and
directions in this area.

2 An Overview of Population Diversity Measures in GP

In order to maintain genetic diversity during the evolution of Genetic Programming
population, it is a common way to measure diversity by a metric and to control this
value if necessary [1-5] . Diversity metric studied in genetic programming is usually
accomplished by defining a measure over some population features such as the indi-
vidual fitness values, structures, or even the combination of the two [4]. Banzhaf et al.
[33] logically classified all of these measures into two classes: genotypic diversity,
which measures the structural differences between individual genotypes, and pheno-
typic diversity, which measures the differences in individual phenotypes. This section
gives an overview of the up-to-date genotypic and phenotypic measures used in GP.
We also give some personal comments and thoughts on the advantages and disadvan-
tages of those measures. For the ease of comprehension, Figure 1 summarizes our
further classification (developed from the some what rather simple and out-of-date
classification of Banzhaf [33]).

Fig. 1. A GP diversity classification scheme.

2.1 Genotypic diversity

This approach measures the population diversity as the quantification of the variety
among the actual structures in the GP population – the tree, the graphs, or the linear
genomes. It was perhaps originated from the term variety that Koza [10] used to indi-
cate “is the percentage of individuals for which no exact duplicate exists elsewhere in
the population”. Although Koza’s concept of genotypic diversity [10] is easy to under-
stand and relatively exact for GP population diversity, it is probably too difficult to
implement in practice due to time complexity of the proposed algorithm. Instead, in
the genetic programming community, a number of ‘approximate’ genotypic diversity
measures have been proposed. This paper proposes to classify those measures in to
three classes: edit-distance based measures, subtree based measures, and other geno-
typic measures. They are subsequently reviewed and discussed in this subsection.

2.1.1 Edit-distance based measures

The idea of using genotypic edit-distance in GP was originated from Genetic Algo-
rithms (GAs), which seen by some researchers as the successor of GP. An example of
such edit-distance in binary-coded GAs is the Hamming distance, in which the dis-
tance between two genotypes is measured by the number their different bits [33]. In
other word, the Hamming distance between two GA binary chromosomes determines
how many ‘edit’ operations (by bit flipping) needed to transform one chromosome to
the other. However, while GAs usually use linear and fixed-length chromosomes
(genotypes), most GP systems employ non-linear structured (e.g tree or graph) and
length-variant chromosomes. Therefore, it is expected that the edit-distance based
measures in GP tend to be more various and complicated than in GAs.

In the GP literature, there have been a number of measures based on edit-distance
for genotypic diversity:

Distance metric 1

O’Reilly [30] used Levenshtein distance to give an insight in to the genetic opera-
tors of GP. Hereafter, we denote this edit distance as distance metric 1. In distance
metric 1, the amount of syntactic differences between two genetic programming trees
is calculated as the shortest cost sequence of primitive operations used to transform
from one tree to the other. These transformations include:

 Substitution: change label of one node in the tree to an other
 Insertion: add one node to the tree
 Deletion: remove a node from the tree
Figure 2 shows an example of distance metric 1.

Fig. 2. A number of primitive operations to transform from left tree to right tree is 3 – (de-
lete(b), delete(c), substitute(b, e))

Although Levenshtein has been proven to be a genuine metric on discrete tree
structures [30], the implementation of this distance is complicated and its computing
algorithm is time consuming if the tree size is big (O(|T1|*|T2|-[34]), whereas There-
fore, it has not been used broadly in subsequent work on GP population diversity.

Distance metric 2

Alternative to Levenshtein edit distance, in [7], genotypic distance between two
program trees is defined as the sum of the distance of the corresponding nodes. The
corresponding nodes in the two compared trees are the nodes in the ‘common area’ of

the two trees when they are aligned. The distance value between the two trees is then
normalized by dividing by the size of the smaller tree of the two. Content distance
between the two corresponding nodes is computed as follows. If the corresponding
nodes are identical the distance is zero and otherwise is one. Figure 3 depicts an ex-
ample of distance metric 2.

In [7], the population diversity value is calculated as the average squared distance
to the other members of the population. This individual diversity value is then used as
a second objective to GP. In other word, the original single objective problem is then
changed to multi-objective problem where GP is required to find the solutions to the
original problem and maintain the population diversity (based on distance metric 2) at
the same time.

Fig. 3. The distance between these trees is 5/5.

