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ABSTRACT 

This paper presents a comprehensive, multivariate account of how 
initial population material is used over the course of a genetic 
programming run as while various factors influencing problem 
difficulty are changed. The results corroborate both theoretical 
and empirical studies on factors that influence population 
dynamics. The results also indicate a clue for a possible empirical 
measurement that could be used in tuning initial populations for 
increasing the likelihood of success.  

Categories and Subject Descriptors 

I.2.2 [Artificial Intelligence]: Automatic Programming – 
program synthesis. 

General Terms 

Algorithms, Performance, Experimentation, Theory. 

Keywords 

Population dynamics, initial populations, binomial-3, GP 
problem difficulty, building blocks, selection methods. 

1. INTRODUCTION 
There are many factors that affect populations and that influence 
the ability of GP to solve problems. Koza has identified many of 
the fundamental ones [15]. The short list would include function 
and terminal sets (which are the constituents that build 

individuals), initialization methods (which influence how these 
constituents are initially assembled), and population size. Over the 
years, this list has become more nuanced as Koza and others have 
argued for large (e.g., [16]), small (e.g., [14]), and dynamically 
sized populations (e.g., [12, 19]). Factors concerning structure and 

topology of multiple interacting populations have also become 
considerations as GP has moved from single to parallel machines 
(e.g., [13, 25]). Various metrics have been proposed that measure 
dynamics within a population (e.g., diversity [2, 3, 21]), so that 

mechanisms can be devised to influence them. Some of those 
mechanisms that could influence content in a population bring in 
their own set of associated factors, such as those involved with 
alternative means for doing population initialization (e.g., [5, 18]). 

Yet in spite of this work, the flow of population material from 
start to finish, as it is being used and discarded by GP, is neither 
fully known nor well characterized. Populations in GP are highly 
dynamic, where most new individuals are formed from stochastic 
recombination of pre-existing material. There are a wide variety 
of factors in play as well, some of which are operator-specific, 
while others are problem-specific. Although theory and empirical 

data have shown that GP uses building blocks [17], there is an 
absence of work that shows either how GP adapts the usage of 
building blocks to adjust to variations on problems or how 
populations change as a result of those adjustments.  

To know how GP adapts the use of population material would be 
of particular interest to a practitioner, as well as a theoretician in 
GP. A practitioner would want to know how various factors—like 
population size, function set and terminal set composition—can 
be adjusted to increase the likelihood of a successful outcome. A 
theoretician would want to know more about the causes that 
underlie the dynamics of GP populations. Much of the potential 

work in GP that could be used to illuminate the flow of population 
material has involved investigations in population diversity [2-4, 
21]. Although many of those works have been done with the 
intent of either maintaining or enhancing population diversity, the 
methods used are pertinent to studies of population dynamics. In 
particular, auditing is a fairly straightforward, brute-force 
empirical method that can track the flow of population material 
from start to finish. Auditing, in GP, means that the history of 

components or actions is recorded in enough detail to permit a 
reconstruction of what has happened. Not only are the contents of 
a population recorded throughout the course of a run, but there is 
also a presumption of indexing of the elements within an 
individual in that population to allow for a reconstruction of a 
prior state. 
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1.1 Challenges 
Although the general approach to audit GP runs is 

straightforward, the task of actually doing so when investigating 
the efficacy of initial populations involves several challenges: 

• Model problems that can control the likelihood of GP success 

by varying population attributes are not commonly used in 

this field. Many of the model problems that are used for 
experimental studies are those that require modification of a 
fitness function. Model problems that can examine the 
consequences of problem difficulty just by changing an 
attribute of a population (e.g., tuning the difficulty of a 
problem by varying just the constituents represented by 
function and terminal sets) are not common in this field. 

• The amount of data to examine can be substantial. An audit 
for a single GP run can mean a population dump (along with 

its indexing data that allows for reconstruction) to disk for 
every generation of a run. Furthermore, since GP is a 
stochastic method, multiple runs are needed to ensure any kind 
of statistical validity. The total amount of data for what would 
otherwise be considered a modestly sized experiment can 
easily approach a terabyte. 

