
Evolving a Vision-Based Line-Following Robot Controller

Jean-François Dupuis and Marc Parizeau
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Abstract

This paper presents an original framework for evolv-
ing a vision-based mobile robot controller using genetic
programming. This framework is built on the Open BEA-
GLE framework for the evolutionary computations, and on
OpenGL for simulating the visual environment of a physical
mobile robot. The feasibility of this framework is demon-
strated through a simple, yet non-trivial, line following
problem.

1 Introduction

Evolutionary Robotics (ER) is a research field related to
behavioral robotics [15, 16]. In ER, evolutionary compu-
tation methods are applied to automate the development of
autonomous robot controllers. Evolutionary computations
use artificial evolution methods on a population of initial
random individuals that evolve over time within a given en-
vironment. These individuals represent specific solutions to
the problem at hand. They are tested and ranked accord-
ing to the quality of their task accomplishment, as defined
by an objective function. Higher reproduction probability
are given to the best performing individuals. The repro-
duction process is combined with genetic operators, such
as crossover and mutation, to engender new generations of
individuals. This process is continued, generation by gener-
ation, until some stopping criterion is reached [1].

ER is commonly used in the development of robot con-
trollers for maze navigation and obstacle avoidance tasks
using proximity sensors [9, 15, 12]. Others have used evolu-
tionary processes to develop walking gaits controllers [4, 7].
Likewise, colony of robots have also been evolved to find
emergent collaborative behaviors [13]. Moreover, the robot
platform itself can be been evolved in symbioses with its
controller [10].

However, the use of visual input in ER has been seen
only in a few limited instances. Harvey first evolved a sus-
pended robot in 1994 within an artificial environment [5].

He used a sub-sampled signal from a 64x64 monochrome
CCD camera as visual input. The genetically evolved algo-
rithm was in charge of determining the subsampling strat-
egy. The robot was continuously connected to an offboard
computer. In another project, Nolfi and Floreano used co-
evolution to develop strategies in a prey-predator context
[14]. In this experiment, a linear gray scale visual input
was used. This time, all of the computations were done on-
board. More recently, a linear visual input was also used in
a vision-based flying robot project [17].

A high resolution camera was seen in [11], where a
640x480 USB color camera connected to a PC/104 com-
puter was used, doing all computations onboard. However,
as input to the controller, the color space of the image was
first reduced to four levels: red, green, blue, or other.

All of these previous work have used visual information
as input for a genetically evolved neural network controller.
However, they only used part of the information available
by either subsampling the signal or by using very low reso-
lution sensing devices. Beside, all of the evolutionary pro-
cesses were conducted on the robot, whitout the use of sim-
ulation.

The goal of the present project is to develop a vision-
based controller for an autonomous mobile robot using ge-
netic programming [1, 8]. In this paper, we describe the ac-
tual robotic platform that was developed for this project, in-
cluding a software simulator for this platform, and we report
on some preliminary results that were obtained for a rela-
tively simple, but not trivial, line following task. The goal
here, is not to develop a visual servoing algorithm [6] per
se, but to obtain emerging visually driven behaviors for a
mobile robot wandering in an unconstrained environnement
using evolutionnary computation.

The outline of the paper is as follows. The next sec-
tion gives an overview of the physical robot, of the robot
environment, and of the robot simulator. Then, Section 3
presents the evolutionary setup that was used to conduct the
experiments for which results are analysed in Section 4. Fi-
nally, Section 5 concludes the paper with perspectives and
future work.



WiFi
card

webcam

direct drive
motors

battery pack teflon stub

KoreBot

KoreMotor

(a) design views

(b) photograph

Figure 1. Physical robot: (a) design views; (b)
photograph.

2 Robotic platform

A custom 110 mm long by 125 mm wide two motor-
ized wheel robot was developed for this project (see Figure
1). The robot is equipped with a KoreBot card1, which is a
miniature Linux-based single-board computer, with an Intel
XScale 400 MHz PXA-255 processor, 64 MB of RAM, 32
MB of Flash memory, USB port, and PCMCIA card slot.
This board is combined with the KoreMotor card, which is
a motor controller card implementing PID control to DC
motors.