The algorithm in [7] for computing distance between the two trees is simple and
low time complexity (O(|T1|+|T2|)). However, one possible weak point of distance
metric 2 compared to distance metric 1 could be figured out - the structural difference
is calculated on the corresponding nodes only. While it makes the computation much
easier and quicker (compared to distance metric 1), it also makes the distance as a less
exact measure of differences since the overlapping is heavily dependent on the arities
of the functions used in the function sets. It the arities of the function set is uniform
(e.g binary), it is expected that this distance metric is a good and true measure of dif-
ferences. On the other hand, if there are different arities in the function set, this dis-
tance tends to overestimate the distances between the two trees, compared to distance
metric 1. Up to date, this distance has only been used in the frame work of multi-
objective optimization.

Distance metric 3

Ekárt and Németh [1] investigated a distance of two genetic program trees (assum-
ing that they are all binary trees), which is calculated in three following steps:

1. Making two genetic programs to be compared to the same tree-structure
(adding NULL nodes if needed)

2. Counting the distance between any two symbols located at the same posi-
tion in the two trees.

3. Combining the distances which computed in the previous step in a
weighted sum to form the distance of the two trees.

Figure 4 presents an example of this distance metric.

Fig. 4. The trees are completed by NULLs to have the same layout.

The first step of the above algorithm is to ensure that the two program trees are in
the same in shape (totally overlapped). In the second step, to compute the distance
between the corresponding tree nodes, they proposed that the program symbols are
grouped in to n classes A0, A1,…, An , which are problem dependent. An example of
this classification is A0 being the set including NULL. The distance between the nodes
is computed based on their class membership (Eq. 2). The distance between tree T1

and T2 is calculated in step 3 as:










 



otherwisetsdist
K

qpd

childrenanyhaveTnorTneitherifqpd

TTdist m

l
ll),(*

1
),(

),(

),(

1

21

21

(1)

where K ≥ 1 is a constant and T1 = p(s1, s2, …,sm) has its root p and subtrees si,
i=1,..,m, T2 = q(t1, t2,…, tn) has root q and subtrees ti, i=1,..,n
d(x, y) – the distance between two node symbols xAi and yAj is calculated as:
























otherwiseji

jiif
wvMax

yx
C

yxif

yxd

Awv

),(

1 *

 0

),(

1,



(2)

where C is a constant, (i, j) is a function defined as follows:
Let : {0, 1, …, n} x {0, 1, …, n} → (0, +) be a function satisfies properties:

},...,1,0{,,

,),,(),(

),(),(

),,(),(),(

nkjiallfor

kjkjii

ijji

jkkiji










 (3)

*

/ 4

x +

x

+

* /

2 x x

5

5

null null

null null

The time complexity of the algorithm for computing distance between two trees is
small [1] ((|T1|+|T2|)). The metric was general in the way that the user could use
his/her problem dependent knowledge to define the quantitative semantic component
in the differences between two trees. However, the metric defined in [1] does not take
into account some aspect of the function nodes, such as commutativity. In the case
that the operator presented by a function node is commutative, distance metric 3 could
produce different values (where as they should not be counted as different). Example,
if the two tree fragments X+ s1 and s1+X are compared they will add to the weighted
sum of the distances a value more than zero, even though that these two fragments are
actually the same.

Space mapping distance

In [21], a complex algorithm was proposed to measure the population diversity.
Firstly, each of genotypes in the population is mapped to a point (x, y) in the coordi-
nated two-dimensional space DG. The origin of coordinate is the image of the most
primitive tree – OG - built from the function and terminal set. For each genotype h, its
corresponding point (xh, yh) is calculated as follows. xh is the number of positive node
operations and yh is the number of positive label operations to transform from Og into
h. The operations are similar to the transformations in [30], but they are classified into
positive and negative mode.
i) Node operation: Append an unlabeled node to certain node (positive mode); Delete
an unlabeled terminal node (negative mode).
ii) Label operation: Increment the label of a node – the label with lower coding is
replaced the label with higher coding (positive mode); Decrement the label of a node –
the label with higher coding is replaced the label with lower coding (negative mode).

Next, the population diversity measure at generation g is computed as:

)(

)(
1)(

GDarea

LERgarea
g




(4)

where DG denotes the two-dimensional distance space for genospace G; LERg (larg-
est-area rectangle) is the largest of all rectangle R that its opposite corners of R are the
two image points in DG and that there is no image point of any genotype in G con-

tained in R,
GD is approximate of DG, which is the smallest rectangle containing all

image points DG. Figure 5 depicts this process.

GD�

g

LER

Fig. 5. The genospace-distance-space mapping.

The time complexity of the algorithm for computing the image points of DG is no
less than the time complexity of Levenshtein distance algorithm. In addition, it is also
time-consuming to compute LER. Moreover, it is an open question as whether the
two-dimensional space expresses completely the structural space.

