
Investigating the Success of Spatial Coevolution
Nathan Williams

Veriwave, Inc.
8770 SW Nimbus Avenue, Suite B

Beaverton, OR 97008
360-600-9573

nathanw@rebeltribe.com

Melanie Mitchell
Department of Computer Science

Portland State University
P.O. Box 751

Portland, OR 97207
(503) 725-2412

mm@cs.pdx.edu

ABSTRACT
We investigate the results of coevolution of spatially distributed
populations. In particular, we describe work in which a simple
function approximation problem is used to compare different
spatial evolutionary methods. Our work shows that, on this
problem, spatial coevolution is dramatically more successful than
any other spatial evolutionary scheme we tested. Our results
support two hypotheses about the source of spatial coevolution’s
superior performance: (1) spatial coevolution allows population
diversity to persist over many generations; and (2) spatial
coevolution produces training examples (“parasites”) that
specifically target weaknesses in models (“hosts”). The precise
mechanisms by which the combination of spatial embedding and
coevolution produces these results are still not well understood.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning – concept learning,
induction, and 1.2.8 [Artificial Intelligence]: Problem solving,
control methods, and search.

General Terms: Algorithms

Keywords
Coevolution, Spatial Evolution, Resource Sharing, Genetic
Programming.

1. INTRODUCTION
Hillis [2] was the first to propose the notion of “host-parasite”
coevolution. In his scheme, a population of candidate solutions
(sorting networks) coevolved with a population of test sets
(groups of sorting problems). The fitness of an individual sorting
network (“host”) depended upon how many sorting problems in
an individual group (“parasite”) it successfully sorted. Likewise,
the fitness of an individual sorting-problem group depended upon
how many problems in the group a network did not successfully
sort. Hillis embedded the populations of hosts and parasites in a
two-dimensional spatial grid with one host and one parasite per
grid location. The fitness of each host was evaluated only on the

parasite in the same grid location, and vice versa. This
coevolution scheme was able to discover a smaller correct sorting
network than a scheme using evolution alone.

Since Hillis’s work, several other examples of the advantages of
coevolution have been demonstrated (e.g., [1, 3, 7, 9]).
Coevolution has been shown, in many cases, to outperform
traditional evolutionary methods in both quality of final solutions
and in efficiency, since coevolution allows for sparse training
rather than relying on large training sets.

However, it is still not completely understood what factors lead to
the success of coevolution. It has been hypothesized that
coevolution provides an adaptable gradient for learning so that the
host and parasite populations evolve to continually provide a
challenge for one another. It is thought that each population is
able to focus on strategic weaknesses in the other population,
forcing the other population to overcome these weaknesses, in
analogy with biological arms races. It is also thought that the
requirement of continually adapting in response to continual
changes in the opposing population produces persistent diversity
in each population, which is known to be an important factor for
success in evolutionary computation.

Some studies have shown that coevolution does not necessarily
lead to better results for every task [10]. For example, coevolution
can lead to a loss of gradient. This happens when one coevolving
population evolves to greatly outperform the other population;
uniformly high or low fitness values in the respective populations
provide no gradient for selecting the fittest individuals.
Additionally, coevolution can lead to over-fitting, in which one
population focuses on the weaknesses in the other population
without generalizing the solution. Finally, coevolution can lead to
relativism, in which the populations oscillate between strategies
but do not make progress towards a general solution.

Much of the work on coevolution since Hillis’s has investigated
non-spatial coevolution: each host is evaluated on the complete
population of parasites or on some non-spatially derived subset of
parasites. Coevolution has been found to be successful in such
non-spatial systems, but apparently only with the addition of
certain other mechanisms for explicitly maintaining population
diversity and dealing with the other problems listed above. These
added mechanisms include competitive fitness sharing [9],
resource sharing [3], a “phantom parasite” [8], explicit control of
parasite virulence [1], and the use of domain-specific knowledge
in fitness evaluations [3, 7]. It is not clear to what extent these
additional mechanisms are responsible for the success attributed
to coevolution. For example, Werfel et al. [11] found that

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
GECCO'05, June 25–29, 2005, Washington, D.C., USA.
Copyright 2005 ACM 1-59593-010-8/05/0006…$5.00.

523

resource sharing, not coevolution, was the major factor underlying
Juillé and Pollack’s [3] success on coevolving cellular automata.

