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ABSTRACT 
We investigate the results of coevolution of spatially distributed 
populations. In particular, we describe work in which a simple 
function approximation problem is used to compare different 
spatial evolutionary methods. Our work shows that, on this 
problem, spatial coevolution is dramatically more successful than 
any other spatial evolutionary scheme we tested. Our results 
support two hypotheses about the source of spatial coevolution’s 
superior performance: (1) spatial coevolution allows population 
diversity to persist over many generations; and (2) spatial 
coevolution produces training examples (“parasites”) that 
specifically target weaknesses in models (“hosts”). The precise 
mechanisms by which the combination of spatial embedding and 
coevolution produces these results are still not well understood.  

Categories and Subject Descriptors 
I.2.6 [Artificial Intelligence]: Learning – concept learning, 
induction, and 1.2.8 [Artificial Intelligence]: Problem solving, 
control methods, and search.  

General Terms: Algorithms 

Keywords 
Coevolution, Spatial Evolution, Resource Sharing, Genetic 
Programming. 

1. INTRODUCTION 
Hillis [2] was the first to propose the notion of “host-parasite” 
coevolution. In his scheme, a population of candidate solutions 
(sorting networks) coevolved with a population of test sets 
(groups of sorting problems). The fitness of an individual sorting 
network (“host”) depended upon how many sorting problems in 
an individual group (“parasite”) it successfully sorted. Likewise, 
the fitness of an individual sorting-problem group depended upon 
how many problems in the group a network did not successfully 
sort. Hillis embedded the populations of hosts and parasites in a 
two-dimensional spatial grid with one host and one parasite per 
grid location. The fitness of each host was evaluated only on the 

parasite in the same grid location, and vice versa. This 
coevolution scheme was able to discover a smaller correct sorting 
network than a scheme using evolution alone. 

Since Hillis’s work, several other examples of the advantages of 
coevolution have been demonstrated (e.g., [1, 3, 7, 9]). 
Coevolution has been shown, in many cases, to outperform 
traditional evolutionary methods in both quality of final solutions 
and in efficiency, since coevolution allows for sparse training 
rather than relying on large training sets. 

However, it is still not completely understood what factors lead to 
the success of coevolution. It has been hypothesized that 
coevolution provides an adaptable gradient for learning so that the 
host and parasite populations evolve to continually provide a 
challenge for one another. It is thought that each population is 
able to focus on strategic weaknesses in the other population, 
forcing the other population to overcome these weaknesses, in 
analogy with biological arms races. It is also thought that the 
requirement of continually adapting in response to continual 
changes in the opposing population produces persistent diversity 
in each population, which is known to be an important factor for 
success in evolutionary computation. 

Some studies have shown that coevolution does not necessarily 
lead to better results for every task [10]. For example, coevolution 
can lead to a loss of gradient. This happens when one coevolving 
population evolves to greatly outperform the other population; 
uniformly high or low fitness values in the respective populations 
provide no gradient for selecting the fittest individuals. 
Additionally, coevolution can lead to over-fitting, in which one 
population focuses on the weaknesses in the other population 
without generalizing the solution. Finally, coevolution can lead to 
relativism, in which the populations oscillate between strategies 
but do not make progress towards a general solution. 

Much of the work on coevolution since Hillis’s has investigated 
non-spatial coevolution: each host is evaluated on the complete 
population of parasites or on some non-spatially derived subset of 
parasites. Coevolution has been found to be successful in such 
non-spatial systems, but apparently only with the addition of 
certain other mechanisms for explicitly maintaining population 
diversity and dealing with the other problems listed above. These 
added mechanisms include competitive fitness sharing [9], 
resource sharing [3], a “phantom parasite” [8], explicit control of 
parasite virulence [1], and the use of domain-specific knowledge 
in fitness evaluations [3, 7]. It is not clear to what extent these 
additional mechanisms are responsible for the success attributed 
to coevolution. For example, Werfel et al. [11] found that 
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resource sharing, not coevolution, was the major factor underlying 
Juillé and Pollack’s [3] success on coevolving cellular automata. 