• Techniques for multivariate data exploration in GP are not 

well developed. Much of previous work—including those for 
population diversity—has relied on analysis methods for two 
and three variables, including time t. It is not unusual, since 
GP is a nonlinear method, to be concerned with four or more 

variables simultaneously (e.g., time, parameters that control 
problem difficulty, variables that measure population content). 

1.2 About this paper 
The purpose of this paper is to provide a first, detailed account of 
material flows within populations while various factors 

influencing problem difficulty are changed. The main motivation 
for doing this is to identify a potential metric of an initial 
population that could be used to predict for success. 

It is organized in the following manner. Section 2 discusses the 
experimental procedure used to generate the data for study, as 
well as the procedure involved in the audit of that data. Section 3 
defines the terms used in describing the results from the audit. 
Section 4 discusses the results, as well as comments on the 
techniques required to extract those results from the data. Section 
5 discusses the implications of the audit’s findings in the context 
of current work. Section 6 concludes. 

2. EXPERIMENTAL PROCEDURE 
A particular, well documented, tunably-difficult test problem was 
used (i.e., binomial-3). The problem has been designed as a probe 
for understanding GP dynamics and is representative of the kinds 
of problems found in data modeling. The problem can also be 
seen as one in which one can study the effect of tuning attributes 
of a population to increase the likelihood of GP success. 

The binomial-3 is discussed in [6, 9]. In brief, the problem is an 
instance taken from symbolic regression and involves solving for 
the function f(x) = 1 + 3x + 3x

2 + x
3. Fitness cases are 50 

equidistant points generated from f(x) over the interval [-1, 0). The 
function set is {+, –, , ÷}, which corresponds to arithmetic 
operators of addition, subtraction, multiplication, and protected 
division. The terminal set is {X, R}, where X is the symbolic 
variable and R is the set of random constants that are distributed 
uniformly over the interval [- , ]. The tuning parameter is , 

which is a real number that controls problem difficulty. The 
binomial-3 can be tuned from a relatively easy problem to a 
difficult one by adjusting the range over which these random 
constants occur. In general, values of  that are farther from unity 
result in settings that increase the difficulty for GP to solve this 
problem. 

A modified version of lilgp [28] similar to that used in [8] was 
used for this investigation. Most of the modifications were for bug 
fixes and for the replacement of the random number generator 
with the Mersenne Twister [20].  

Other significant modifications included changes that facilitated 
audits of how material is used during the course of a GP run. In 
particular, every data structure that is associated with a node in a 

GP individual was altered to include an integer ID, which 

subsequently serves as that node’s serial number. Each ID is 

unique to a node and is generated during population initialization. 
This ID labeling scheme was a result of [6], but is similar to that 
described in [21]. McPhee and Hopper’s scheme called for 
tagging each node in the initial population with integer label pairs 
(ID:memID). The ID part of their label is assigned at population 

initialization and consists of an integer that is unique to a node 
relative to the set of nodes that make up the initial population. ID 

is used as a serial number that can be used to track individual 
nodes. memID is used for providing an audit trail for subtree 

memberships. For our work, we implemented what amounts to 
just the ID portion of their integer pair. 

Table 1 lists the parameter settings considered in this paper. Most 

of the GP parameters were similar to those mentioned in [15], 
Chapter 7. 

We used four different experimental configurations, given that we 

considered two different selection methods and two different 
difficulty settings. These particular settings were chosen primarily 
because they bracket the conditions under which GP finds this 
problem either “hard” or “easy.” Although the difference in 
settings seems fairly innocuous, the difference in the likelihood 
that GP would identify a successful solution was chosen to be 
unambiguous (i.e., GP would likely be able to identify successful 
solutions twice as many times under “easy” conditions than under 

“hard” ones). There were 200 runs taken per configuration for a 
total of 800 runs. 

Although the number of runs is modest, the amount of data 

generated was not. Each run recorded every instance of every 
node that was used for all individuals in a population for all 
generations of a GP run. This was repeated for all 800 runs. The 

Table 1. Parameter settings 

Parameter Setting 

Selection Tournament q=7 or Proportionate 
Population Size M 500 
Initialization Method Ramped Half-and-Half 
Initialization Depths 2–6 Levels 

Max Generations G 200 

Maximum Depth 26 

Internal Node Bias 90% internal, 10% terminals 

Termination Criteria Run reaches G 

Binomial-3  1 or 1000 

Number of Runs 200 
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total amount of data that was generated by these four 
configurations was about 0.5 TB. 