Video data acquisition is through a USB video camera

1http://www.k-team.com

Figure 2. The robot in his environment in a
line following task viewed from the supervi-
sor.

connected to the KoreBot. The camera is able to deliver
a compressed image resolution of 640x480 pixels at 30
FPS. However, because of current software limitations, the
camera is used in it uncompressed video format, namely
YUV420, of 160x120 pixels at 30 FPS. Even though com-
putations are generally done onboard, the robot can commu-
nicate with a remote host through an embedded WiFi link.
This link is used for externally supervising the robot, and to
download/upload code and data.

2.1 Dynamic environment

The robot environment is artificially controlled using an
LCD projector that projects images on the floor. This setup
is interesting because it enables instant dynamical reconfig-
uration of the environment without any human intervention.
For the case of the line following problem, the line can be
changed easily in between evaluation runs, and obstacles or
other features can be added dynamically to the scene. Fig-
ure 2 shows the robot in action. The image background is a
mix of the natural texture from the floor tiles in our lab, and
of random dot texture generated through the projector.

In addition to this projector, the environment also con-
tains a supervisor camera which looks down at the scene
(camera axis is parallel to projector axis), tracking and mon-
itoring the robot movements. This information is used for
the fitness evaluation of the genetic programs that are ran on
the physical robot, and for remote positioning of the robot
at the beginning of each evaluation run. It can also be used
as an external agent, like a prey in a prey-predator context.
This dynamic environment thus offers a great versatility on
the kind of feasible tasks.
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Figure 3. Image taken from the robot view.

2.2 Robot simulator

The main problem with evolutionary computations is fit-
ness evaluation time. Using a single physical robot to eval-
uate the fitness of a population of n individual controllers
requires n sequential evaluation runs. To enable parallel fit-
ness evaluation requires either an army of robots, or a robot
simulator and a cluster of computers running virtual robots
in a virtual environment.

A robot simulator was thus created using an OpenGL
engine to generate realistic visual information for a virtual
robot. The scene model can be rendered with good fidelity
as can be seen by comparing the images of figure 3. The
fact that the real scene is already artificially manufactured
(except for the texture of the floor tiles) greatly facilitates
the development of a good visual model.

The computation time of the genetic programming prim-
itives used by the controller is another important parameter
of the simulation. Obviously, the refresh rate of the motor
commands has a great influence on the robot’s behavior. If
the refresh rate is too slow, then the robot may not be able
to react efficiently to its sensory input. In the particular case
of the line following problem, the robot may simply speed
along and miss a curve in the line because it was never seen.
Thus the ratio of processing speeds between the physical
and simulated robots must be taken into account carefully.

3 Experimental setup

For the reported experiments, the robot controller was
trained for a line following task. The scene is a 5m × 5m
clear gray plane surface without any walls, overlaid with
random darker gray spots. Outside this surface, there is a
uniform dark background. A black NURBS curve is drawn
around the center region of this scene (Figure 2). This curve
is logically decomposed into small segments, and the task is
to visit a maximum number of these segments in a specified
amount of time. Here, each line was decomposed into 200
fragments of equal length. As the lenght of the lines used
is not kept constant, the segment length will vary for each
line.

3.1 Fitness evalutation

When evaluating the fitness of evolved controllers, each
of them is tested three times at each generation, for three
different lines and initial position. The fitness is then the
mean of these three evaluation runs. In this way, lucky in-
dividuals are less likely to have a good fitness, while the
really good ones should be able to come through in suc-
cessive runs. By changing the line, we make sure that the
controllers do not get over-trained for a particular line.

To facilitate the initial development of individuals in the
first generations of evolution, it is important to increase the
contrast between the line and the background as much as
possible. The visual model was thus incrementally made
more realistic in three steps. In a first step, during the first
generations, the background color is set to medium gray (in-
stead of black) so that the horizon cannot be confused with
the pursued line. Later on, in a second step, the background
is turned to black just like in the physical scene. Finally, in a
third step, the visual model is completed by a linear fog ren-
dering which blends the scene pixels with the background
color, proportionally to the depth of the scene. The effect of
this fog rendering is shown in Figure 4.