Are there any circumstances under which coevolution would be
successful without such additional mechanisms? Hillis’s work
seems to be one example. Notably, Hillis’s system employed the
additional factor of spatial embedding, whose contribution to the
success of coevolution was not analyzed. His system also
incorporated other complicating factors in the representation and
initialization of sorting networks.

In this paper we extend the work of Pagie and Hogeweg [6] on
investigating a spatially embedded coevolutionary system without
the additional mechanisms described above. We attempt to isolate
what factors give rise to the dramatic success of spatial
coevolution.

We examine two hypotheses for the factors producing the success
of spatial coevolution: (1) spatial coevolution promotes continued
diversity in the population and (2) spatial coevolution produces
parasites that target specific weaknesses in hosts.

2. Experimental Setup
Our experimental setup is identical to that used by Pagie and
Hogeweg [6] except for some minor differences identified below.
We use the same function-approximation task studied by Pagie
and Hogeweg and their tree representation of candidate solutions.
The target function is the following two-dimensional equation:

,41/141/1),(




 −−−−++++++++





 −−−−++++==== yxyxt

where x,y ∈ [-5.0, 5.0]. A plot of the target function is shown in
Figure 1.

Each candidate solution (or “host”) is a tree representing a
mathematical equation. The goal is to construct a tree that
approximates the target equation within a certain tolerance. The
problems upon which fitness is based are simple (x, y) values
evenly distributed over the problem domain at intervals of 0.4.
Therefore, the complete set consists of 26 x 26 = 676 total
problems.

The fitness of a host is based on its weighted error when evaluated
on a subset of problems. The particular subset of problems on
which the hosts are evaluated depends upon the evolutionary
method used. The true fitness of a host h is defined to be the
average error of the host on the complete set of 676 problems:

() ()() Parasites
s

1
s/tf Parasites∑ =

−=
i iih phpt ,

where SParasites is the number of problems in the complete set of
problems, t(pi) is the value of the target function on problem pi,
and h(pi) is the value of a host on problem pi.

The hosts are represented, using the genetic programming
paradigm, as trees describing mathematical equations that can be
evaluated on two-dimensional points. The function set is { +, -, *,
% } and the terminal set is { X, Y, ℜ }. The +, -, and * operators
are the standard arithmetic functions for addition, subtraction, and
multiplication respectively; each takes two arguments. The
protected divide function (%) takes two arguments, A and B, and
returns 1 if B = 0 and A / B otherwise. The terminals X and Y
evaluate to the respective values of the coordinates on which the
tree is being evaluated. The terminal ℜ is the “ephemeral random
constant” [4], a randomly generated value between -1.0 and 1.0.
The ephemeral random constant’s value for the node is randomly
generated when the node is created and is fixed for the lifetime of
the node. Note that the function and terminal sets contain
unnecessary elements. In fact, the only necessary elements are the
terminals X and Y, protected division, and either addition or
subtraction. Additionally, while the constant 1.0 is not directly
available as a terminal, it can be created by dividing a number by
itself or by dividing a number by zero. The initial population of
hosts is randomly generated with a maximum depth of three
nodes.

The coevolutionary methods utilize a population of “parasites”:
(x, y) coordinate pairs from the complete set of all problems. The
fitness of a parasite is defined by the evolutionary method used.
Pagie and Hogeweg initialized all parasites to (0.2, 0.2). However,
we found that the coevolutionary methods were more successful
when the initial members of the parasite population were
randomly chosen with replacement from the complete set of 676
possible problems, and the results we report are from runs with
this random initialization.

In our experiments, the host and the parasite populations are
spatially embedded on a 50 x 50 two-dimensional toroidal lattice,
with one host and one parasite per grid cell. Thus, the total
population sizes are 2500 individuals. At each generation, the
host population undergoes selection, crossover, and mutation, and
the parasite population undergoes selection and mutation. These
Competition between individuals for reproduction is local in
space. Each host or parasite competes for survival against the
surrounding 8 hosts or parasites in its 3 x 3 neighborhood. After

Figure 1: Plots of the target function with views from 1) the top, 2) the bottom, and 3) the side. The maximum of the function
approaches 2.0 at the corners and the minimum approaches 0 at (0,0).

524

each population has been evaluated to determine fitness using one
of the evolutionary methods (described in the next section), the
individuals in each 3 x 3 neighborhood are ranked according to
their fitness values. The ith ranked individual is selected with
probability 0.5i. The ninth element is selected with probability
0.58 to ensure that the nine probabilities sum to unity. The
selected individual (acted upon further by crossover and mutation)
replaces the individual in the center of the neighborhood in the
next generation. All replacements are made simultaneously
before the start of the next generation.