Also because the focus of this investigation was on an audit, each 
run was executed through to the maximum number of generations, 
which for all cases was 200. This value is about four times longer 
than what is used in practice and was chosen with the presumption 
that much of whatever was not used or needed in the derivation of 
a solution has been filtered out. 

GP runs and data reduction were run on Linux workstations. 
Visualizations were done on a Power Mac. 

3. DEFINITIONS 
Of all the potential means of summarizing the results of this 
investigation, the most promising were those that focused on the 
usage of material from the initial generation at the level of an 
individual. As it turned out, GP did not assemble its solutions 

from fragments scattered across a broad cross-section of 
individuals. Rather, most solutions were assembled using parts 
from a small subset of individuals in the initial population. 

Given that every node was issued a unique serial number at 
population initialization and since there were no new nodes that 
were introduced during the course of a run (by, for example, 
mutation), every individual in the initial population could be 
identified by a unique set of serial numbers. It then became 
possible to track which members of an initial population had any 
kind of presence—either as wholes or fragments—in later 
generations. 

The following definitions are used to describe the results of this 
experiment: 

• V0. Given an initial population P0, let every node (i.e., vertex) 

in this population be uniquely identified and labeled with an 

integer. V0 is then identified as the set of integers that are 
associated with nodes from P0. For example, an initial 

population P0 of 500 individuals could consist of well over 

14,000 nodes, depending on the type of population 

initialization scheme that was used. The membership of V0 
presumes that each of these 14,000+ nodes is considered as 

uniquely labeled. Let V0 denote the material present in a 

population. 

• Ai. Let Ai specifically denote an individual from the initial 

population P0. Since all nodes in the initial population are 

unique, it follows that an Ai consists of a unique set of nodes 

Ai  V0 that is mutually exclusive from the set of nodes Aj, 
which characterizes an Aj, where i  j. For example, a three-

node tree in P0 is presumed to be uniquely identified by a set 

A = {a1, a2, a3}, such that A  V0 and the elements a1, a2, and 

a3 are not a part of any other tree in P0, 

• ns. Let ns for a given population denote the number of Ai that 

contribute at least one node to that population. For example, in 
the initial population P0 that is of population size M, ns = M. 

4. RESULTS 
As a consequence of focusing on individuals Ai from the initial 

population P0, the analysis of the data that is summarized in this 

section was done in two stages. The first stage reorganized and 

reduced the data relative to the individuals that were present in an 

initial population P0.  

The second stage visualized the reduced data. Even with a 
reduction in the amount of data to be analyzed, the amount of data 
and the number of variables were still large and still exceeded the 
typical treatment of data commonly presented in a GP paper. 
Simply visualizing this data set has merited its own investigation. 
Details of the design for these visualizations were based on [11]. 

Both first and second stages were custom-coded: the first stage 

was coded in PERL; the second stage, in Mathematica. There 
were 80,400,000 trees that were parsed and analyzed in this 
manner (i.e., 4 configurations, 200 runs per configuration, 201 
generations per run, 500 individual trees per generation). Post-
processing time was about one CPU-month per configuration. 

Of particular interest to this paper are the summaries of results 

that highlight two aspects of initial population individuals Ai. In 

particular, Section 4.1 summarizes the number of individuals from 

an initial population that are eventually used to derive a GP 

solution. Section 4.2 summarizes the rank of those individuals in 

its initial population as a predictor of its use in a GP solution. 

4.1 Number of Individuals Used From an 

Initial Population 
One would expect that building blocks for a solution could come 
from any number of individuals in a population. The results 
suggest, however, that just a fraction of an initial population is 
ultimately used for deriving an outcome. 

