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ABSTRACT
Choosing the right representation for a problem is impor-
tant. In this article we introduce a linear genetic program-
ming approach for motif discovery in protein families, and
we also present a thorough comparison between our ap-
proach and Koza-style genetic programming using ADFs.

In a study of 45 protein families, we demonstrate that
our algorithm, given equal processing resources and no prior
knowledge in shaping of datasets, consistently generates mo-
tifs that are of significantly better quality than those we
found by using trees as representation. For several of the
studied protein families we evolve motifs comparable to those
found in Prosite, a manually curated database of protein
motifs.

Our linear genome gave better results than Koza-style ge-
netic programming for 37 of 45 families. The difference is
statistically significant for 24 of the families at the 99% con-
fidence level.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Heuristic methods

General Terms
Algorithms, Performance

Keywords
Genetic Programming, protein motifs, representations

1. INTRODUCTION
Understanding protein function is one of the keys to un-

derstanding life. Knowledge discovery about proteins to
predict function from protein sequences is one of the grand
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challenges in biology today — as it has been for the last two
decades.

Swiss-Prot is an annotated database of protein sequences
from many different organisms, and includes descriptions
of known protein function and domain structure as well as
publication lists on each protein [2]. As of release 45.5 (re-
leased January 4th, 2005), the Swiss-Prot database contains
167089 distinct protein sequence entries, consisting of ap-
proximately 60 million amino acids. In contrast TrEMBL,
the computer annotated cousin of Swiss-Prot, contains 1.5
million protein sequences in release 28.5 (also released Jan-
uary 4th 2005). From release 45 to 45.5 Swiss-Prot grew
with 2%. TrEMBL grew with 6%. In other words, there is
an information gap between the number of known protein se-
quences and the number of studied protein sequences. This
gap is growing faster with every release of the SwissProt
and TrEMBL databases.1 Computer methods to aid under-
standing and to help pose meaningful hypothesises about
protein function to help close this gap is thus one of several
important research problems in bioinformatics.

Motifs, short regular expression-like structures, are a way
to describe homologous relationships between proteins. Of-
ten such a motif can highlight important characteristic re-
gions of proteins with similar function and common ances-
tral background. Also, motifs are easy to interpret — a
biologist may immediately see the important motif or con-
served region of a protein family.

Prosite is a manually created and curated database that
describes homologous relationships with local motifs and
patterns [9]. A drawback of Prosite is of course that the pat-
terns are manually created, requiring a significant amount of
work by skilled biologists — both creating the motif and at
keeping the database synchronized with new data. There-
fore, the automatic discovery of conserved motifs have re-
ceived quite a bit of attention during the last two decades.
Brazma and Jonassen give a good survey on methods based
on enumeration and other search methods, and also give
a nice view on the different problems in the domain [4].
Rigoutsos et al. also give a survey of motif discovery al-
gorithms in relation with their own works [14]. Although
new motifs in Prosite are now often presented as stochastic
profiles with much resemblance to Hidden Markov Models
(HMMs), the automatic generation of biological motifs re-

1Release data acquired from the Swiss-Prot web-site at
http://us.expasy.org/sprot/

401



mains an active research area. A new motif that can replace
the need of the statistical profile is always welcome.

The patterns in Prosite are given as simplified regular
expressions as in the following example:
A-N-[EXAMPL]-E-X(1,3)-P-A-T-{TERN}
Each letter (residue) is picked from a twenty-letter alpha-

bet representing different amino acids. Residues in brackets
represent “one of” a group and the X represents a wildcard
region (in this case it represents a region with at least one
and at most three residues). The final residues enclosed in
the curly braces represents “not one of” a group. It is also
possible to constrain the motif to be at one of the ends of
the protein string, using < and > (meaning beginning and
end, respectively.)

As will become clear during the discussion of previous and
related work, this is the first work we are aware of that uses
GP and the entire Swiss-Prot database as examples to evolve
protein motifs.

1.1 Our experiments
In this study we investigated and compared the relative

capabilities of tree-based Genetic Programming (TreeGP)
with that of linear-genome Genetic Programming (ListGP)
as tools to discover interesting motifs in unaligned proteomic
data. We demonstrate that ListGP gives good classifiers for
several protein families without the use of domain specific
knowledge. We also show that our linear genome algorithm
consistently performs better than TreeGP, and that it tends
to have more stable performance over a wide range of protein
families — an important property of algorithms for knowl-
edge acquisition.