Following the selection step, 40% of the selected host population
is chosen with replacement to undergo crossover with a randomly
chosen neighboring host (including itself) from among the
original neighboring individuals with which it competed for
selection. Host crossover replaces a randomly chosen sub-tree in
the selected host with a copy of a randomly chosen sub-tree from
the other host, leaving the selected host modified but the other
host unchanged. There is no parasite crossover.

Following the crossover step, 20% of the selected host population
is chosen with replacement to undergo point mutation.
Additionally, at each generation 10% of the parasites are chosen
to undergo mutation. Parasite mutation modifies either the x or y
component of the coordinate pair by adding or subtracting one
step (0.4). However, when a parasite on the edge of the problem
space is mutated so that its new value would be outside of the
problem space, the parasite remains unchanged.

A host is considered to be correct if for each of the 676 problems
in the complete problem set, the absolute difference between the
target function and the host function is less than or equal to a
tolerance of 0.01: () () ..phptParasitespp 010,, ≤−∈∀

A stable correct host is one that has been discovered and then
remains in the population for at least 50 generations. The
algorithm stops when a stable correct host has been discovered or
after 500 generations if none have been discovered. The goal of
each run is to produce a stable correct host; therefore, runs that do
so are considered to be successful.

The hosts have a rich representation space; thus equivalent
equations can be expressed with different trees. The particular
representing a host’s equation is called the host’s genotype. The
actual set of problems the host solves is its phenotype. Thus, the
hosts can have many genotype encodings for a single phenotype.
In this work, we define phenotype as the subset of the complete
set of 676 problems for which the error of the host with respect to
the target function is less than or equal to the tolerance of 0.01:
Host h’s phenotype: set of all p such that are described below.

(((()))) (((()))) .01.0and ≤≤≤≤−−−−∈∈∈∈ phptParasitesp

3. Evolutionary Methods
This research compares a variety of spatial evolutionary methods.
We replicate the original methods used by Pagie and Hogeweg:
coevolution, complete evaluation, and random evaluation.
However, we also add two additional methods, host-against-all
coevolution and resource sharing, as additional control

experiments. All methods utilize spatially embedded hosts. Below
we define the fitness functions of hosts and parasites for each of
the different spatial evolutionary methods that we investigated.
Note that since a host’s “fitness” is defined in terms of its error
with respect to the target function, each evolutionary method
attempts to minimize host fitness fh and maximize parasite fitness
fp.

3.1 Coevolution
Let () [] []0.5,0.5,0.5,0.5,, −∈−∈= yxyxp be a
particular problem.

Host fitness:

(((()))) (((())))(((()))) ,99
1 /iphiptf ih ∑∑∑∑ −−−−==== ====

such that pi is in h’s neighborhood.

The fitness of a host is the host’s average error on the nine
problems defined by the neighboring parasites, where t(p) is the
target function value on problem p and h(p) is the host function’s
value on problem p. The fitness evaluation is sparse: at each
generation, each host is evaluated on only 9 problems out of the
complete set of 676 problems.

Parasite fitness:

(((()))) (((()))) ,phptpf −−−−====

such that h is the host in the same grid cell as p.

The fitness of a parasite p is calculated with respect to the host h
in the same grid cell and is the absolute value of the error of the
host on that problem. Note that while a host’s fitness is a function
of its value on the nine parasites in its neighborhood, a parasite’s
fitness depends only on the single host in its same grid location.
Pagie and Hogeweg claim that such an asymmetric fitness
evaluation of parasites produces better results, in terms of time to
discover a good solution, than a symmetric fitness evaluation in
which the parasite’s fitness depends upon the nine neighboring
hosts [6].

3.2 Complete Evaluation
Complete evaluation (called “static evaluation” in [6]) is a non-
coevolutionary spatial method to which coevolution is to be
compared. Under complete evaluation, there is no parasite
population. Rather, the host is evaluated against all 676 problems
in the problem space (SProblems) with equal weighting.

