
Finding Needles in Haystacks is Harder with Neutrality.

M. Collins CISA
Edinburgh University

Scotland

mcc@dcs.ed.ac.uk

ABSTRACT
This research presents an analysis of the reported successes
of the Cartesian Genetic Programming method on a sim-
plified form of the Boolean parity problem. We show the
method of sampling used by the CGP is significantly less
effective at locating solutions than the solution density of
the corresponding formula space would warrant.

We present results indicating that the loss of performance
is caused by the sampling bias of the CGP, due to the neu-
trality friendly representation. We implement a simple in-
tron free random sampling algorithm which performs con-
siderably better on the same problem and then explain how
such performance is possible.

Categories and Subject Descriptors
I.2 [ARTIFICIAL INTELLIGENCE]: Automatic Pro-
gramming; D.2.8 [Software Engineering]: Metrics—com-
plexity measures, performance measures

General Terms
Algorithms

Keywords
Reduced Boolean Parity, Cartesian Genetic Programming,
Search Space

1. INTRODUCTION
This paper investigates the expected and actual success

rates of the Cartesian Genetic Programming (CGP) algo-
rithm as reported by Yu and Miller in [7]. The CGP system
has gained attention following its performance on certain
types of Boolean parity problems, a classic test problem in
both Evolutionary Algorithm and Evolutionary Hardware
research.

We compare the reported performance of the CGP algo-
rithm on the Boolean parity problem to the performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05, June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006 ...$5.00.

of a CGP style random walk algorithm and a random re-
sampling algorithm, using the same parameters and repre-
sentation. We were unable to repeat the same performance
as reported for the CGP, but are able to show that all CGP
based sampling methods - including the unrepeated reported
performance - are underperforming in terms of solutions per
sample when the solution density is considered.

We also implement and test a trivial random sampling
algorithm which uses a fully expressed genotype. We show
that this algorithm considerably exceeds expectations un-
expectedly performing better than random sampling. An
analysis of how simply removing introns from the represen-
tation can produce such a result is provided.

2. PREVIOUS WORK
Previous work by Langdon and Poli [3] into the structure

of solutions to Boolean problems, including a special form
of the parity problem using a reduced operator set of only
the xor eq operators indicated the solution density in the
space of formulas tended to a limit. Hereafter this special
form of the Boolean parity problem which is solved using
only eq and/or the xor operator will be referred to as the
’reduced Boolean parity problem’ to distinguish it from the
version with unrestricted logical operators.

Yu and Miller used the reduced Boolean parity problem as
a test case for the CGP algorithm. CGP used a representa-
tion which supports introns, the belief being that the introns
and the ’neutrality’ which they permit could be exploited by
the search algorithm.

Previous work [1, 2] has provided and empirically proved
the accuracy of a method for counting the number of solu-
tions to the reduced Boolean parity problem in the space
of all possible formulas. This gives a method for calculat-
ing the number of solutions which are in existence in the
space sampled by the algorithms. This work supported the
findings of Langdon and Poli and gave exact results for the
solution density and the limit.

3. REPORTED PERFORMANCE
The CGP has performance reported for the 5 8 10 and

12 parity problems. We will concentrate on the 12 parity
problem, since this is a) the hardest of the reduced Boolean
parity problems for which CGP results are reported, b) Yu
and Miller reported the failure of random sampling on this
problem see ([7] page 5, table 1), and, c) Yu and Miller
obtained an outstanding >55 % success rate from a hundred
runs, each of a mere 10,000 iterations. We use only reported
results for comparison in this investigation.

1613

4. REPRESENTATION ISSUES
In the Boolean parity problem the input alphabet I of

size |I| is a set of distinct Boolean values {I1, ..., I|I|}, cor-
responding to the parity of the problem.