Recent approaches have applied very general constrained
genetic programming methods, where the search has been
done in valid parse-trees for a given grammar describing
the target language (e.g., the Prosite language). Such an
approach is very general in terms of what kind of problems
one can formulate and solve, but it might not be tailored to
the problem of motif discovery.

Due to the sequential nature of protein sequences, a natu-
ral representation for conserved motifs without gaps or wild-
cards would be sequences. Even though the Prosite language
has support for flexible gaps, wildcards and groups, the em-
phasis is on conserved positions in a set of strings. Therefore,
even if we expanded the language to include all the features
found in the Prosite language, the focus should be on the
conserved parts.

Authors reporting similar research have concentrated on a
very small number of protein families. In this report we give
results for 45 different protein families. Also, researchers
tend to use few positive examples for training - possibly due
to runtime considerations. To our knowledge, no researchers
in the GP-community have reported experiments on this
many protein families before. Our experiments support our
main claim that the linear genome genetic programming for
motif discovery is more efficient than tree-based methods.

We also employed a specialized hardware called the “Pat-
tern Matching Chip” (PMC) to evaluate the individuals [1].
This yields nearly a fifty-fold speedup in evaluation speed in
our experiments compared with a standard “off the shelf”
computer using regexp matching software like “grep.”

We would like to use boosting la AdaBoost in future work,
and therefore it is of importance to us that our base learner
is as efficient as possible — for boosting to work, we must

be sure that the algorithm performs better than a random
walk in the solution space [13].

In this work we have implemented a very simple linear
genetic programming algorithm evolving motifs in a small
subset of the Prosite language including only residues and
groups, and compare these results with a tree-based method
previously described for motif discovery for the same lan-
guage [10]. Extending these studies to approaches contain-
ing larger portions of the Prosite language is planned in
future work.

In section 2 we discuss related works and contrast it to our
approach. The algorithms we use are described in section
3, whereas our experiments and methodology is described in
section 4. We give results from our experiments in section 5,
and finally a short discussion and some concluding remarks
in section 6.

2. RELATED WORK
Evolutionary Algorithms (EA) have been applied to the

problem of motif discovery at a few occasions [10, 8, 17,
12]. The experiments have usually been small, presenting
results for only a limited number of protein families (usu-
ally around two to six.) In addition, researchers have usually
performed some kind of pre-shaping of training sets. Some
such strategies are pre calculated alignments of positive ex-
amples [17, 12], particularly difficult sequences have been
used as negative examples [10] and relatively small numbers
of randomly generated sequences have been used as negative
samples [18]. Also, most of the studies have used the default
“Koza-style” tree-structure to evolve candidates, sometimes
in conjunction with a grammar.

2.1 Careful selection of negative examples
Koza and Andre have evolved motifs for the DEAD-box

family and Super-oxide Manganese families [10, 11]. They
used a population size of 256000 individuals, running for
a maximum of 201 generations. They elaborated on two
motifs found by their algorithm after 42 and 64 generations.
Assuming that these were “early sightings” — motifs with
good qualities found early in runs — this means that they
performed somewhere above ten million fitness evaluations
before finding a quality motif.

They evolved motifs with the same subset of the Prosite
pattern format as we use in this work, allowing only an
exact match with one of the twenty amino acid residues and
character sets matching one or more residues. This limits
patterns to the following format:
[IVPTQ]-[IVPTQ]-I-E-M-[NR]-[WP]-[FCNR]

In their work these patterns are represented with the stan-
dard GP-tree structure, using automatically defined func-
tions (ADFs) for the residues enclosed in the optional brack-
ets.

Koza and Andre did some preprocessing of their training
data to lessen the computational burden of the search. They
preprocessed the negative data and constructed a dataset
with 210 examples with 30 residues, which all contained
a partial match with the dead-box and superdioxide man-
ganese motifs without being in the family. One might say
that they performed a kind of manual boosting of the train-
ing data (AdaBoost works in this manner, by allowing the
algorithm to gradually place increased emphasis on difficult
data-points [6]). This might cause the algorithm to falsely
find motifs that seem to be of significance (having high fit-
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ness due to no negative hits), but exist in other parts of the
Swiss-Prot data — a kind of over-fitting. Some of the re-
sults reported in their articles actually show some behavior
of this kind.