Host fitness:

(((()))) (((())))(((()))) oblems
S

i iih S/phptf oblems

Pr1
Pr∑∑∑∑ ====

−−−−====

3.3 Random Evaluation
Random evaluation was chosen as a control to determine if
coevolution’s success as compared with complete evaluation was
due only to sparse evaluation (evaluation against a small subset
of the problem space) rather than other aspects of coevolution.
Under random evaluation there is no parasite population, but
sparse evaluation is still maintained. For each generation and for
each host, nine random problems are chosen with replacement

525

from the complete problem set on which each host’s fitness is
calculated.

Host fitness:

(((()))) (((())))(((()))) ,99

1
/phptf

i iih ∑∑∑∑ ====
−−−−====

such that pi is chosen randomly from Sproblems.

3.4 Host-Against-All Coevolution
Host-against-all coevolution was chosen as a control experiment
to determine the effects of spatial locality of parasites in
dynamically exploiting specific weaknesses in specific hosts.
Under host-against-all coevolution, a parasite population exists,
but parasites are no longer local to their hosts. Instead, each host
is evaluated on all 2500 parasites in the parasite population
(

Parasitesn). However, the hosts and parasites remain embedded
and the fitness of a parasite is still the error of the host in the
same grid cell. Host selection and crossover still occurs
between neighboring individuals on the spatial lattice. Thus,
some locality is maintained.

Host fitness:

() ()() Parasites
n

i iih n/phptf Parasites∑ =
−=

1

Parasite fitness:

(((()))) (((()))) (((()))),phpthf p −−−−====

such that h is the host in the same grid cell as p.

3.5 Resource Sharing
Resource sharing (or competitive fitness sharing) is a method for
promoting diversity in the population by giving higher weight to
problems that fewer hosts solve compared with problems that
many hosts solve [3, 9]. We performed a control experiment
using resource sharing alone to determine the role population
diversity plays in evolving stable correct solutions. Resource
sharing provides an alternative problem-weighting mechanism
hypothesized to behave similarly to how parasites exploit the
hosts during coevolution. The credit each host earns for solving
a particular problem is shared equally among all the hosts that
solve that particular problem. Thus, the more hosts that solve a
problem, the less credit each host receives for solving that
problem.

Host fitness:

() ()()∑ =
= oblemss

i iih ph,covered*pweightf Pr

1
,

where

()()∑ =
= Hostsn

i p,hcoveredpweight
1i

/1)(, and





 ≤−

>−
=



























010 if 1
010if 0

)(
.phpt
.phpt

ph,covered

The fitness of a host is the sum of the weights of each problem

in the complete set of problems on which the host matches the
target function within the accepted tolerance. The weight(p) of
each problem p depends upon how many other hosts solve p: the
fitness a host receives from solving the problem is shared among
all hosts that solve it. The function covered(h,p) returns 1 if the
error of host h on problem p is less than the accepted tolerance
of 0.01, and 0 otherwise.

4. RESULTS
4.1 Pagie & Hogeweg’s Experiments
The results of Pagie and Hogeweg’s experiments are
summarized in Table 1. The “success rate” is the percentage of
successful runs (i.e., runs on which a stable, correct solution was
evolved). Coevolution was successful in approximately 45% of
the time. Complete evaluation did not produce any successful
runs. Random evaluation’s success rate was 35%, which is
roughly comparable to that of coevolution. Pagie and Hogeweg
reasoned that in both of these methods, sparse evaluation allows
the evolutionary process to explore the solution space more
freely than does complete evaluation. In particular, it frees hosts
from the requirement of reducing the error on all problems at
once; rather, it allows them to focus on particular subsets of
problems.

Table 1: Pagie and Hogeweg’s results comparing three
different evolutionary methods. The success rate is the

percentage of runs that produced a stable correct host, out of
20 total runs.

4.2 Results of Our Experiments
We performed 50 independent runs of each of the five methods
described above. The results are summarized in Table 2. During
each run we recorded the best individual at each generation
based upon true fitness (average error over the complete set of
676 problems). Ties were broken by which host had been stable
the longest, then by which host had the fewest number of nodes,
and finally by which host was encountered first in a pass over
the spatial grid.

Table 2. Results of the five different evolutionary methods.
The success rate is the percentage of runs that produced a

stable correct host, out of 50 total runs.