3.2 Fitness function

The objective function φ(i) used to estimate the fitness
of an individual run i is simply the fraction of line segments
that were visited during this run:

φ(i) =
1
Si

Si∑
j=1

sj , (1)

where Si is the total number of segments for the line of run
i, and sj is either 1 if segment j was visited by the robot, or
0 otherwise. The final fitness Φ is the average of q distinct
runs:

Φ =
1
q

q∑
i=1

φi (2)
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Figure 4. Image taken from the robot view
with and without fog.

A line segment is said to be visited if, for any of the
time steps, the nearest point on the line to the robot position
is situated on that segment and that the distance from the
robot to the line is smaller than a specified threshold. For
our experiments, we have used a fixed threshold of 10cm.

Some other parameters to this simple fitness calculation
were also tried. For example, the collinearity of the robot
speed vector with regard to the line slope, or the time passed
away from the line. But results were not conclusive. A
multiobjective optimization could possibly generate better
results, but more work is needed in order to define a more
sophisticated fitness function.

3.3 Genetic Programming

In Genetic Programming (GP) individuals are repre-
sented by computer programs that usually take the form of
rooted trees of primitive operations [1, 8]. Initially, ran-
dom trees are generated, and genetic operations involve al-
teration of subtrees. Crossover operations are usually im-
plemented by crossing two subtrees taken from two individ-
uals. One kind of mutation consists in replacing a subtree
by another randomly created.

To setup a GP evolution, the first step is to define an ad-
equate set of primitives operations, that will be used by the

Table 1. Summary of GP parameter settings
Objective Visual line following by vis-

iting the maximun number of
line segments

Terminal set Input image and ephemerals
Function set ADD, SUB, MUL, DIV,

IfThenElse, MAX, MIN,
MEAN, MEDIAN, STDV,
CONV, THRESH, CoGH,
CoGV, MMEAN, EXTRACT

Crossover probalibility 90%
Mutation probability :

Standard 5%
Shrink 5%
Swap 5%

Selection Decimate, oversize ratio 7
Population size 100
Testing time 20 seconds
Time factor 5
Incrementation steps :

Background 15 generations
Fog 30 generations

GP process as tree nodes. The primitives that were used in
this work are summarized in Table 1. The set of terminals
(primitives without arguments) consists of the camera im-
age, on the one hand, and of ephemeral matrices and scalars,
on the other hand. Ephemeral primitives are randomly gen-
erated constants that are set during individual inception. In
order to deal with different types of data that are processed
in the GP trees, such as matrix versus scalar, constrained
GP is used [8]. This ensures data compatibility between
primitives.

In the set of primitives, arithmetic operators such as addi-
tion (ADD), subtraction (SUB), multiplication (MUL) and
division (DIV), are defined. When these operators are ap-
plied to a mixture of scalar and matrix, the operation is el-
ement wise. A special transformation is applied when the
size of the matrix arguments are size incompatible. This
transformation consists in first aligning their centers, and
then extracting their overlapping area.

Filtering primitives are also defined for maximum
(MAX), minimum (MIN), mean (MEAN), median
(MEDIAN), standard deviation (STDV) and convolution
(CONV) masking operations. These primitives operate on
two operands, the first is interpreted as the image matrix,
and the other specifies the mask size for the operation,
except for primitive CONV which receives the mask
itself as the second argument. The mask size argument is
interpreted either as 3× 3, 5× 5, or 7× 7.

Other primitives allow some simple computations such
as horizontal or vertical center of gravity, binary thresh-



old, or matrix mean (MMEAN). Also, an extractor operator
(EXTRACT) can extract a sub-matrix. It should be noted
that center of gravity and matrix mean operations are the
only ones that receive a matrix argument and that return a
scalar value.

The controller output is generated at the root node of the
program tree. This special root node receives two scalar
values as arguments. The first is interpreted as an angular
velocity for the robot, ω, and the other as its forward speed,
V . The tangential wheel speeds are then determined using
the kinematic model of the robot, which takes into account
its wheelbase, B.

vl = V − ωB

2
, vr = V +

ωB

2
(3)

where vl and vr are respectively the left and right tangential
wheel velocities. This approach was found to be more suc-
cesful than interpreting the values received at the root node
directly as motors speeds.