Are there any circumstances under which coevolution would be 
successful without such additional mechanisms? Hillis’s work 
seems to be one example. Notably, Hillis’s system employed the 
additional factor of spatial embedding, whose contribution to the 
success of coevolution was not analyzed. His system also 
incorporated other complicating factors in the representation and 
initialization of sorting networks.  

In this paper we extend the work of Pagie and Hogeweg [6] on 
investigating a spatially embedded coevolutionary system without 
the additional mechanisms described above. We attempt to isolate 
what factors give rise to the dramatic success of spatial 
coevolution. 

We examine two hypotheses for the factors producing the success 
of spatial coevolution: (1) spatial coevolution promotes continued 
diversity in the population and (2) spatial coevolution produces 
parasites that target specific weaknesses in hosts. 

2. Experimental Setup  
Our experimental setup is identical to that used by Pagie and 
Hogeweg [6] except for some minor differences identified below. 
We use the same function-approximation task studied by Pagie 
and Hogeweg and their tree representation of candidate solutions. 
The target function is the following two-dimensional equation: 
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
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
 −−−−++++++++


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
 −−−−++++==== yxyxt  

where x,y ∈  [-5.0, 5.0]. A plot of the target function is shown in 
Figure 1.  

Each candidate solution (or “host”) is a tree representing a 
mathematical equation. The goal is to construct a tree that 
approximates the target equation within a certain tolerance. The 
problems upon which fitness is based are simple (x, y) values 
evenly distributed over the problem domain at intervals of 0.4. 
Therefore, the complete set consists of 26 x 26 = 676 total 
problems. 

The fitness of a host is based on its weighted error when evaluated 
on a subset of problems. The particular subset of problems on 
which the hosts are evaluated depends upon the evolutionary 
method used. The true fitness of a host h is defined to be the 
average error of the host on the complete set of 676 problems: 

( ) ( )( ) Parasites
s

1
s/tf Parasites∑ =

−=
i iih phpt , 

where SParasites is the number of problems in the complete set of 
problems, t( pi ) is the value of the target function on problem pi, 
and h( pi ) is the value of a host on problem pi. 

The hosts are represented, using the genetic programming 
paradigm, as trees describing mathematical equations that can be 
evaluated on two-dimensional points. The function set is { +, -, *, 
% } and the terminal set is { X, Y, ℜ  }. The +, -, and * operators 
are the standard arithmetic functions for addition, subtraction, and 
multiplication respectively; each takes two arguments. The 
protected divide function (%) takes two arguments, A and B, and 
returns 1 if B = 0 and A / B otherwise. The terminals X and Y 
evaluate to the respective values of the coordinates on which the 
tree is being evaluated. The terminal ℜ  is the “ephemeral random 
constant” [4], a randomly generated value between -1.0 and 1.0. 
The ephemeral random constant’s value for the node is randomly 
generated when the node is created and is fixed for the lifetime of 
the node. Note that the function and terminal sets contain 
unnecessary elements. In fact, the only necessary elements are the 
terminals X and Y, protected division, and either addition or 
subtraction. Additionally, while the constant 1.0 is not directly 
available as a terminal, it can be created by dividing a number by 
itself or by dividing a number by zero. The initial population of 
hosts is randomly generated with a maximum depth of three 
nodes. 

The coevolutionary methods utilize a population of “parasites”: 
(x, y) coordinate pairs from the complete set of all problems. The 
fitness of a parasite is defined by the evolutionary method used. 
Pagie and Hogeweg initialized all parasites to (0.2, 0.2). However, 
we found that the coevolutionary methods were more successful 
when the initial members of the parasite population were 
randomly chosen with replacement from the complete set of 676 
possible problems, and the results we report are from runs with 
this random initialization.  