2.1.2 Subtree distances

Alternative to edit-distance based measures, a number of authors have proposed
some ways to compute genotypic tree distance for GP, based on subtrees. It is noted
that almost all edit-distance based measures describes in subsection 2.1.1 are node-
based. It means that, in order to compute how long a tree could be transformed to the
other, those algorithms calculate and accumulate the differences on node-to-node
basis. On the contrary, subtree distances, which are reviewed in this subsection, were
directly subtree-based.

Keijzer distance

Keijer [12] investigated the distance dag(X,Y) of two trees X and Y as:

)()()()(),(YDXDYDXDYXdag  (5)

where D is defined as the set of all subtrees in a program tree; |D(X)| is the cardinality
of the set D(X);  and  are respectively the intersection and the union of two sets.

The population diversity is measured by summing the total number of subtrees that
are removed in the previous generation and the number of subtrees that have just been
created in the current generation.

Tackett diversity

Similar to [12], Tackett also used a subtree-based measure for qualitifying population
diversity. He calculated the population diversity by dividing the number of newly
created subtrees in the current generation compared to the previous generation by the
population size. To keep track the newly created subtrees at from generation to gen-
eration, [31] used a list to maintain all generated subtree, which makes the algorithm is
memory consuming.

Subtree entropy

In [13], the authors used a subtree-based measure for computing the population
genotypic diversity. However, the thing that distinguishes this work from the above is
that, an information content measure (entropy – described in the next subsection) was
employed.

2.1.3 Other genotypic diversity measures

History diversity

Another approach to measuring genotypic diversity was presented [14]. The meth-
odology is to keep track each individual nodes from the initial population to the end. It

is noted that as a result of GP crossover between two trees, a newly created tree is
formed by two parts. One of these parts is inherited from the root parent – the parent
that contributes the root to the offspring. This part is called the root part. The other
part is inherited from the not-root parent and called the not-root part. To implement
this, every node in the tree is assigned a label as ID:memID, where ID, memID are
two integer numbers denoting its root parent ID and the ID of the newly created sub-
tree through crossover. It means that when a child is produced by crossover, only
nodes along the path from the root parent to the crossover point are tagged with the
same ID as before crossover but their memID are newly created. Figure 6 depicts an
example of this tagging scheme.

Fig. 6. The root parent and the non-root parent and the child resulting from crossover of two
trees for an example.

Population genetic diversity is then calculated by counting a number of distinct
IDs (either ID or memID) values appear in the population.

Frequency signature

While addressing the simulation of robot tanks, Patrik [18] et al explored another
way to investigate population genotypic diversity. In his experiments, each of the
terminal and function sets has six elements defining the possible actions and branch
controls of the tanks. He then defined the frequency signature as the frequency of
occurrences for each of the twelve elements. The average of frequency signatures was
then used to determine the population genotypic diversity.

2.2 Phenotypic diversity

The genotypic and structural approach to diversity presented in 2.1 could be prob-
lematic if introns are abundant in the population. Introns [33] are code (tree) frag-
ments that do not affect the fitness of individual program trees. Consequently, two
semantically identical program trees could be treated as two very different trees by
genotypic measures described in 2.1, even though one program tree is just the other
adding with introns. Therefore, there have been a number of attempts from GP re-
searchers to measure the population diversity by calculating the variance in the per-
formance of the phenotype. In other word, instead of measuring how differently the
two (or more) programs look like, they measure how differently those program be-
have. In addition, one of the main advantages of phenotypic diversity approach over
the genotypic diversity one is the ease of computation. The algorithms for computing
phenotypic diversity usually use the fitness values of the individuals only. Therefore
the computation is often much more straight forward and much less time-consuming
compared to the genotypic diversity approaches. In this subsection, we briefly over-
viewed some of such phenotypic diversity measure proposed in GP literature.

2.2.1 Behaviour signature

In robot tanks problem [18] mentioned above, the authors also investigated the
population phenotypic diversity based on behaviour of each individual when trying it
in combat against each of the thirteen seed tanks. Comparing this value for every two
individuals in the population determines the phenotypic diversity.

2.2.2 Entropy measures

The concept of entropy, as a degree of thermodynamic equilibrium, was used
firstly by Clausius in 1865 in order to interpret the irreversibility in some kinds of
transformations [24]. In 20th century, entropy was also used as a measure for informa-
tion (started with work from Shanon [28]). In the context of G, entropy represents the
amount of disorder of the GP population.

In [11], Rosca treated population phenotypic diversity as:


k

kk ppPE log.)((6)

where the population are partitioned according to fitness value, and pk is the propor-
tion of the population that have the fitness value in the fitness partition kth.