Their approach is, in other words, not able to pose a com-
pletely new hypothesis about a set of related protein strings
with certainty. To create motifs of any quality, they re-
quire that the motifs found “hit” the string in the same
locations as the target motifs. Still their experiments are
an early demonstration that genetic programming might be
amenable to such studies.

2.2 Pre-aligning the positive data
Björn Olsson did some work on evolution of motifs using

a genetic algorithm to evolve patterns not unlike the Prosite
motifs [12, 3]. In these works, a genetic algorithm (GA) is
used to discover conserved regions in multiple alignments of
the proteins in the family.

They restrict themselves to using alignments that are pre-
calculated and “trusted” in the biological community (e.g.,
hand tailored). In this respect they rely on only a small
fraction of the positive samples, and the results of their ex-
periments depend on the skills of the biologists who picked
the samples — thus still requiring a considerable amount of
manual labor.

The key differences between their patterns and the Prosite
motifs, is that they search for global motifs over the entire
alignment — as opposed to the short conserved motifs used
in the PROSITE databases.

Ross has published several papers on the application of
GP to evolving what he call Stochastic Regular Motifs (SRMs)
[15, 16, 17]. He has reported some experiments on results
using prealigned positive examples.

2.3 Local search optimization
Hu did some work where he first evolved motif candidates,

followed by a local search refinement [8]. He also used an
expanded terminal set including frequently occurring amino
acid groups provided by a domain expert, instead of having
the algorithm evolve the ambiguities. He reported good re-
sults, with motifs very similar to the target Prosite motifs
for a few families.

2.4 Unbiased selection of training points
Ross has also used GP and stochastic regular expressions

for training on unaligned protein sequences [18]. In that
study he reports some results for six different protein fam-
ilies. Notably he has, like Olsson et al., a small number of
positive training samples and he uses the majority of his
data points for testing. As negative training data he uses
randomly generated sequences instead of sequences or se-
quence segments from the Swiss-Prot database.

He also employs a fitness measure that differs from what
is used by others. A comparison of his results with our work
and the work of others might have been easier if he had
calculated and presented the correlation coefficients as well.
Nonetheless, he argues that GP is able to learn SREs and
express meaningful motifs for proteins.

3. ALGORITHMS
Both the linear GP runs (ListGP) and the tree-based GP

runs (TreeGP) were done with populations of 1500 induhvid-
uals for 100 generations. This yields a total of 150000 fitness

evaluations in every run - a fraction of the number of evalua-
tions reportedly used by Koza et al in their study [10]. Every
time a new best individual was found, it was evaluated on
the test-data and results recorded. The selection mechanism
is standard tournament selection for both algorithms.

3.1 Tree-based GP with ADFs
The experiments on tree-based genetic programming were

done with the LilGP genetic programming system [20]. The
architecture was constructed in the same way as done by
Koza et al. [10]. We used two ADFs for the groups, and one
for the main motif. The evolutionary operators used were
subtree-swapping crossover and standard mutation.

Because of the dynamics of tree-based GP we expected
that most of the evolved trees would have a “dendritic”
look [5]. This made it difficult to ensure that the “expected
length” of the motifs evolved by the two different algorithms
would be equal, as well as assuring that the search-space of
the different algorithms were comparative. Therefore we
chose settings such that our TreeGP runs would be able
to express motifs at least at similar lengths as those ex-
pressed with our ListGP algorithm. We allowed the maxi-
mum height to be 15 for the result-producing branch. As we
did not expect the groups to include more than five residues,
we constrained the ADFs to be no taller than five.

Before evaluation, an individual is transformed to a query
string by concatenating the residues in prefix order traversal.
The ADFs were transformed to groups in brackets, and any
duplicate residues in an ADF were removed, as groups are
sets of optional objects.

3.2 Linear GP for protein motifs
In ListGP the genome is represented by a list of nodes.

Each node represents either an amino acid residue, or a
group of residues allowing matches of two or more differ-
ent amino acids.

The crossover operator in our experiments is a two-point
crossover operator, where the crossover points are selected
uniformly over the list in both genomes. This allows for
the genomes to be of variable length, and to grow as new
interesting positions are recognized. This form of crossover
does also seem to be meaningful for the problem of motif
discovery, placing an emphasis on the conserved residues -
either in the form of single residues, or as groups.

Mutations reflects standard string-edit operations. When
an individual is selected for mutation and the position for
the mutation is selected uniformly over the genome, one of
insertion, deletion and replacement operations were chosen
with equal probability.