In our experiments, the host and the parasite populations are 
spatially embedded on a 50 x 50 two-dimensional toroidal lattice, 
with one host and one parasite per grid cell. Thus, the total 
population sizes are 2500 individuals. At each generation, the 
host population undergoes selection, crossover, and mutation, and  
the parasite population undergoes selection and mutation. These 
Competition between individuals for reproduction is local in 
space. Each host or parasite competes for survival against the 
surrounding 8 hosts or parasites in its 3 x 3 neighborhood. After 

Figure 1:  Plots of the target function with views from 1) the top, 2) the bottom, and 3) the side.  The maximum of the function 
approaches 2.0 at the corners and the minimum approaches 0 at (0,0). 
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each population has been evaluated to determine fitness using one 
of the evolutionary methods (described in the next section), the 
individuals in each 3 x 3 neighborhood are ranked according to 
their fitness values. The ith ranked individual is selected with 
probability 0.5i. The ninth element is selected with probability 
0.58 to ensure that the nine probabilities sum to unity. The 
selected individual (acted upon further by crossover and mutation) 
replaces the individual in the center of the neighborhood in the 
next generation.  All replacements are made simultaneously 
before the start of the next generation. 

Following the selection step, 40% of the selected host population 
is chosen with replacement to undergo crossover with a randomly 
chosen neighboring host (including itself) from among the 
original neighboring individuals with which it competed for 
selection. Host crossover replaces a randomly chosen sub-tree in 
the selected host with a copy of a randomly chosen sub-tree from 
the other host, leaving the selected host modified but the other 
host unchanged. There is no parasite crossover. 

Following the crossover step, 20% of the selected host population 
is chosen with replacement to undergo point mutation. 
Additionally, at each generation 10% of the parasites are chosen 
to undergo mutation. Parasite mutation modifies either the x or y 
component of the coordinate pair by adding or subtracting one 
step (0.4). However, when a parasite on the edge of the problem 
space is mutated so that its new value would be outside of the 
problem space, the parasite remains unchanged.  

A host is considered to be correct if for each of the 676 problems 
in the complete problem set, the absolute difference between the 
target function and the host function is less than or equal to a 
tolerance of 0.01: ( ) ( ) ..phptParasitespp 010,, ≤−∈∀  

A stable correct host is one that has been discovered and then 
remains in the population for at least 50 generations. The 
algorithm stops when a stable correct host has been discovered or 
after 500 generations if none have been discovered. The goal of 
each run is to produce a stable correct host; therefore, runs that do 
so are considered to be successful. 

The hosts have a rich representation space; thus equivalent 
equations can be expressed with different trees. The particular 
representing a host’s equation is called the host’s genotype. The 
actual set of problems the host solves is its phenotype. Thus, the 
hosts can have many genotype encodings for a single phenotype. 
In this work, we define phenotype as the subset of the complete 
set of 676 problems for which the error of the host with respect to 
the target function is less than or equal to the tolerance of 0.01: 
Host h’s phenotype: set of all p such that are described below. 
 

(((( )))) (((( )))) .01.0and ≤≤≤≤−−−−∈∈∈∈ phptParasitesp  

3. Evolutionary Methods 
This research compares a variety of spatial evolutionary methods. 
We replicate the original methods used by Pagie and Hogeweg: 
coevolution, complete evaluation, and random evaluation. 
However, we also add two additional methods, host-against-all 
coevolution and resource sharing, as additional control 

experiments. All methods utilize spatially embedded hosts. Below 
we define the fitness functions of hosts and parasites for each of 
the different spatial evolutionary methods that we investigated. 
Note that since a host’s “fitness” is defined in terms of its error 
with respect to the target function, each evolutionary method 
attempts to minimize host fitness fh and maximize parasite fitness 
fp. 

3.1 Coevolution 
Let ( ) [ ] [ ]0.5,0.5,0.5,0.5,, −∈−∈= yxyxp  be a 
particular problem. 

Host fitness:  

(((( )))) (((( ))))(((( )))) ,99
1 /iphiptf ih ∑∑∑∑ −−−−==== ====

   

such that pi  is in h’s neighborhood. 