Figure 1 shows the results as a six-variable visualization for all 

800 runs. This visualization depicts approximately 80 million 
trees that were traced back to 400,000 initial population 

individuals Ai. The variables are as follows: time t (in 

generations), number of initial population individuals ns that have 

any representation in a particular generation, difficulty setting , 
measured success rate (percentage of runs that result in an 

individual that fully meets a problem’s criteria for a successful 

solution), selection method, and cumulative distribution. Note that 

these visualizations omit the number of initial population 
individuals for the first several generations because of their 

magnitude. (The maximum number of initial population 

individuals is population size M, which occurs at generation 0. 

Consequently, the complete range for each density plot is [0, M], 
where M = 500. What is shown for clarity instead is the range [0, 

150].) 

Each density plot in Figure 1 shows four variables: t, ns, 
cumulative distribution, and measured problem difficulty. The x-
axis corresponds to time t (in generations), while the y-axis 
corresponds to the number of initial population individuals ns that 
have any kind of representation at time t. Tone in the density plot 
is correlated to cumulative distribution: the darker the tone, the 
greater the number of runs that have had that many initial 
population individuals at that particular time. Measured success 

rate is represented as a thermometer graphic: higher values on the 
thermometer mean that GP solved the problem more frequently. 
For example, a thermometer value of 100% means that GP found 
a successful solution in all of its runs. 

The remaining two variables—selection method and difficulty 
setting —were portrayed by arranging the four density plots as 

elements of a two dimensional matrix. Each density plot 
subsequently corresponds to a variation of one of these two 
remaining variables. 
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Given that the maximum number of initial population individuals 
is 500 for this population, the results show that no more than 12% 
of the initial population remains by generation 200 under fitness 
proportionate selection. Under tournament selection, the number 
is substantially smaller and shows that no more than 4% of the 
population remains by generation 200. It is presumed that for all 
cases, the population at generation 200 consists mostly of initial 

population individuals that contributed to the best solution GP can 
identify in any given run. 

Furthermore, the results show that tournament selection was more 

likely to yield a successful solution, even though about three times 
fewer individuals from the initial population were used. Unlike 
fitness proportionate selection, tournament selection did not 
require (on average) any more individuals from the initial 
population under the “hard” problem setting than under the “easy” 
one. A question that arises from the results shown in Figure 1 is 
this: If only a small fraction of the initial population was used by 
GP to derive a solution, from which initial population individuals 

was GP using for building blocks? The next section addresses this 
question. 

4.2 Initial Population Rank as a Predictor of 

Use 
Identifying which individuals in the initial population are most 
likely to provide building blocks that are used in a final solution 
bears some similarities to Markov analyses. A typical Markov 
analysis of population dynamics in GP would focus on the 
transition of probabilities from one time step to the next (e.g., 

[24]). One goal of Markov analysis is to focus on system 
properties that are abstracted away from a search space. However, 
in an analysis where problem difficulty is an issue, this level of 
abstraction could remove nuances that might indicate behaviors 
that are dependent upon a search space. For that reason, this 
analysis of population dynamics focuses on the transition 
probabilities relative to the initial population. If one knew which 

initial population individuals would be used to formulate a 
solution, perhaps one could somehow leverage those individuals 
to enhance GP’s performance. 

Similar to what one would have in a Markov analysis, Figure 2 
shows the empirical probabilities that at least a subset of nodes 

from an initial population individual of a given rank would appear 

in generation t = 1. The layout of this visualization is similar to 

that shown in Figure 1, except that scatter plots of computed 
likelihoods as a function of rank are shown instead. The x-axis 

corresponds to the rank of an initial population individual, where 

increasing rank corresponds to increasing fitness. The y-axis 

corresponds to the probability that a subset of nodes from 
individual Ai with a given rank would appear in the population at t 

= 1. 