4.1 The space of all possible formulas
In the reduced Boolean p-parity problem, the input alpha-

bet is p elements, and the function set is either {xor,eq}
or simply only {eq}. The number of possible arrangements
using from 1 up to FMax functions is:

FMax�

i=1

2ipi+1 (1)

Where an example formula constructed using 2 functions
and an alphabet of 3 inputs is: I1 eq I2 eq I3 and is a
solution to the 3 parity problem. Another formula but this
time constructed with 3 functions, I1 eq I2 eq I3 eq I1 is
not a solution to the 3 parity problem.

4.2 The number of solutions
The number of formulas which are solutions to the re-

duced Boolean p parity problem for all possible functions
referencing up to a maximum of n inputs is shown in fig-
ure 1. Please see earlier work in [1, 2] for an explanation of
the derivation of this equation and empirical evidence of its
accuracy.

4.3 The CGP representation
In the reported CGP representation the genotypes are

composed of sequences of integer triples, each of which rep-
resents a unit equivalent to a reprogramable gate or cell.
The first integer represents the gate type, though the re-
ported work on the 12 parity problem only used one gate
type. The second and the third integers represent the con-
nections to either one of the 12 parity inputs or the outputs
of previous gates. The output of the gate is then the result
of applying the operation represented by the gate type to
the inputs referenced by the gate. The values of the input
references are limited to enforce a feedforward connectivity
which with a fixed interpretation order removes the require-
ment for a clock and prevents looping. The final output is
determined by selecting one of the gates and tracing back
the connections to previous gates and inputs, which are then
evaluated in the logical order.

Input Input Input Input

Output

Input
A B C D E

EQ EQ EQ
Unit 1 Unit 2 Unit 3

Figure 2: Interpretation of a CGP genotype is de-
pendent upon the unit selected to generate the out-
put and the subsequent linkage of the units. Where
units are not linked to the output unit (here marked
with colour) they are introns and candidates for neu-
tral mutations.

Figure 2 shows a simple CGP arrangement correspond-
ing to the genotype (eq,A,B)(eq,C,D)(eq,1,E) (interpreted

from unit 3) where letters represent references to the p in-
puts and numbers represent references to the output of pre-
vious units. The actual active expression of this genotype is
A eq B eq E.

The significant feature of the CGP representation is that
the genotype implicitly supports ’neutral’ mutations. In-
trons in CGP are sections of the genotype which are left out
of the interpretation due to simply not being included in the
chain of references from the chosen output gate. Mutation
of the introned code has no effect on the expression of the
genotype or the phenotype and is termed ’neutral’. Neutral
movement in the genotype is hypothesised to aid search by
allowing small mutations to accumulate to create large and
complex genotype changes. These changes can then be easily
brought into and removed from the phenotype by relatively
small mutations in referencing code.

Since the CGP representation has introns as an enevitable
part of its representation, it has a bias towards representing
smaller solutions more frequently than a representation in
which all the code was expressed: There is no one to one
mapping from the formula which are represented by CGP
solutions and the space of possible formula. The question
is, does this help or hinder? As a benchmark for researching
neutrality the reduced Boolean parity problem is actually a
strange choice - due to the fitness function, all movement ex-
cept that which finds a solution is score neutral. Differences
in performance between the CGP and other tactics on the
same landscape must then be a function of the effect of neu-
trality on the sampling strategy, and not due to permitting
score neutral movement.

5. THE CONTEXT OF THIS
INVESTIGATION

The aim of this investigation is to determine if the CGP
representation is better or worse at generating solutions than
one would have a right to expect from a given solution den-
sity.

Previous work [1, 2] has provided calculations for the num-
ber of solutions present in the space of possible functions.
For Boolean formulas using between 1 and 100 operations,
the solution density of the reduced Boolean 12 parity prob-
lem space is 0.0019531 percent for two operator types, and
0.003756 percent for one operator type. Since the reduced
Boolean search space is devoid of fitness gradient clues, and
consequently search is unguided, this represents the best
expected performance for an algorithm which samples the
space without bias.