The fitness of a host is the host’s average error on the nine 
problems defined by the neighboring parasites, where t(p) is the 
target function value on problem p and h(p) is the host function’s 
value on problem p. The fitness evaluation is sparse: at each 
generation, each host is evaluated on only 9 problems out of the 
complete set of 676 problems. 

Parasite fitness:  

(((( )))) (((( )))) ,phptpf −−−−====  

such that h is the host in the same grid cell as p.  

The fitness of a parasite p is calculated with respect to the host h 
in the same grid cell and is the absolute value of the error of the 
host on that problem. Note that while a host’s fitness is a function 
of its value on the nine parasites in its neighborhood, a parasite’s 
fitness depends only on the single host in its same grid location. 
Pagie and Hogeweg claim that such an asymmetric fitness 
evaluation of parasites produces better results, in terms of time to 
discover a good solution, than a symmetric fitness evaluation in 
which the parasite’s fitness depends upon the nine neighboring 
hosts [6]. 

3.2 Complete Evaluation 
Complete evaluation (called “static evaluation” in [6]) is a non-
coevolutionary spatial method to which coevolution is to be 
compared.  Under complete evaluation, there is no parasite 
population. Rather, the host is evaluated against all 676 problems 
in the problem space (SProblems) with equal weighting. 

Host fitness:  

(((( )))) (((( ))))(((( )))) oblems
S

i iih S/phptf oblems

Pr1
Pr∑∑∑∑ ====

−−−−====  

3.3 Random Evaluation 
Random evaluation was chosen as a control to determine if 
coevolution’s success as compared with complete evaluation was 
due only to  sparse evaluation (evaluation against a small subset 
of the problem space) rather than other aspects of coevolution. 
Under random evaluation there is no parasite population, but 
sparse evaluation is still maintained. For each generation and for 
each host, nine random problems are chosen with replacement 
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from the complete problem set on which each host’s fitness is 
calculated. 

Host fitness: 

(((( )))) (((( ))))(((( )))) ,99

1
/phptf

i iih ∑∑∑∑ ====
−−−−====  

such that pi is chosen randomly from Sproblems. 

3.4 Host-Against-All Coevolution 
Host-against-all coevolution was chosen as a control experiment 
to determine the effects of spatial locality of parasites in 
dynamically exploiting specific weaknesses in specific hosts. 
Under host-against-all coevolution, a parasite population exists, 
but parasites are no longer local to their hosts. Instead, each host 
is evaluated on all 2500 parasites in the parasite population 
(

Parasitesn ). However, the hosts and parasites remain embedded 
and the fitness of a parasite is still the error of the host in the 
same grid cell.  Host selection and crossover still occurs 
between neighboring individuals on the spatial lattice.  Thus, 
some locality is maintained. 

Host fitness:  

( ) ( )( ) Parasites
n

i iih n/phptf Parasites∑ =
−=

1
 

Parasite fitness:  

(((( )))) (((( )))) (((( )))),phpthf p −−−−====  

such that h is the host in the same grid cell as p.  

3.5 Resource Sharing 
Resource sharing (or competitive fitness sharing) is a method for 
promoting diversity in the population by giving higher weight to 
problems that fewer hosts solve compared with problems that 
many hosts solve [3, 9]. We performed a control experiment 
using resource sharing alone to determine the role population 
diversity plays in evolving stable correct solutions. Resource 
sharing provides an alternative problem-weighting mechanism 
hypothesized to behave similarly to how parasites exploit the 
hosts during coevolution. The credit each host earns for solving 
a particular problem is shared equally among all the hosts that 
solve that particular problem. Thus, the more hosts that solve a 
problem, the less credit each host receives for solving that 
problem. 

Host fitness:  
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The fitness of a host is the sum of the weights of each problem  

in the complete set of problems on which the host matches the 
target function within the accepted tolerance. The weight(p) of 
each problem p depends upon how many other hosts solve p: the 
fitness a host receives from solving the problem is shared among 
all hosts that solve it. The function covered(h,p) returns 1 if the 
error of host h on problem p is less than the accepted tolerance 
of 0.01, and 0 otherwise. 