Each scatter plot depicts 500 points, since there were 500 

individuals in an initial population. Likelihoods were normalized 

to 200, which is the number of runs associated with each plot. For 

example, a point that has a probability of existence equal to unity 

for rank 500 means that the fittest individual in every initial 

population had a subset of its nodes that could be found in the first 

generation for all 200 runs. 
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Figure 1. Number of initial population individuals that are represented in a population as a function of time. Each plot summarizes 

200 trials and corresponds to a particular selection method and difficulty setting. Thermometer graphs indicate measured success 

rates (likelihood of deriving a successful solution at the end of a GP run). 
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Figure 3 is similar to that of Figure 2, except that it shows the 
empirical probabilities that at least a subset of nodes from an 
initial population individual would appear in the last generation 
(i.e., t = 200). As in the previous figure, each scatter plot in Figure 
3 depicts 500 points. Each point represents the likelihood that a 

subset of nodes from an initial population individual with a given 
rank did survive in the population through t = 200. Whereas the 
population material V0 is random, population material V200 is 
presumed to be strongly correlated with whatever solution GP has 
found. Consequently, nodes from initial population individuals 
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Figure 2. Computed likelihood of a particular initial population individual appearing in the first generation (i.e., t = 1). Higher 

ranks correspond to higher fitness. Each plot summarizes 200 trials and corresponds to a particular selection method and difficulty 

setting. Thermometer graphs indicate actual success rates (likelihood of deriving a successful solution at the end of a GP run). 
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(d)  Tournament (m =7), α = 1000
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Figure 3. Computed likelihood of a particular initial population individual appearing in the last generation (i.e., t = 200). 
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that persist through to generation 200 likely belong to those 
individuals that have contributed in some way to the solution that 
GP has derived. 

Figures 2 and 3 can be thought of as slices in time that show the 
probability of extinction as a function of initial population rank 
that occurs at the beginning and end of a GP run. Consequently, 
Figure 4 depicts the full transition in probabilities from t  = 1 to t 
= 200. Figure 4 has a layout that is similar to the previous figures, 
except that each scatter plot has been replaced by a density plot. 

Each horizontal slice in a density plot represents the probability of 
existence as a function of population rank for a particular time t. 
Darker tones represent higher probabilities. Each density plot is 
built up of 201 slices, which corresponds to the slice at t = 0 (i.e., 
the initial population) and the subsequent number of generations 
in a GP run (i.e., t =1 to t = 200, inclusively).  

5. DISCUSSION 
The most basic result of this work is by itself not a surprise: The 

composition of an initial population at the level of which functions 

and terminals are used can play a significant role in determining 

how tractable a problem is to GP. Although this observation has 
been made since near the inception of the field [15], it forms the 
basis under which tunable difficulty is made for this particular 
problem [6]. As shown here, the effect was not small and resulted 

in order of magnitude differences in performance, particularly 
under fitness proportionate selection (i.e., from 1% to 37% 
success, cf. [9]). 

However, the results go beyond this basic finding and provide a 
glimpse into the population dynamics of GP. Population dynamics 
inform one how initial populations change during GP: if one knew 
how populations transform over time, one could use this 
information to identify successful initial populations. One 
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Figure 4. Computed likelihood of a particular initial population individual appearing in the last generation as a function of time 

and rank. Each plot summarizes 200 trials and corresponds to a particular selection method and difficulty setting. 

Thermometer graphs indicate actual success rates (likelihood of deriving a successful solution at the end of a GP run). 
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difficulty has been to synthesize an integrated understanding of 
population dynamics from various studies that focus on just a part 
of those dynamics. This would include the dynamics of schema 
(e.g., [17, 23]), selection methods (e.g., [1, 22]), and problem 
difficulty (e.g., [7, 27]).  

Although a variety of problems is desired for studying the 
dynamics of GP populations, only one problem, albeit a 

rigorously characterized one, was considered. Section 5.1 
discusses the interrelationship between selection method, material 
flows, and building blocks. Section 5.2 describes additional 
linkages for population size, while Section 5.3 describes a metric 
that could benefit practitioners for increasing the likelihood of 
success in using GP.  

5.1 Selection Method, Material Flows, and 

Building Blocks 
A major finding of the audit was in observing just how much of 
an effect selection methods have on population dynamics. (See 
Figures 1a and 1c in comparison to 1b and 1d, as well as Figures 

4a and 4c in comparison to 4b and 4d.) In particular, flows of 
material from the initial population under tournament selection 
appeared largely independent of difficulty setting. 