In [7] Yu and Miller report CGP has a peak success rate
of over 55% on the reduced Boolean 12 parity problem. The
average success rate is approximately 45% for the optimal
combination of parameters. These results are achieved using
the CGP algorithm over 10,000 iterations, which is a sample
of at most 40,000 points.

A search using one operator type (EQ), sampling evenly
from the search space of possible formulas until finding a so-
lution, performing 40,000 samples has an expected success
rate of 1 − (1 − 0.00003756)40000 = 0.778. This contrasts
with the empirically obtained expectation of just over 0.55
which was reported for the CGP. The difference in perfor-
mance is then a consequence of the mapping imposed by the
CGP implicitly neutral representation and the CGP search
tactics.

1614

n�

i=p

2(n−1)
∀π� �� � n!� |π|

a=1 (2πa + 1)!

|π|�
b=1

�
p − � b−1

c=0 � |π|
b=1 (πb = s)� |π|

d=1 (πd = s) �	�
�
Where n is the maximum number of inputs, p is the parity and π represents the set of integer partitions of (n − p)/2.

Figure 1: The number of solutions in formula space of the reduced Boolean parity problem

6. THE EFFECT OF AN IMPLICITLY
NEUTRAL REPRESENTATION

The CGP representation method encourages a simple graph
structure, in which functional sequences are established by
chaining outputs of earlier units to inputs of later ones. In-
evitably some sections of the genotype are not interpreted,
and it is these sections in which neutral mutation is expected
to occur, though due to the scoring function of the reduced
Boolean parity problem, all mutations except those which
create solutions are score neutral. Using some of the geno-
type to represent introns shortens the expressions which can
be composed for any given genotype length. This in turn
has an interesting effect on the ability of CGP style rep-
resentations to sample the reduced Boolean formula space
effectively.

6.1 Candidate generation in CGP
Irrespective of the quantity of the genotype that is ex-

pressed, all CGP candidates have a genotype which is fully
defined for all units. Assuming the use of a suitable random
selection method, the following proceedure may be used to
create a candidate solution to the reduced Boolean parity
problem in the CGP representation:

set the output of the expression to:

the output of a randomly selected unit.

for each unit, do

set the type of the unit to:

a randomly selected gate type

set each of the input connections to:

a randomly selected choice from all the

previous gate outputs and the initial

input lines

done

The CGP population strategy is a (1+λ) evolution strat-
egy with λ = 4 samples being created by mutating the sole
parent. Samples replace the parent if certain criteria regard-
ing active genotypic difference and score are met, (see [7, 8,
4, 5] for details). In the reduced Boolean parity problem, the
score is always the same unless a solution is found. As re-
ported by Yu and Miller in [7], relaxing the active genotype
similarity constraint does not impair search performance.

As figure 3 shows, the default setting of the CGP algo-
rithm favours shorter sequences than those which are capa-
ble of yeilding solutions to the 12 parity problem. Generat-
ing more offspring in each iteration does not smooth out the
sampling. This sampling bias is more extraordinary when
it is taken into account that there are vastly more lengthly
formulas than there are short.

By increasing the length of the representation used, more
promising areas of the formula space can be sampled by the

CGP algorithm. Figures 4(a) and 4(b) show the distribu-
tion of samples as performed by; the CGP algorithm, and
by random sampling of the 1000 unit CGP representation
space.

Notice that no representation has a larger effective size
than 150 units - a vast amount of the space is not sampled.
Smoothing out the sampling of the representation space re-
duces the amount of samples which are wasted on sampling
formulas less than 11 operators in length. This has a notica-
ble effect on the success rate of the algorithm, which changes
from approximately 20% to approximately 90% as the sam-
pling method is changed from the CGP controlled random
walk to independant random sampling of the CGP space.