Evolutionary Method Success Rate
Mean Number of

Nodes in Best
Evolved Host

Coevolution 9 / 20 (45%) 44

Complete Evaluation 0 / 20 (0%) 68

Random Evaluation 7 / 20 (35%) not reported

Evolutionary Method Success Rate

Coevolution 39 / 50 (78%)

Complete Evaluation 0 / 50 (0%)

Random Evaluation 7 / 50 (14%)

Host-Against-All Coevolution 26 / 50 (52%)

Resource Sharing 6 / 50 (12%)

526

Coevolution outperformed all other methods significantly, with
a success rate of 78%. The next best method was host-against-all
coevolution with a 52% success rate. Resource sharing and
random evaluation performed approximately equally well with a
12% success rate for resource sharing and a 14% success rate for
random evaluation. Complete evaluation did not produce any
successful runs.
The average number of nodes in the best evolved hosts of each
evolutionary method is summarized in Table 3. The average size
of hosts in a population directly affects the time needed to
calculate each host’s fitness. Thus, methods that produce smaller
hosts run faster and consume fewer resources. Coevolution
produced significantly smaller hosts as compared with the other
methods, largely due to the fact that stable correct hosts tend to
be smaller than other hosts.

Table 3: Results of the size of hosts evolved by the five
different evolutionary methods averaged over 50 runs.

All five evolutionary methods are able to gradually improve the
true fitness of the hosts to some degree during each run. We
observed that in successful runs, the best true fitness in the
population shows a very gradual increase, followed by an abrupt
jump (down) to a better fitness. Figure 2 shows the fitness of the
best individual in each generation for all 50 runs of coevolution.
All evolutionary methods, with the exception of complete
evaluation, exhibit similar behavior, with the sole difference
being the number of stable correct solutions discovered. In all
fitness evaluation methods except complete evaluation, there are
times when the fitness evaluation method will cause a small loss
of true fitness. That loss is generally temporary, and a host with
equal or greater true fitness is subsequently evolved.
Complete evaluation, however, is notable because it was unable
to evolve a single correct solution. While complete evaluation
typically shows some improvement in true fitness as the
population evolves, there are no large jumps in true fitness of
the best individual in the population; rather, the evolutionary
process is able to make only small improvements to existing
individuals.

5. ANALYSIS
5.1 Comparison of Results
We found three major differences between our results and those
previously reported by Pagie and Hogeweg [6]: the success rates
of coevolution and random evaluation, and the mean number of
nodes in the best evolved hosts.

Pagie and Hogeweg report a success rate for coevolution of
45%, compared with our success rate of 78%. The difference

seems to be due to how the parasites are initialized. In Pagie and
Hogeweg’s runs, all parasites were initialized to a single central
value: (0.2,0.2). In our runs parasites were initialized to
randomly chosen problems. Moreover, when we ran coevolution
with parasites initialized to (0.2,0.2), we obtained success rates
comparable to those reported by Pagie and Hogeweg.

Pagie and Hogeweg report a success rate for random evolution
of 35%, whereas we find that random evolution succeeds in only
14% of runs. We also find that the trees that are evolved in all
methods are typically much larger than the sizes reported by
Pagie and Hogeweg (see Tables 1 and 3 above). In spite of a
detailed review of Pagie and Hogeweg’s algorithm, with the
assistance of Ludo Pagie [personal communication], we have
been unable to identify the cause of these differences.

5.2 Analysis of Results
Following Pagie and Mitchell [7], we investigate the following
two hypotheses for the differences in success rate of spatial
coevolution as compared with the other evolutionary methods
investigated here:

1) Spatial coevolution promotes continued diversity in the
population.

2) Spatial coevolution produces parasites that target specific
weaknesses in hosts.

Diversity is thought to be important for evolutionary
computation because low diversity decreases the chances that a
useful crossover or mutation will occur. Here we measure
diversity using the entropy of the different phenotypes exhibited
in the population:

∑ =
−= phenotypesn

i ii pp
0 2logEntropy ,

where
hostsii nphenotypep /= , phenotypei is the number of hosts

that exhibit a specific phenotype, nhosts is the total number of
hosts in the population (here, 2500), and nphenotypes is the number
of different phenotypes exhibited in the population. A higher
entropy value indicates greater phenotype diversity.

Figures 3 through 7 show the phenotype entropy of all 50 runs
for each of the fitness evaluation methods. Because the host
population is randomly initialized, all runs (whether successful
or not) for all evaluation methods start with the same entropy
(4.08 average, 0.07 std. dev.). Successful runs are plotted in
white and unsuccessful runs are plotted in black. Coevolution
and host-against-all coevolution both attain high phenotype
entropy immediately, and the entropy remains high until a
correct solution is discovered, at which time the entropy drops
as the correct host dominates the population. At times, one
strategy will gain momentum to overtake the population,
reducing entropy. However, entropy quickly rises as diversity is
reestablished. Only when a correct host is discovered does the
host phenotype entropy drop substantially as that host takes over
the population.