On one hand, it has been known for some time that tournament 
selection is “lossy”—referring to the finding that a certain fraction 
of individuals are expected not to propagate in one generation to 
the next methods (e.g., [1, 22]). Although [1] showed that loss 
occurs regardless of the underlying fitness distribution, the audit 
data in Figures 1 and 4 seem to show the implications of this over 
time.  

On the other hand, even though tournament selection “lossy,” it 

significantly improved performance. This finding is somewhat 

counterintuitive to the idea that preserving diversity or introducing 
more diversity is conducive to better problem solving in GP [e.g., 

[2, 21]]. [For the purposes of this paper, diversity would be 

measured as the number of distinct elements from V0 that remain 

in a population. This definition is similar to one used in [21].] In 
particular, systemic and complete losses of initial population 

individuals Ai (up to 80%, as shown in Figures 4b and 4d) would 

not seem to be a rational response to improving performance if 

maintaining diversity was also a desired outcome. [Contrast to 
[26], which uses a different, non-audit metric for determining 

diversity.] 

Why would “lossy-ness” contribute to an improvement in 
performance? 

In [6], we posed a minor hypothesis about building block 

formation: not only does GP require methods for assembling 
building blocks out of the nodes that it needs, but it also does 
require methods for contending with nodes it does not. We argued 
that tunable difficulty for the binomial-3 occurs partly because GP 
has a finite capacity for removing or absorbing the effects of 
deleterious material, such as those posed by errant random 
constant values. A loose analogy is that deleterious material 
“parasitizes” GP solutions, in part because they are “trapped” in 
trees and branches. 

At the time, we neither had the means to test this hypothesis with 
an audit nor did we consider tournament selection.  

This work’s audit result and the use of tournament selection do 
apparently support this hypothesis. The significant dissimilarities 

between flows of material under tournament selection and 

underlying fitness proportionate do suggest the possibility that the 
underlying dynamics are also dissimilar. I suggest that the 
dynamics have occurred in this way because tournament selection 
affords another means for eliminating deleterious material, 
whereas fitness proportionate selection does not. A detailed 

analysis of this is left to future work, especially since the data 
does not support the notion that more “lossy-ness” in and of itself 
results in better performance. 

If anything, the results suggest a nuanced view and use of 
diversity. Studies in diversity generally presume that more 
diversity is conducive to problem solving in GP (e.g., [2, 21]). To 
some degree, the results support that presumption. Figures 2a and 
2c indicate that when most of the initial population can be used to 
form the first generation under proportionate selection, the 
problem corresponds to one that is dramatically easier to solve. 
However, Figures 2b and 2d, as well as Figures 4a – 4d, indicate 

that diversity is symptomatic and not causal: although 
proportionate selection maintained population diversity for a 
longer time than did tournament selection (Figures 1a and 1c), 
tournament selection greatly increased the likelihood of success 
over its fitness proportionate counterparts. 

5.2 Initial Population and Population Size 
Another major finding of the audit was in indicating a strong 
correlation between individual rank within an initial population, 
the material that is ultimately used in a solution, and initial 
population tuning. 

The results suggest that not only do useful building blocks need to 
be in sufficient supply within a population, but that these building 
blocks also need to be part of the fittest individuals of an initial 
population. In particular, both Figures 3 and 4 indicate that such 
building blocks would need to be in the individuals that rank in 
the upper 20% of an initial population. Although material V0 that 

are from individuals that are ranked lower than 20% can persist in 
populations for several generations, the amount dwindles to zero 
as more and more of a population consists of progeny from what 
is likely a GP solution. This means one could predict in advance 
of a completed GP run which individuals would be used by GP to 
derive a solution. This prediction (at least for this problem) would 
hold, regardless of whether it was “easy” or “hard” for GP to 
solve. 

Because a fraction of an initial population is indicated, population 
size would likely be a factor since it would influence the total 
number of initial population individuals that contribute to a GP 
solution. 