When it is necessary to create a new node (both under
initialization of the genome and when an insertion or edit
mutation occurred) a choice is made to either create a group
or a single residue — 60% being residues, 40% groups. When
creating a group, the length is first chosen from a normal dis-
tribution with expected length four and standard deviation
one, and thereafter it is filled with different random amino
acid residues selected uniformly.

The initial population was created by, for each individual,
first picking a length, where the length was sampled from
a normal distribution with expected length 8 and standard
deviation 4. Afterward, each list-element was filled. The
length of the motifs found with ListGP was limited to max-
imum 64 residues (also counting the residues in groups).
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3.3 Evaluation of motifs
To evaluate each population, we used a PCI-card with

16 PMC from Interagon [1]. This hardware implements a
subset of regular expressions, special tailored to meet typical
search requirements and patterns often used by the standard
UNIX tool “grep”.

The evaluation of one population of 1500 individuals par-
allelizing the search on 10 PMCs took on the average 80
seconds, and one run took approximately about three hours
to complete. To compare the speed with respect to a typical
search, we timed some queries with the same size and com-
plexity as the ones found in Table 6 using the UNIX program
“grep” on a computer equipped with an AMD Athlon 2700+
CPU and 256Mb of RAM. Searching the raw sequence data
from the database took around two and a half seconds for
a single motif, not including the (small) overhead incurring
while registering and handling matches in the database. The
hardware gave us a nearly fifty-fold speed-increase, allowing
us to measure experiment times in hours instead of weeks.

To calculate the classification quality, we used the Matthews
correlation coefficient, −1 ≤ C ≤ 1, as given in equation 1.
In this formula P is a hit in the positive dataset, N a hit in
the negative set and T and F is true and false respectively.
−1 indicates perfect negative correlation and 1 indicates a
perfect positive correlation. If the data have no correlation
at all, C equals zero.2 The Matthews correlation coefficient
is a well established measure in biology and it’s use as a
fitness measure was inspired by other works [10, 12].

C =
TP ∗ TN − FN ∗ FP

p

(TN + FN)(TN + FP )(TP + FN)(TP + FP )
(1)

During a run a query might produce results that gave the
numbers in the denominator the value zero. Examples of
such cases would be when a query placed all samples in the
same class - making for instance the sum of true positives
and false negatives equal to zero. On such occurrences, the
correlation was set to zero.

4. DATA AND EXPERIMENTS
The protein families we investigated were selected accord-

ing to two criteria: selected families contained at least 200
different proteins, and the motifs or profiles describing the
family should have more than zero false negatives or false
positives. The first criterion was selected to ensure that we
had enough positive examples in our test sets, to give our
results some statistical validity. The second criterion en-
sured that we could possibly improve on the Prosite motifs.
This process left us with some duplicates, as for example
the Egf proteins and Zinc Finger proteins have two entries
in the database. Removing these left us with 45 different
protein families for our study, giving a broad view of the
two algorithms’ performance on different protein families.

For each family, we labeled all proteins in the family as
positive, and all other proteins in the Swiss-Prot database
as negative. For most families there existed proteins that
were labeled as possible or partial members of the families.
These proteins were excluded from each study.

Comparing classifiers is not easy. According to Salzberg,
the recommended approach is to perform ten-fold cross val-
2Correlation of zero does not, on the other hand, indicate
that the data are independent.

Table 1: Parameter settings for the different
TreeGP runs

Run ID Prep Pxo Pmut Pinternal Pexternal

Aggressive 0.0 0.8 0.2 0.2 0.8
Koza 0.1 0.9 0.0 0.0 0.0

Common 0.1 0.8 0.1 0.9 0.1

Table 2: Parameters for ListGP classifiers. Param-
eters enclosed in double lines must sum to one.

Parameter setting

Tournament size 7
Expected motif length 8

Crossover 0.7
Mutation 0.3

Residue rate 0.6
Group rate 0.4

idation, count the number of successes on a test set in each
run, and perform a pooled Z-test for statistical significance.
Due to time limitations we instead extracted 20% of the
proteins for each family, and used these as a test set [19].