3. Conclusion and future work
Similar to biological counterpart, population diversity also plays a very important

role in the success of evolutionary algorithms in general, and GP in particular. The

desire to adaptively control this diversity has attracted a number of GP researchers to
study different quantitative measures for it.

In this paper, we tried to review and reclassify work in GP literature on different
quantitative population diversity measures. Furthermore, the paper also showed that
there are many measures used to define GP population diversity and that each of them
has advantage and disadvantage sides, which GP-users should be aware of when using
for different problem domains.

Our future work will include some comprehensive experimental comparison be-
tween those different population diversity measures and a study of the combinations of
some of them.

Acknowledgements

The authors would like to thanks all members of the Natural Compuation Group at the
Vietnamese Military Technical Academy (VMTA) for useful comments and
suggestions related to this work. This work is partly funded by the Vietnamese
Ministry of Science and Technology through a research grant for fundamental sciences
on Genetic Programming and Artificial Immune Systems, Grant No: 203106.

References

1. A. Ekárt, S. Z. Nemeth, A metric for genetic programs and fitness sharing, in R. Poli et al.,
editors, Genetic Programming, Proceedings of the 3rd European Conference, volume 1802
of LNCS, pages 259–270, Edinburgh, 2000. Springer-Verlag.

2. —, Maintaining the diversity of genetic programs, in J. Foster et al., Eds, Proceedings of the
5th European Genetic Programming Conference, volume 2278 of LNCS, pages 162–171,
Kinsale, Ireland, 3-5 April 2002. Springer-Verlag.

3. E. K. Burke, S. Gustafson, G. Kendall, A survey and analysis of diversity measures in ge-
netic programming, in W. B. Langdon et al., editors, Proceedings of the Genetic and Evolu-
tionary Computation Conference, pages 716–723, New York, 9-13 July 2002. Morgan
Kaufmann Publishers.

4. —, Diversity in genetic programming: An analysis of measures and correlation with fitness,
in IEEE Transactions on Evolutionary Computation, Vol. 8, No. 1, Feb 2004.

5. E. K. Burke, S. Gustafson, G. Kendall and N. Krasnogor, Advanced population diversity
measures in genetic programming, in Proc. 7th Int. Conf. Parallel Problem Solving From
Nature, vol. 2439, LNCS, J. J. M. Guervós et al., Eds, Granada, Spain, Sept. 2002, pp. 341-
350.

6. —, Is increased diversity in genetic programming beneficial an analysis of lineage selection,
Proceedings of the 2003 Congress on Evolutionary Computation CEC, Canberra, 2003, pp.
1398-1405.

7. E. D. de Jong, R. A. Watson, J. B. Pollack, Reducing bloat and promoting diversity using
multi-objective methods, in Proc. Genetic Evolutionary Computation Conf., L.Spector et al.,
Eds., San Francisco, CA, July 7-11, 2001, pp. 11-18.

8. J. M. Daida, M. E. Samples, B. T. Hart, J. Halim, and A. Kumar, Demonstrating constraints
to diversity with a tunably difficult problem for genetic programming (2004)

9. J.M. Daida et al (1999), Analysis of Single-Node (Building) Blocks in Genetic Program-
ming, in L. Spector, W.B. Langdon et al, editors, Advances in Genetic Programming III,
The MIT Press, 217-241, 1999.

10. J. R. Koza, Genetic Programming: On the Programming of Computers by Means of Natu-
ral Selection, MA: MIT Press, Cambridge, 1992.

11. J. P. Rosca, Entropy-driven adaptive representation, in Proc. Workshop Genetic Program-
ming: From Theory to Real-World Applications, Justinian P. R., Ed., Tahoe City, CA, July
9, 1995, pp. 23-32.

12. M. Keijzer, Efficiently representing populations in genetic programming, in Advances in
Genetic Programing II, Peter J. A. and Kenneth E. K., Jr., Eds. Cambridge, MA: MIT Press,
1996, ch. 13, pp 259-278.

13. N. Mori, A novel diversity measure of genetic grogramming, in Randomness and Computa-
tion Joint Workshop “New horizon in Computing” and “Statistical Mechanical Approach to
Probabilistic Information Processing”, 18-21 July, 2005, Sendai, Japan.

14. N. .F. McPhee and N. J. Hopper, Analysis of genetic diversity through population history,
in W. Banzhaf et al., editors, Proceedings of the Genetic and Evolutionary Computation
Conference, pages 1112–1120, Florida, USA, 1999. Morgan Kaufmann.

15. N. Geard, J. Wiles, Diversity maintenance on neutral landscapes: An argument for recom-
bination, in Proc. IEEE Congress Evolutionary Computation, 2002, pp. 211-213.