This finding, if true for other problems, would support the use of 

seemingly contradictory methods for population sizing in GP. 
Koza et al. has advocated the use of very large populations to 
solve difficult real-world problems [16], while Luke et al. has 
explored the use of shrinking populations to small sizes [19]. If it 
turns out that GP recombines material ultimately from just a small 
fraction of a population for most problems (similar to what is 
shown in Figure 4), an exceptionally large population not only 
increases the likelihood of having the appropriate building blocks 
in a population, but also that those building blocks are 

concentrated in initial population individuals that make up that 
fraction. Dynamic shrinking also makes sense in this context, 
since the determination of which fraction would be useful to a 
solution could be done immediately after the determination of 
rankings of the initial population. 
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Note that the results from this paper do not by themselves have 
anything to say about the effect of population sizes, since only one 
population size was considered. However, in another paper [10], 
we show corroborative evidence for this linkage with another 
problem (i.e., Highlander) in which population size was varied. 

5.3 What Identifies Potential for Success? 
A tentative answer to this question is this: What identifies the 
potential of an initial population to yield a successful outcome is 
the probability distribution of whether individuals from that initial 
population are propagated into the first few generations under 

fitness proportionate selection (cf. Figures 2a and 2c). Initial 
populations with broader propagation distributions are more likely 
to produce successful outcomes in contrast to initial populations 
with narrower distributions. However, to enhance the possibility 
of a successful outcome with an initial population, tournament 
selection should be used, instead. 

There are a number of ways that an initial population can be tuned 
without needing to know the specifics of what kinds of building 
blocks are eventually needed to solve a particular problem. One 
way is to adjust the composition of function and terminal sets, as 
was done for this investigation. Another is to use alternative 
algorithms for initializing a population (e.g., [18]). 

For whichever method is chosen to initialize a GP population, this 
probability distribution does provide a clue as to whether one is 

on the right track towards synthesizing successful initial 
populations. This probability distribution can be determined 
empirically by running GP for just one generation.  

Once the conditions for creating potentially successful 
populations has been identified using this probability distribution, 
subsequent GP runs using these conditions can be run under 
tournament selection. 

A definitive answer to this question would require further tests to 
be conducted with other problems. 

6. CONCLUSIONS 
This paper presented a detailed, multivariate account of how 
initial population material is used over the course of a GP run as 
various factors that influence the difficulty of a problem were 
changed. Instead of focusing on just archetypes of GP runs that 
illustrate various behaviors, new multivariate visualization 
techniques were developed to analyze the dynamics of 800 
populations and 80M individuals.  

The paper described four key points that could be drawn from the 
results. First, the empirical results corroborated and linked various 
theoretical works that investigate building blocks, selection 
method, diversity, population size, and problem difficulty. 

Second, the results indicated the effect initial population rank, 
population size, and building blocks. It, furthermore, supported 
the use of apparently contradictory methods for population sizing 
in GP. Third, the results suggested a nuanced view and use of 
diversity. Fourth, the results identified a potential metric of an 
initial population that could be used to predict for success. 

7. ACKNOWLEDGMENTS 
I thank the following individuals for their help: I. Kristo, S. Daida, 

S. Long, A. Hilss, M. Hodges, D. Ward, M. Samples, and M. 
Byom, C. Kurecka, F. Tsa, and M. Rio. 

8. REFERENCES 
[1] Blickle, T. and Thiele, L. A Mathematical Analysis of Tournament 

Selection. in Eshelman, L.J. ed. ICGA, Morgan Kaufmann, San 
Francisco, 1995, 9–16. 

[2] Burke, E., et al. Diversity in GP: An Analysis of Measure and 

Correlation with Fitness. IEEE TEC, 8 (1). 47–62. 
[3] Burke, E., et al. A Survey and Analysis of Diversity Measures in GP. 

in Langdon, W.B., et al. eds. GECCO, Morgan Kaufmann, San 

Francisco, 2002, 716–723. 
[4] Burke, E., et al. Advanced Population Diversity Measures in GP. in 

Merelo Guervós, J.J., et al. eds. PPSN VII, Springer-Verlag, Berlin, 

2002, 341–350. 
[5] Böhm, W. and Geyer-Schulz, A. Exact Uniform Initialization for 

GP. in Belew, R.K. and Vose, M.D. eds. FOGA 4, Morgan 

Kaufmann, San Francisco, 1997, 379–407. 
[6] Daida, J.M., et al. Analysis of Single-Node (Building) Blocks in GP. 

in Spector, L., et al. eds. Advances in GP 3, MIT Press, Cambridge, 

1999, 217–241. 
[7] Daida, J.M., et al.. What Makes a Problem GP-Hard? Validating a 

Hypothesis of Structural Causes. in Cantú-Paz, E., et al. eds. 