Also, still following Salzberg, it is adviced to use half of
the training set as a tuning set to optimize parameter set-
tings for both learners [19]. Performing the required tun-
ing runs for 180 different experiments — tuning on half of
our training-set for all 45 families for both the linear and
tree-based representations — was again not feasible due to
time-limitations. Instead we decided to compromise on this
issue: we quite arbitrarily chose some parameters for our
ListGP algorithm and allowed these to be fixed over all ex-
periments, see Table 2. Then we chose three different pa-
rameter settings for the TreeGP algorithm. The parameter-
settings used are described in Table 1. The first set of pa-
rameters in Table 1 is an “odd-ball” setting using a more
aggressive mutation scheme, focusing on the terminals in-
stead of internal nodes (labeled Aggressive in tables.) The
second parameter set is similar to those used by Koza et al.
in his early experiments. The last parameter set is labeled
Common, and reflect “common practice” in other works.

This approach did not give us statistically significant data
for all families, but it did so for enough families to allow us
to make a confident judgment on the relative capabilities of
the different representations.

Then, for each family, we took the best motif from each
of the four runs (List, Aggressive, Koza and Common) and
performed a one sided pooled Z-test with a 99% significance
level to see if it had a significantly higher number of successes
than the other motifs [7]. Our null-hypothesis was that the
classifiers were equal, and our alternate hypothesis was that
the motif with the best results actually was better.

To check the stability of the different algorithms, we calcu-
lated the average classification accuracy in terms of failure-
rates over all protein families, with 99% confidence intervals
for these averages. These data were also compared to the
results for a majority vote “classifier” (labeled Majorvote
in figures). Because of the large difference with respect to
the negative and positive datasets, assigning all samples a
negative label gives 99% correct classification results for all
families.
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Table 3: The number of runs the different configu-
rations produced the best result, according to when
they were significantly better than the competing
methods with a significance level of 99%

Config All Some None Total

List 24(53.3%) 10(22.2%) 4(6.67%) 38(84.4%)
Aggressive 2(4.44%) 3(11.1%) 1(2.22%) 6(13.3%)

Koza 0 0 0 0
Common 0 1(2.22%) 0 1(2.22%)

Table 4: The number of wins for the different clas-
sifiers, for correlations and successes

Parameter set By correlation By count

List 36 37
Aggressive 8 7

Koza 0 0
Common 1 1

5. RESULTS
Table 5 summarizes the results from our hypothesis tests.

The data are reported under the columns All, Some and
None. Results in the different columns report how many
times the motif with the highest score is significantly higher
than All, Some or None of the other three motifs, respec-
tively. For the latter column the Z-test indicates that the
motifs are equally good classifiers. As can be seen from the
table, motifs evolved with ListGP have a higher number of
successful classifications for 38 of the 45 families, and they
are significantly better than the other three for 24 families.
The three times the aggressive settings were significantly
better than some of the other settings, they were not signif-
icantly better than the motif evolved by ListGP.

The ten times ListGP was significantly better than only
Some, it lost against the Common and Aggressive settings
six times each, while Koza settings only caused a loss one of
the times.

In other words, for 24 of the families, we have reasons to
believe that ListGP evolved a classifier that is better than
the others, and for 2 runs we have reasons to believe that
one of the parameter settings for TreeGP is better. For the
remaining twenty families, our hypothesis tests give us no
reason to reject the null hypothesis that the evolved motifs
are equal with respect to classification quality.

Looking at the data for the ZF RING 2 family, the major-
ity vote actually has the highest number of correct classifica-
tions. Running our hypothesis tests shows that it actually
has a significantly better number of correct classifications
than all the configurations for TreeGP, but not significantly
better than the ListGP run. When we review the correla-
tions on these runs given in Table 5, ListGP comes out with
a correlation of 0.34, where the next competitor, Common,
has 0.31 in correlation (a majority vote has a correlation
of zero, of course.) Correlations for all evolved motifs are
given in the table, and the best values are printed in bold
font. Note also that for the TUBULIN family, both List and
Aggressive have a bold font. For that experiment they did
not tie only in value, but evolved the exact same motif (the
evolved motif for the TUBULIN family is one of those listed

Figure 1: Interval plots for results over all 45 fami-
lies, with 99% confidence intervals

Figure 2: The interval plot for our results, after
removing the data from the Cytochrome C family.
Still with 99% confidence intervals.

in Table 6.) Other values in the table with equal values
comes from rounding errors.

Looking at Figure 1, we see the average failure-rates over
all the 45 families with 99% confidence intervals (calculated
with MINITAB.) This gives a condensed view of the perfor-
mance of the different algorithms and settings. The column
labeled Majorvote is the performance of the “classifier” la-
beling all samples as negative. Its narrow confidence inter-
val, (0.3%, 0.5%), reflects that the sizes of all families, and
thus the positive-negative samples ratio, are similar for all
our experiments.