Using the CGP representation and the CGP search strat-
egy we have been unable to recreate the original results. The
best results we obtained using the 100 unit CGP represen-
tation and the (1+4) CGP strategy over 10,000 iterations
(40,000 samples) was 22% of runs resulting in a solution
being located, and are frequently much lower.

6.2 Randomly sampling CGP representations
The significance of the inheritability of traits from the

parent to effectiveness of the CGP search can be tested by
comparing the performance of CGP to that of an algorithm
which simply samples from the CGP representation space.

The random sampling of the CGP representation shares
essentially the same function length distribution as the sam-
pling by the CGP algorithm. Figure 5 shows the distribution
of samples generated at random using the CGP representa-
tion. Comparing figures 3 and 5 shows the exact nature of
the sampling - in terms of the proportions of representation
lengths sampled is largely independant of the CGP search
mechanism for representations of this length.

6.3 Randomly sampling non-CGP
representations

Replacing the CGP representation with one that does not
permit introns allows us to compare the effect of using a
CGP representation with a representation which does not
permit ’neutral’ genotype changes. All changes to the geno-
type in such representation will be interpreted, though it
does not necessarilly follow that they will alter the actual
phenotype.

The following method generates candidates which sample
from the space of possible reduced Boolean formulas. The
chaining property, where the output of one unit is fed into
the next, must be maintained if introns are to be avoided.
This is achieved here by marking the reference immutable,
which allows the similarity between the representation gen-
eration methods to be clearly seen. In practice this is most
simply done by implicitly coding the structure and using the
genotype to specify only the function type and the input ref-
erence(s) for each unit.

1615

 1

 10

 100

 1000

 10000

 100000

 0 10 20 30 40 50

N
u

m
b

e
r

o
f

e
v
a

lu
a

ti
o

n
s

Number of units active

(a) 100 Units: 4 Children per iteration, : (1 + 4λ
strategy)

 1

 10

 100

 1000

 10000

 100000

 0 10 20 30 40 50

N
u

m
b

e
r

o
f

e
v
a

lu
a

ti
o

n
s

Number of units active

(b) 100 Units: 10 Children per iteration: (1 + 10λ
strategy)

Figure 3: The distribution of samples, in terms of
the number of gates active, throughout 5 runs of the
CGP algorithm. Note the Y axis log scale.

 1

 10

 100

 1000

 10000

 100000

 0 20 40 60 80 100 120 140

N
u

m
b

e
r

o
f

e
v
a

lu
a

ti
o

n
s

Number of units active

(a) 1000 Units: 4 Children per iteration, 20% success

 1

 10

 100

 1000

 10000

 100000

 0 20 40 60 80 100 120 140

N
u

m
b

e
r

o
f

e
v
a

lu
a

ti
o

n
s

Number of units active

(b) 1000 Units: random sampling of the CGP repre-
sentation space, 90% success

Figure 4: The distribution of samples for represen-
tations using 1000 units, in terms of the number
of gates active throughout 5 runs of the CGP al-
gorithm. Results shown are a) the CGP sampling
method and b) random sampling. Note the Y axis
log scale.

1616

 1

 10

 100

 1000

 10000

 100000

 0 10 20 30 40 50

N
u

m
b

e
r

o
f

e
v
a

lu
a

ti
o

n
s

Number of units active

(a) Randomly sampling 40,000 independent samples
from the CGP representation space

Figure 5: The distribution of samples, in terms of
the number of gates active, through 5 repetitions of
40,000 independent samples of the CGP representa-
tion space. Note the Y axis log scale.

select a random expression length L

set the output of the expression to:

the output of the unit L.

for each unit up to L, do

set the type of the unit to:

a random gate type

set one of the input connections of the unit to:

the previous gate (make this immutable)

set the other input connection to

a randomly selected input line

done

Notice that this sampling method is also not ’fair’ - it over
samples short functions as well, however, it allocates approx-
imately the same number of samples to each of the possible
function lengths, and as a consequence has a much better
success rate, we recorded 0.0204% success from a sample of
10 million trials. This is equivalent to expecting a solution
to be located every 5000 trials.