GECCO, Springer-Verlag, Berlin, 2003, 1665–1677. 
[8] Daida, J.M., et al. What Makes a Problem GP-Hard? Analysis of a 

Tunably Difficult Problem in GP. in Banzhaf, W., et al. eds. 

GECCO, Morgan Kaufmann, San Francisco, 1999, 982 – 989. 
[9] Daida, J.M., et al. What Makes a Problem GP-Hard? Analysis of a 

Tunably Difficult Problem in GP. GPEM, 2 (2). 165–191. 

[10] Daida, J.M., et al. Probing for Limits to Building Block Mixing with 
a Tunably Difficult Problem for GP. in GECCO, 2005. 

[11] Daida, J.M., et al. Visualizing the Loss of Diversity in GP. in CEC, 

IEEE Press, Piscataway, 2004, 1225–1232. 
[12] Fernandez, T. Virtual Ramping of GP Populations. in Deb, K. ed. 

GECCO, Springer-Verlag, Berlin, 2004, 471–482. 

[13] Fernández, F., et al. An Empirical Study of Multipopulation GP. 
GPEM 4 (1). 21–51. 

[14] Gathercole, C. and Ross, P. Small Populations Over Many 

Generations  Can Beat Large Populations Over Few Generations in 
GP. in Koza, J.R., et al. eds. GP, Morgan Kaufmann, San Francisco, 
1997, 111–118. 

[15] Koza, J.R. GP. MIT Press, Cambridge, 1992. 
[16] Koza, J.R., et al. GP IV. Kluwer Academic, Norwell, 2003. 
[17] Langdon, W.B. and Poli, R. Foundations of GP. Springer-Verlag, 

Berlin, 2002. 
[18] Luke, S. Two Fast Tree-Creation Algorithms for GP. IEEE TEC, 4 

(3). 274–283. 

[19] Luke, S., et al. Population Implosion in GP. in Cantú-Paz, E., et al. 
eds. GECCO, Springer-Verlag, Berlin, 2003, 1729–1739. 

[20] Matsumoto, M. and Nishimura, T. Mersenne Twister: A 623-

Dimensionally Equidistributed Uniform Pseudorandom Number 
Generator. ACM Trans Modeling and Comp Sim, 8 (1). 3–30. 

[21] McPhee, N.F. and Hopper, N.J. Analysis of Genetic Diversity 

through Population History. in Banzhaf, W., et al. eds. GECCO, 
Morgan Kaufmann, San Francisco, 1999, 1112 – 1120. 

[22] Motoki, T. Calculating the Expected Loss of Diversity of Selection 

Schemes. EC, 10 (4). 397–422. 
[23] Poli, R., et al. Analysis of Schema Variance and Short Term 

Extinction Likelihoods. in Koza, J.R., et al. eds. GP, Morgan 

Kaufmann, San Francisco, 1998, 284–292. 
[24] Poli, R., et al. Markov Chain Models for GP and Variable-Length 

GAs with Homologous Crossover. in Spector, L., et al. eds. GECCO, 

Morgan Kaufmann, San Francisco, 2001, 112–119. 
[25] Punch, W. How Effective are Multiple Pop in GP. in Koza, J.R., et 

al. eds. GP, Morgan Kaufmann, San Francisco, 1998, 308 – 313. 

[26] Silva, S. and Almeida, J. Dynamic Maximum Tree Depth: A Simple 
Technique for Avoiding Bloat in Tree-Based GP. in Cantú-Paz, et al. 
eds. GECCO, Springer-Verlag, Berlin, 2003, 1776–1787. 

[27] Vanneschi, L., et al. Fitness Clouds and Problem Hardness in GP. in 
Deb, K. ed. GECCO, Springer-Verlag, Berlin, 2004, 690–701. 

[28] Zongker, D. and Punch, W. lilgp, Michigan State University Genetic 

Algorithms Research and Applications Group, Lansing, 1995. 

1634