The figure shows that the failure-rates for most motifs
from most configurations are low. This is because the nega-
tive sets are very large compared to the positive sets (typi-
cally a hundred times larger), and because a randomly cre-
ated motif is very unlikely to hit any sequences at all — not
to mention the correct ones. Therefore a small change in
the number of correct classifications might still be due to a
significant change in classifier quality.

While inspecting our data, we discovered that our results
from the ListGP motifs had at least one result that differed
considerably from the others. We removed the data for the
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family in question from all experiments (Cytochrome C),
and this gives us the results presented in figure 1. After
this removal, the confidence interval for ListGP average er-
ror changed from (−0.23%, 1.22%) to (0.15%, 0.31%). This
change put both average error rate and the 99% confidence
interval below the confidence interval for the Majorvote av-
erage.

5.1 Evolved motifs
To give a picture of the motifs evolved with ListGP, we

give some examples of motifs and compare them visually
with the motifs in Prosite in table 6. These are, of all the mo-
tifs we evolved, the ones we found to have most in common
with the Prosite motif based on visual inspections. Typi-
cally, we included our motif in this table if we could justify
that all hits found by our ListGP motif recognize a subset
of the sequences recognized by the Prosite motif.

6. DISCUSSIONS AND CONCLUDING
REMARKS

As can be seen in Figures 1 and 2, the settings labeled
Koza have on average the highest error rates of all exper-
iments. We suspect that these results were caused by the
exclusion of mutations, and that our initial populations are
much smaller than those used by Koza and Andre in their
experiments [10]. Still, adding mutations did not improve
the performance considerably (Koza vs. Common in Figures
1 and 2.) The use of the parameter set labeled “Aggres-
sive”, highlighting mutations happening at the leaf nodes,
was from the start regarded as an odd-ball choice on our
part. Still this setting most of the time performed equally
well and at some occasions even better than the other set-
tings for TreeGP.

The average failure-rates for ListGP in figures 1 and 2
compares very well to the TreeGP experiments. The con-
siderably narrower 99% confidence intervals for ListGP also
give indications of a more stable behavior and less sensitiv-
ity to initial conditions. This is a favorable trait for any
heuristic algorithm. Also, all tree-based algorithms have
wide confidence intervals, suggesting that the behavior of
TreeGP is more chaotic (and thus less controllable), inde-
pendent of the different chosen parameter settings.

Most of the motifs we found were short compared to the
Prosite motifs, and many were very different. The differ-
ences between the motifs might be accounted for by noting
that we implemented a small subset of the Prosite language.
The length on the other hand, might improve by running
experiments with more generations and bigger initial popu-
lations.

As mentioned in the introductory section, these are initial
results - and we hope to expand the pattern language applied
by including both wildcards and flexible gaps. We also have
some plans to develop some homologous crossover operators
to investigate their effects on the algorithm performance.

We can not, based on our experiments and results, claim
that a linear representation always would be better than a
tree-representation for motif discovery in unaligned protein
sequences. To establish such a claim requires further ex-
periments and studies. Nevertheless, we have demonstrated
that using trees as representations might not be the obvious
choice for motif discovery.

Even though we don’t improve on the Prosite motifs, the

Table 5: Correlations of evolved classifiers on the
test sets for all families. Highest values in bold
font. Collumn letters are abbreviations for the dif-
ferent settings: L(istGP), A(ggressive), K(oza) and
C(ommon).