16. N. I. Nikolaev, H. Iba, and V. Slavov, Inductive genetic programming with immune net-
work dynamics, in Advances in Genetic Programing III, Lee S., William. B. L., Una-May.
O. and Peter. J. A., Eds. Cambridge, MA: MIT Press, 1999, ch. 15, pp 355-376.

17. P. D’haeseleer, Context Preserving Crossover in genetic programming, in Proceedings of
the 1994 IEEE World Congress on Computational Intelligence. IEEE Press, pp. 256-261.

18. P. D’haeseleer, J. Bluming, Effects of locality in individual and and population evolution,
in Advances in Genetic Programming, Kenneth E. K., Jr., Ed. Cambridge, MA: MIT Press,
1994, ch. 8, pp.177-198.

19. R I (Bob) McKay, Fitness sharing in genetic programming, in Proc. Genetic Evolutionary
Computation Conf., D. Whitley et al., Eds., Las Vegas, NV, July 10-12, 2000, pp. 435-442.

20. R I (Bob) McKay and H. A. Abbass, Anti-correlation: A diversity promoting mechanism in
ensemble learning, The Australian J.Intell.Inform.Processing Syst., no.3/4, pp. 139-149,
2001.

21. R. E. Keller and W. Banzhaf, Explicit maintenance of genetic diversity on genospace,
Internal Report, University of Dortmund, 1995.

22. R. E. Keller, W. Banzhaf, J. Mehnen, K. Weinert, CAD surface reconstruction from digi-
tized 3D point data with a genetic programming/evolution strategy hybrid, in L. Spector,
W.B. Langdon et al, editors, Advances in Genetic Programming III, The MIT Press, 217-
241, 1999.

23. Sh.-H. N. Cheng, Distance between Herbrand interpretations: a measure for approximations
to a target concept, in Pro. 7th Int. Workshop Inductive Logic Programming, N.Lavrac and
S. Dzeroski, Eds., 1997, pp.213-226.

24. Sh-M. A. Yang, C-T. Sun, Ch-H. Hsu, Energy, matter, and entropy in evolutionary compu-
tation, in the Proc. Of 1996 International Conference on Evolutionary Computation 1996.

25. S. Gustafson, A. Ekárt, E. K. Burke, G. Kendall, Problem difficulty and code growth in
genetic programming, in Genetic Programming and Evolvable Machines, 5, 271-290, Klu-
wer Academic Publishers.

26. S. Gustafson, L. Vanneschi, Operator-based distance for genetic programming: subtree
crossover distance, Proceedings of the 8th European Conference on Genetic Programming,
Springer Publishers, vol. 3447, 2005, pp. 178-189.

27. Terence S., James A. F., Effects of code growth and parsimony pressure on populations in
genetic programming, Evol. Comput., vol. 1, no. 2, pp. 293-309, 1998.

28. T. M. Cover, J. A. Thomas, Elements of Information, A Wiley-Interscience Publication
John Wiley & Sons, INC, 1991.

29. T. F. Bersano-Begey, Controlling exploration, diversity and escaping local optima in ge-
netic programming, in J.R. Koza, editor, Late Breaking Papers at the Genetic Programming
Conference, pages 7–10, Stanford University, CA, July 1997.

30. U.-M. O’Reilly, Using a distance metric on genetic programs to understand genetic opera-
tors, in IEEE International Conference on Systems, Man, and Cybernetics, Computational
Cybernetics and Simulation, volume 5, pages 4092–4097, Florida, USA, 1997.

31. W. A. Tackett, Recombination, selection, and the genetic construction of computer pro-
grams, Ph.D. dissertation, Dept. Elec.Eng.Syst., Univ. Southern California, Los Angeles,
1994.

32. W. B.Langdon, R. Poli, Foundations of Genetic Programming, Springer-Verlag, 2002 .
33. W. Banzhaf, P. Nordin, R. E. Keller, F. D. Francone, Genetic programming - An introduc-

tion, Morgan Kaufmann Publishers, 1998.
34. D. Shasha and K. Zhang, Approximate tree pattern matching. In Pattern Matching in

Strings, Trees and Arrays, chapter 14. Oxford University Press, 1995.
35. W.B. Langdon, Genetic Programming and Data Structures, Kluwer Academic Publisher,

chapter 8, 1998.
36. B. Wyns, P.D. Bruyne, and L. Boullart, Characterizing Diversity in Genetic Programming,

in P. Collet et al (Eds.), The Proceedings of European Conference on Genetic Programming
(EuroGP’2006), LNCS 3905, Springer-Verlag, pp. 250-259, 2006.