While the spatial distribution of hosts plays a part in
encouraging diversity, these results support our first hypothesis
that spatial coevolution consistently promotes continuing
population diversity. Resource sharing also encourages high
entropy as shown in Figure 5, although the entropy does not

Evolutionary Method
Mean Number of

Nodes in Best
Evolved Hosts

Standard
Deviation

Coevolution 101.28 133.56
Complete Evaluation 1301.92 1320.22
Random Evaluation 1548.76 2242.02
Host-Against-All
Coevolution

628.58 824.65

Resource Sharing 955.44 1597.92

527

increase as immediately as the coevolutionary methods, nor does
it go quite as high. As shown in Figures 6 and 7, some runs do
achieve high entropy under complete evaluation and random
evaluation. However, the entropy of the runs under these
methods varies greatly. In short, the coevolutionary methods

exhibit high entropy more reliably than the other methods, but
high entropy alone cannot explain their relative success since a
higher percentage of runs with high entropy does not directly
correlate to a proportionately higher success rate.

Coevolution

1.00E-17

1.00E-15

1.00E-13

1.00E-11

1.00E-09

1.00E-07

1.00E-05

1.00E-03

1.00E-01

1.00E+01

0 50 100 150 200 250 300 350 400 450 500
Generations

T
ru

e
Fi

tn
es

s

Figure 2: Fitness of the best individual in each generation for
all 50 runs of coevolution.

Coevolution Population Entropy

0
1
2
3
4
5
6
7
8
9

10

0 50 100 150 200 250 300 350 400 450 500

Generations

En
tr

op
y

Figure 3: Graph of the entropy of the phenotype of the host
population at each generation for all 50 runs of coevolution.

Host-Against-All Coevolution Population Entropy

0
1
2
3
4
5
6
7
8
9

10

0 50 100 150 200 250 300 350 400 450 500

Generations

En
tr

op
y

Figure 4: Graph of the entropy of the phenotype of the host
population at each generation for all 50 runs of host-against-

all coevolution.

Resource Sharing Population Entropy

0
1
2
3
4
5
6
7
8
9

10

0 50 100 150 200 250 300 350 400 450 500

Generations

E
nt

ro
py

Figure 5: Graph of the entropy of the phenotype of the host
population at each generation for all 50 runs of resource

sharing.

Random Evaluation Population Entropy

0
1
2
3
4
5
6
7
8
9

10

0 50 100 150 200 250 300 350 400 450 500

Generations

E
nt

ro
py

Figure 6: Graph of the entropy of the phenotype of the host
population at each generation for all 50 runs of random

evaluation.

Complete Evaluation Population Entropy

0
1
2
3
4
5
6
7
8
9

10

0 50 100 150 200 250 300 350 400 450 500

Generations

En
tr

op
y

Figure 7: Graph of the entropy of the phenotype of the host
population at each generation for all 50 runs of complete

evaluation.

528

Our second hypothesis is that spatial coevolution produces
parasites that target specific weaknesses in hosts. Figure 8 shows
snapshots, taken every 10 generations, of the concentration of
problems that the parasite population uses to challenge the hosts
for a typical successful run. Figures 9 and 10 show the true
fitness of the best individual in each generation and the
population phenotype entropy at these generations. In Figure 8,
each box is a 26 x 26 grid where the grid coordinates are the x
and y values of each problem in the complete set of 676
problems. The brighter the dot at the given coordinate (x, y), the
higher the concentration of problem (x, y) in the parasite
population. The problems start out scattered evenly over the
problem domain (as shown in the snapshot for generation 0) and
evolve to an early focus on the edges of the problem domain.
However, they soon start focusing on specific problems spread
throughout the domain, with specific focus towards the center
and in the corners. The original population of random hosts
contains at least one host that solves each different problem, but
none that solve all the problems. The initial random population
of hosts solves more problems in the ridges of the target
function; therefore, the parasites focus on the problems in the
corner of the problem domain initially. Nevertheless, since the
hosts can easily solve those problems using a constant function,

the parasites focus on the ridges of the target function in the
center of the problem domain.

Eventually, as a successful host is discovered, all problems
focus on the center of the problem domain. Similar focusing is
exhibited by host-against-all coevolution. The changing focus of
the parasite population supports our second hypothesis that the
parasites are targeting the weaknesses of the hosts in the
population during the different stages of learning.