4. RESULTS 
4.1 Pagie & Hogeweg’s Experiments 
The results of Pagie and Hogeweg’s experiments are 
summarized in Table 1. The “success rate” is the percentage of 
successful runs (i.e., runs on which a stable, correct solution was 
evolved). Coevolution was successful in approximately 45% of 
the time. Complete evaluation did not produce any successful 
runs. Random evaluation’s success rate was 35%, which is 
roughly comparable to that of coevolution. Pagie and Hogeweg 
reasoned that in both of these methods, sparse evaluation allows 
the evolutionary process to explore the solution space more 
freely than does complete evaluation. In particular, it frees hosts 
from the requirement of reducing the error on all problems at 
once; rather, it allows them to focus on particular subsets of 
problems.  

Table 1:  Pagie and Hogeweg’s results comparing three 
different evolutionary methods. The success rate is the 

percentage of runs that produced a stable correct host, out of 
20 total runs. 

 

4.2 Results of Our Experiments 
We performed 50 independent runs of each of the five methods 
described above. The results are summarized in Table 2. During 
each run we recorded the best individual at each generation 
based upon true fitness (average error over the complete set of 
676 problems). Ties were broken by which host had been stable 
the longest, then by which host had the fewest number of nodes, 
and finally by which host was encountered first in a pass over 
the spatial grid. 

Table 2.  Results of the five different evolutionary methods. 
The success rate is the percentage of runs that produced a 

stable correct host, out of 50 total runs. 

Evolutionary Method Success Rate 
Mean Number of 

Nodes in Best 
Evolved Host 

Coevolution 9 / 20 (45%) 44 

Complete Evaluation 0 / 20 (0%) 68 

Random Evaluation 7 / 20 (35%) not reported 

Evolutionary Method Success Rate 

Coevolution 39 / 50 (78%) 

Complete Evaluation 0 / 50 (0%) 

Random Evaluation 7 / 50 (14%) 

Host-Against-All Coevolution 26 / 50 (52%) 

Resource Sharing 6 / 50 (12%) 
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Coevolution outperformed all other methods significantly, with 
a success rate of 78%. The next best method was host-against-all 
coevolution with a 52% success rate. Resource sharing and 
random evaluation performed approximately equally well with a 
12% success rate for resource sharing and a 14% success rate for 
random evaluation. Complete evaluation did not produce any 
successful runs. 
The average number of nodes in the best evolved hosts of each 
evolutionary method is summarized in Table 3. The average size 
of hosts in a population directly affects the time needed to 
calculate each host’s fitness. Thus, methods that produce smaller 
hosts run faster and consume fewer resources. Coevolution 
produced significantly smaller hosts as compared with the other 
methods, largely due to the fact that stable correct hosts tend to 
be smaller than other hosts. 

Table 3:  Results of the size of hosts evolved by the five 
different evolutionary methods averaged over 50 runs. 

 
All five evolutionary methods are able to gradually improve the 
true fitness of the hosts to some degree during each run. We 
observed that in successful runs, the best true fitness in the 
population shows a very gradual increase, followed by an abrupt 
jump (down) to a better fitness. Figure 2 shows the fitness of the 
best individual in each generation for all 50 runs of coevolution. 
All evolutionary methods, with the exception of complete 
evaluation, exhibit similar behavior, with the sole difference 
being the number of stable correct solutions discovered. In all 
fitness evaluation methods except complete evaluation, there are 
times when the fitness evaluation method will cause a small loss 
of true fitness. That loss is generally temporary, and a host with 
equal or greater true fitness is subsequently evolved.  
Complete evaluation, however, is notable because it was unable 
to evolve a single correct solution. While complete evaluation 
typically shows some improvement in true fitness as the 
population evolves, there are no large jumps in true fitness of 
the best individual in the population; rather, the evolutionary 
process is able to make only small improvements to existing 
individuals. 