From the command generation algorithm, it is apparent
that motor commands are refreshed after every execution of
the program tree. Because the refresh rate of the commands
are inversely proportional to the tree size, which influences
the performance of controllers, this constitutes an implicit
parsimony pressure on the size of the individuals that coun-
ters the natural bloating tendency of GP programs during
evolution.

The evolutionary algorithm described above was imple-
mented using the Open BEAGLE C++ framework2 for evo-
lutionary computations [3], and its companion Distributed
BEAGLE3 that creates a master-slave architecture to run the
evolution on a cluster of computers [2].

4 Results

Successful behaviors were obtained in simulation using
the parameters listed in table 1. The selection algorithm
used was the decimation operator, which kept the n best in-
dividuals of the population. Here, n is the population size.
In conjonction with the decimation operator, the oversize
operator was used to generate the ratio ∗ population size
children individuals from a population of n parents.

Figure 5 summarizes the main statistics of the evolution:
fitness, tree depth, and tree size. The graph of fitness vs gen-
eration shows that the evolution mostly stalls after 25 gener-
ations. The average population fitness is about 35%, while
the best individual reached a little over 70%. Nevertheless,
these are good results considering the severe time limit con-
straint that was imposed on the robot for completing his run.
In 20 seconds, most robot controllers are not able to visit the

2http://beagle.gel.ulaval.ca
3http://beagle.gel.ulaval.ca/distributed
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Figure 7. Wrong behavior having good fit-
ness value. In this case, the fitness associ-
ated to this individual is 0.40.

complete line, even if they are initially positioned at one of
its end-points. Moreover, the robots were positioned mostly
around the center of the scene by the fitness evaluation pro-
cess, even though their exact position and orientation was
determined randomly. The graphs of the tree depth and tree
size give some hint at the bloat phenomenon that was men-
tioned in the previous section. The two graphs show that the
evolved programs tend to grow in complexity through time,
despite the parsimony pressure imposed by the time limit.

Figure 6 shows the behavior of some of the successful
controllers. It also illustrates the different paths that were
used to test the evolved controllers.

One of the problem with our objective function is that
it does not discriminate well enough between good con-
trollers that are able to follow lines, and trivial ones that
adopt strategies like always going straight. One such ex-
ample is given in Figure 7. where the corresponding con-
troller received a fitness of 40%, above the population av-
erage. More work is needed to refine the objective function
so that it deals adequately with such undesirable behavior.

Another manifestation of the same problem is that even
the good controllers sometimes have difficulty in locating
the line quickly and, hence, are not able to demonstrate their
abilities for each and every run. Thus a bad run may also
bring them toward the average population fitness.

For this reason, a new evaluation procedure is currently
being investigated. Rather than having a predefined amount
of time for each evaluation, the individual controller will
receive additionnal time for each line segment visited. This
can be seen as food placed along the line to feed the robot
with additional energy to continue. This should help to
solve the problem of good controllers that are unable to fin-
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Figure 5. Progression of tree size and depth and the fitness over all the generations.

ish their work.
In the present research state, behaviors obtained in simu-

lation were unsuccessfully transfered to the physical robot.
The reason is that the simulator still presents some over-
simplifications. In fact, the computation time model should
be more elaborate and a dynamic model of the robot should
be incorporated into the simulator to better reflect the exact
response of the robot to the generated commands. These
simplifications allowed us to rapidly generate simulation re-
sults that now justify further development effort.

5 Conclusion

In this paper, an innovative dynamic environment for
vision-based evolutionary robotics research was described.
The autonomous mobile robot rely on gray scale video data
to perform the easy but non trivial task of line follow-
ing. Genetic programming was used to successfully evolve
sought behaviors in simulation. The required simulation

time was greatly reduced by distributing the evaluation pro-
cess over a cluster of 24 computers.

Although the results presented here were only based on
simulation, ongoing work on the refinement of the robot
model should lead to a successful transfer of evolved con-
trollers to the physical robot. Besides, a better fitness
function that would clearly dissociate the sought behavior
should greatly help the convergence of the evolutionary pro-
cess. Finally, we are also investigating the addition of state
primitives in our genetic programming toolbox, in order to
enable the exploitation of past experiences.
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