6. CONCLUSION
In our experiments, coevolution had a substantially higher
success rate than all other methods. In contrast with the results
of Pagie and Hogeweg, random evaluation, which uses sparse
fitness evaluation but no coevolution, had a much lower success
rate. Likewise, maintaining high diversity, by itself, did not
indicate a high success rate, as shown by results of resource
sharing. Host-against-all coevolution, which was meant as a
control to test the effect of co-locating hosts and parasites, had
an intermediate success rate.

Our results give support for our two hypotheses: that the success
of spatial coevolution is largely due to maintained diversity and
the ability of parasites to target specific weaknesses in

Figure 10: Graph of the entropy for the particular
successful run of coevolution in figure 8.

Figure 9: Graph of the true fitness for the particular
successful run of coevolution in figure 8.

Entropy

0
1
2
3
4
5
6
7
8
9

10

0 50 100 150 200 250 300 350 400 450 500

Generation

En
tr

op
y

True Fitness

1.00E-17

1.00E-15

1.00E-13

1.00E-11

1.00E-09

1.00E-07

1.00E-05

1.00E-03

1.00E-01

1.00E+01

0 50 100 150 200 250 300 350 400 450 500
Generation

Tr
ue

 F
itn

es
s

Figure 8: Graph of the concentration of coevolving problems in
the problem space for a particular successful run of coevolution.

Snapshot of parasites were taken every 10 generations.

529

neighboring hosts. These factors produce hosts that are able to
completely solve the evolutionary target by induction from a
small number of strategic hard problems. The precise
mechanisms by which spatial embedding combined with
coevolution produces these results are still not well understood.

In the future, more work needs to be done further analyzing the
properties of the evolving spatial populations such as correlating
changes in entropy with changes in true fitness. Further diversity
measurements and analysis of the growth and spread of
emerging strategies will lead to a better understanding of the
principles at work. Additionally, comparative studies of other
learning methods, such as boosting algorithms, can also lead to a
better understanding of the mechanisms underlying the success
of coevolution.

7. REFERENCES
[1] Cartlidge, J. and Bullock, S. (2004). Combating

coevolutionary disengagement by reducing parasite
virulence. Evolutionary Computation 12(2): 193-222.

[2] Hillis, D. W. (1990); Co-evolving parasites improve
simulated evolution as an optimization procedure. Physica
D 42:228-234.

[3] Juillé, H. and Pollack, J. B. (1998). Coevolutionary
learning: A case study. Proceedings of the Fifteenth
International Conference on Machine Learning, Madison,
Wisconsin, July 24 - 26, 1998, pp 251-259.

[4] Koza, J. R. (1990): Genetic Programming: A Paradigm for
Genetically Breeding Populations of Computer Programs
to Solve Problems. Technical Report No. STAN-CS-90-
314, Computer Sciences Department, Stanford University.

[5] Koza, J. R. (1992). Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. Cambridge, MA: MIT Press.

[6] Pagie, L. & Hogeweg, P. (1997); Evolutionary
consequences of coevolving targets. Evolutionary
Computation 5(4):401-418.

[7] Pagie, L. & Mitchell, M. (2002). A comparison of
evolutionary and coevolutionary search. International
Journal of Computational Intelligence and Applications,
2(1), 53--69.

[8] Rosin, C. D. (1997). Coevolutionary Search Among
Adversaries. Ph.D. thesis, University of California, San
Diego, Department of Computer Science and Engineering.

[9] Rosin, C. D. & Belew, R. K. (1995). Methods for
competitive coevolution: Finding opponents worth
beating. In Eshelman, L. J. (Ed.), Proceedings of the Sixth
International Conference on Genetic Algorithms, pp. 373-
381. San Mateo, CA: Morgan Kaufmann.

[10] Watson, R.A. and Pollack, J.B. (2001). Coevolutionary
Dynamics in a Minimal Substrate. In Spector, L. et al.
(Eds), Proceedings of the 2001 Genetic and Evolutionary
Computation Conference, pp. 702-709 San Mateo, CA:
Morgan Kaufmann.

[11] Werfel, J., Mitchell, M., and Crutchfield, J. P. (2000).
Resource sharing and coevolution in evolving cellular
automata. IEEE Transactions on Evolutionary
Computation, 4(4), 388-393

530