5. ANALYSIS 
5.1 Comparison of Results 
We found three major differences between our results and those 
previously reported by Pagie and Hogeweg [6]: the success rates 
of coevolution and random evaluation, and the mean number of 
nodes in the best evolved hosts. 

Pagie and Hogeweg report a success rate for coevolution of 
45%, compared with our success rate of 78%. The difference 

seems to be due to how the parasites are initialized. In Pagie and 
Hogeweg’s runs, all parasites were initialized to a single central 
value: (0.2,0.2). In our runs parasites were initialized to 
randomly chosen problems. Moreover, when we ran coevolution 
with parasites initialized to (0.2,0.2), we obtained success rates 
comparable to those reported by Pagie and Hogeweg. 

Pagie and Hogeweg report a success rate for random evolution 
of 35%, whereas we find that random evolution succeeds in only 
14% of runs. We also find that the trees that are evolved in all 
methods are typically much larger than the sizes reported by 
Pagie and Hogeweg (see Tables 1 and 3 above). In spite of a 
detailed review of Pagie and Hogeweg’s algorithm, with the 
assistance of Ludo Pagie [personal communication], we have 
been unable to identify the cause of these differences.  

5.2 Analysis of Results 
Following Pagie and Mitchell [7], we investigate the following 
two hypotheses for the differences in success rate of spatial 
coevolution as compared with the other evolutionary methods 
investigated here: 

1) Spatial coevolution promotes continued diversity in the 
population. 

2) Spatial coevolution produces parasites that target specific 
weaknesses in hosts. 

Diversity is thought to be important for evolutionary 
computation because low diversity decreases the chances that a 
useful crossover or mutation will occur. Here we measure 
diversity using the entropy of the different phenotypes exhibited 
in the population: 

∑ =
−= phenotypesn

i ii pp
0 2logEntropy , 

where 
hostsii nphenotypep /= , phenotypei is the number of hosts 

that exhibit a specific phenotype, nhosts is the total number of 
hosts in the population (here, 2500), and nphenotypes is the number 
of different phenotypes exhibited in the population. A higher 
entropy value indicates greater phenotype diversity. 

Figures 3 through 7 show the phenotype entropy of all 50 runs 
for each of the fitness evaluation methods. Because the host 
population is randomly initialized, all runs (whether successful 
or not) for all evaluation methods start with the same entropy 
(4.08 average, 0.07 std. dev.). Successful runs are plotted in 
white and unsuccessful runs are plotted in black. Coevolution 
and host-against-all coevolution both attain high phenotype 
entropy immediately, and the entropy remains high until a 
correct solution is discovered, at which time the entropy drops 
as the correct host dominates the population. At times, one 
strategy will gain momentum to overtake the population, 
reducing entropy. However, entropy quickly rises as diversity is 
reestablished. Only when a correct host is discovered  does the 
host phenotype entropy drop substantially as that host takes over 
the population. 

While the spatial distribution of hosts plays a part in 
encouraging diversity, these results support our first hypothesis 
that spatial coevolution consistently promotes continuing 
population diversity. Resource sharing also encourages high 
entropy as shown in Figure 5, although the entropy does not 

Evolutionary Method 
Mean Number of 

Nodes in Best 
Evolved Hosts 

Standard 
Deviation 

Coevolution 101.28 133.56 
Complete Evaluation 1301.92 1320.22 
Random Evaluation 1548.76 2242.02 
Host-Against-All 
Coevolution 

628.58 824.65 

Resource Sharing 955.44 1597.92 
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increase as immediately as the coevolutionary methods, nor does 
it go quite as high. As shown in Figures 6 and 7, some runs do 
achieve high entropy under complete evaluation and random 
evaluation. However, the entropy of the runs under these 
methods varies greatly. In short, the coevolutionary methods 

exhibit high entropy more reliably than the other methods, but 
high entropy alone cannot explain their relative success since a 
higher percentage of runs with high entropy does not directly 
correlate to a proportionately higher success rate. 