6.4 Uniformly sampling the formula space
For formulas using up to 100 operators of one type the ac-

tual solution density is approximately 0.003756%. For each
sample of 40,000 independently selected formulas this gives
an expected solution occurence of 1.502 per 40000 samples.
Thus an algorithm which samples uniformly from the space
of formulas and stops when it finds a solution has an expec-
tation of success of 0.778. The simple sampling strategy has
an expected success rate of around 0.9997 under the same
conditions.

The apparent ’overperformance’ of the random sampling
is entirely due to the distribution of the samples it uses, in
particular the manner in which it avoids sampling the very
largest formulas in favour of shorter formulas. Uniform sam-
pling of the space would result in a large proportion of the
test cases being drawn from the set of formulas of length 100
operators, since so much of the formula space is composed of
these formulas. All formulas which reference an odd number
of inputs (such as those with 100 operators) are not solutions
to the reduced Boolean 12 parity problem. Hence the vast
majority of the search space is occupied by formulas which
are not solutions. Algorithms which are capable of sampling
long formula lengths less than a uniform sampling method
but still maintain sufficient sampling of all areas to detect
solutions are likely to yeild better than random results.

7. CONCLUSION
One of the key features of the neutrality argument is that a

representation which permits neutrality in genotype changes
does not hinder nor worsen performance on the problems
where neutrality is not of benefit. One of the findings of the
Yu and Millar paper studying the reduced Boolean parity
probem is that they found neutrality did not impair perfor-
mance in those cases where it did not give improvement. The
performance of the CGP algorithm on the reduced Boolean
12 parity problem seems to indicate that the asymmetry in
the intron mappings does in fact cause damage to the ability
of the algorithm to sample the space effectively.

In this work we have presented evidence that the CGP re-
sults as reported in [7] are actually worse than random. This
serves to highlight that the effect of neutrality in evolution
is not as benign as it might first appear, and reinforces the
case for a full understanding of the test problems on which
algorithms are evaluated.

8. ANTICIPATED RESULTS
Thanks to Julian Miller for his insightful response when

shown a draft construction of the paper in November 2004.
At the time of writing (14th April 2005) we are awaiting his
detailed response following a re-running of the CGP exper-
iment set from [7].

9. REFERENCES
[1] M. Collins. Counting Solutions in Reduced Boolean

Parity 2004. GECCO 2004.

[2] M. Collins. Monte Carlo Sampling and Counting
Solutions in Reduced Boolean Parity
2004.EDI-INF-RR-0240.
http://www.inf.ed.ac.uk/publications/report/

[3] W. Langdon. R. Poli. Boolean Functions Fitness Spaces
1997. University of Birmingham Technical Report
CSRP-98-16.

[4] J. Miller. An empirical study of the efficiency of
learning boolean functions using a Cartesian Genetic
Program ming approach R. Poli et al (Eds.) Proceedings
of the Third European Conference on Genetic
Programming. 2000. pp. 121-132.

[5] J. Miller. Cartesian Genetic Programming R. poli et al
(Eds.) Genetic Programming, Proceedings of
EuroGP’2000

[6] J. Miller. What Bloat? Cartesian Genetic Programming
on Boolean problems E. Goodman (Ed.) 2001 Genetic

1617

and Evolutionary Computation Conference Late
Breaking Papers, pp 295-302.

[7] T. Yu. J. Miller. Finding Needles in Haystacks Is Not
Hard with Neutrality J. Foster et al (Eds.) EuroGP 2002,
LNCS 2278, pp. 13-25.

[8] T. Yu. J. Miller. Neutrality and the Evolvabilty of
Boolean Function Landscapes Proceedings of the Fourth
European Conference on Genetic Programming. 2001.

1618