Family name L A K C

PROKAR LIPOPROTEIN 0.15 0.25 0.06 0.09
EF HAND 0.26 0.20 0.05 0.04
ZF RING 2 0.34 0.26 0.17 0.31

EGF 1 0.34 0.29 0.25 0.30
HOMEOBOX 1 0.89 0.18 0.16 0.16

ZINC FINGER C2H2 1 0.81 0.79 0.72 0.72
HLH 1 0.20 0.17 0.13 0.17

RRM RNP 1 0.39 0.14 0.08 0.08
HTH LYSR FAMILY 0.35 0.16 0.03 0.19

RECA 2 0.65 0.59 0.56 0.59
ADH SHORT 0.44 0.28 0.08 0.18

GAPDH 0.94 0.69 0.56 0.93
CYTOCHROME P450 0.59 0.43 0.24 0.35

CARBAMOYLTRANSFERASE 0.56 0.82 0.13 0.37
PUR PYR PR TRANSFER 0.54 0.23 0.23 0.23

GATASE TYPE I 0.73 0.21 0.22 0.11
PROTEIN KINASE ATP 0.70 0.12 0.12 0.12
PROTEIN KINASE ST 0.72 0.28 0.11 0.25

PROTEIN KINASE TYR 0.82 0.38 0.11 0.35
PROTEIN KINASE DOM 0.73 0.13 0.13 0.13

PA2 HIS 0.90 0.42 0.42 0.42
PA2 ASP 0.86 0.41 0.41 0.41

TRYPSIN HIS 0.93 0.93 0.81 0.93
TRYPSIN SER 0.97 0.87 0.74 0.84

ZINC PROTEASE 0.65 0.14 0.14 0.61
ATPASE ALPHA BETA 0.52 0.26 0.13 0.18

ATPASE E1 E2 0.87 0.97 0.53 0.76
RUBISCO LARGE 0.95 0.97 0.44 0.84

AA TRNA LIGASE I 0.59 0.09 0.07 0.07
AA TRNA LIGASE II 0.23 0.02 0.04 0.04

CYTOCHROME C 0.23 0.63 0.23 0.23
CYTOCHROME B HEME 0.91 0.77 0.61 0.76

CYTOCHROME B QO 0.94 0.75 0.71 0.59
THIOREDOXIN 0.70 0.33 0.09 0.07

4FE4S FERREDOXIN 0.44 0.42 0.19 0.42
ABC TRANSPORTER 1 0.54 0.40 0.15 0.30

TUBULIN 1.00 1.00 0.61 0.92
G PROTEIN RECEP F1 1 0.51 0.24 0.15 0.19
CHAPERONINS CPN60 0.90 0.91 0.89 0.91

HSP70 2 0.85 0.65 0.65 0.65
HSP70 3 0.81 0.62 0.62 0.32
DNAJ 2 0.20 0.33 0.19 0.29
IG LIKE 0.31 0.10 0.11 0.11
IG MHC 0.48 0.24 0.18 0.18

WD REPEATS 1 0.35 0.22 0.18 0.22
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Table 6: The motifs found by our ListGP algorithm, that contained some resemblance to the Prosite motifs.
Matching regions highlighted with bold font in Prosite motif.
Family ListGP Prosite

EGF 1 C-[LIQHDE]-C-[VPKH]-[VPKH]-
[GNHE]

C-x-C-x(5)-G-x(2)-C

GAPDH A-S-C-T-[FT]-[AVTN] [ASV]-S-C-[NT]-T-x-x-[LIM]
PROTEIN KINASE ST H-[CR]-D-[LIC]-K [LIVMFYC]-x-[HY]-x-D-[LIVMFY]-K-

x(2)-N-[LIVMFYCT](3)
TRYPSIN HIS [LIVWH]-[STR]-A-[GA]-H-C [LIVM]-[ST]-A-[STAG]-H-C
TRYPSIN SER G-D-S-G-G-[APH] [DNSTAGC]-[GSTAPIMVQH]-x(2)-G-

[DE]-S-G-[GS]-[SAPHV]-[LIVMFYWH]-
[LIVMFYSTANQH]

ZINC PROTEASE H-E-[LFV]-[GAFTCD]-H [GSTALIVN]-x(2)-H-E-[LIVMFYW]-
{DEHRKP}-H-x-[LIVMFYWGSPQ]

AA TRNA LIGASE I [LM]-H-[IMVT]-G-H P-x(0,2)-[GSTAN]-[DENQGAPK]-x-
[LIVMFP]-[HT]-[LIVMYAC]-G-
[HNTG]-[LIVMFYSTAGPC]

CYTOCHROME C C-H C-{CPWHF}-{CPWR}-C-H-{CFYW}
TUBULIN G-G-T-G-[AS]-G [SAG]-G-G-T-G-[SA]-G
HSP70 2 G-G-G-T-[LF]-D [LIVMF]-[LIVMFY]-[DN]-[LIVMFS]-G-

[GSH]-[GS]-[AST]-x-x(2)-[ST]-[LIVM]-
[LIVMFC]

stability of the performance and some of our “near misses” is
encouraging. We hope to present improved results ranging
a larger subset of the Prosite language in the near future.
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