Coevolution
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Figure 2:  Fitness of the best individual in each generation for 
all 50 runs of coevolution. 
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Figure 3:  Graph of the entropy of the phenotype of the host 
population at each generation for all 50 runs of coevolution.
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Figure 4:  Graph of the entropy of the phenotype of the host 
population at each generation for all 50 runs of host-against-

all coevolution. 
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Figure 5:  Graph of the entropy of the phenotype of the host 
population at each generation for all 50 runs of resource 

sharing. 
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Figure 6:  Graph of the entropy of the phenotype of the host 
population at each generation for all 50 runs of random 

evaluation. 
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Figure 7:  Graph of the entropy of the phenotype of the host 
population at each generation for all 50 runs of complete 

evaluation. 
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Our second hypothesis is that spatial coevolution produces 
parasites that target specific weaknesses in hosts. Figure 8 shows 
snapshots, taken every 10 generations, of the concentration of 
problems that the parasite population uses to challenge the hosts 
for a typical successful run.  Figures 9 and 10 show the true 
fitness of the best individual in each generation and the 
population phenotype entropy at these generations. In Figure 8, 
each box is a 26 x 26 grid where the grid coordinates are the x 
and y values of each problem in the complete set of 676 
problems. The brighter the dot at the given coordinate (x, y), the 
higher the concentration of problem (x, y) in the parasite 
population. The problems start out scattered evenly over the 
problem domain (as shown in the snapshot for generation 0) and 
evolve to an early focus on the edges of the problem domain. 
However, they soon start focusing on specific problems spread 
throughout the domain, with specific focus towards the center 
and in the corners. The original population of random hosts 
contains at least one host that solves each different problem, but 
none that solve all the problems. The initial random population 
of hosts solves more problems in the ridges of the target 
function; therefore, the parasites focus on the problems in the 
corner of the problem domain initially. Nevertheless, since the 
hosts can easily solve those problems using a constant function, 

the parasites focus on the ridges of the target function in the 
center of the problem domain.  

Eventually, as a successful host is discovered, all problems 
focus on the center of the problem domain. Similar focusing is 
exhibited by host-against-all coevolution. The changing focus of 
the parasite population supports our second hypothesis that the 
parasites are targeting the weaknesses of the hosts in the 
population during the different stages of learning. 

6. CONCLUSION 
In our experiments, coevolution had a substantially higher 
success rate than all other methods. In contrast with the results 
of Pagie and Hogeweg, random evaluation, which uses sparse 
fitness evaluation but no coevolution, had a much lower success 
rate. Likewise, maintaining high diversity, by itself, did not 
indicate a high success rate, as shown by results of resource 
sharing. Host-against-all coevolution, which was meant as a 
control to test the effect of co-locating hosts and parasites, had 
an intermediate success rate. 

Our results give support for our two hypotheses: that the success 
of spatial coevolution is largely due to maintained diversity and 
the ability of parasites to target specific weaknesses in 

Figure 10:  Graph of the entropy for the particular 
successful run of coevolution in figure 8.

Figure 9:  Graph of the true fitness for the particular 
successful run of coevolution in figure 8. 
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Figure 8:  Graph of the concentration of coevolving problems in 
the problem space for a particular successful run of coevolution. 

Snapshot of parasites were taken every 10 generations. 
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neighboring hosts. These factors produce hosts that are able to 
completely solve the evolutionary target by induction from a 
small number of strategic hard problems. The precise 
mechanisms by which spatial embedding combined with 
coevolution produces these results are still not well understood.  

In the future, more work needs to be done further analyzing the 
properties of the evolving spatial populations such as correlating 
changes in entropy with changes in true fitness. Further diversity 
measurements and analysis of the growth and spread of 
emerging strategies will lead to a better understanding of the 
principles at work. Additionally, comparative studies of other 
learning methods, such as boosting algorithms, can also lead to a 
better understanding of the mechanisms underlying the success 
of coevolution. 
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