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ABSTRACT
Algorithmic Chemistries are Artificial Chemistries that aim
at algorithms. In this contribution we present a new algo-
rithm to execute Algorithmic Chemistries during evolution.
This algorithm ensures synthesizes of the whole program and
cuts off execution of unneeded instructions without restrict-
ing the stochastic way of execution. We demonstrate benefits
of the new algorithm for evolution of Algorithmic Chemistries
and discuss the relation of Algorithmic Chemistries with Es-
timation of Distribution Algorithms.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming

General Terms
Algorithms

Keywords
Algorithmic Chemistries, Genetic Programming, Total Syn-
thesis

1. INTRODUCTION
In this contribution we discuss a variant of a recently intro-

duced model of computing based on the metaphor of chem-
istry, called Algorithmic Chemistry1 [1]. In this approach,
the input - output relation of a computation is formulated
in direct analogy to a chemical reaction with educt–product
relation. The computation itself is considered in analogy to
a chemical reaction.

While the smallest entities of chemistry are molecules,
what are the smallest entities of computation? Our point
of view is that instructions can be considered on that level,

1This term is considered first by Fontana[9]. Here we use
it as an umbrella term for artificial chemistries that aim at
algorithms [8].
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forcing us to think of instructions as interacting with each
other in a more or less irregular order.

Would there be any hope for a coordinated behavior in
such a system? The answer is yes, provided that there is
some degree of coherence between what instructions com-
pute. That is to say, it all depends on the data flow. In the
same way as molecules react with each other based on the
pattern of their 3D shape, which is, in the case of more com-
plicated molecules, often referred to as key-lock interaction,
instructions interact with each other based on the patterns
of addresses for source and destination registers.

We are going to take this analogy further here, by stripping
away all those reactions which do not end up contributing to
the final result of our computation. Because the system is of
a stochastic nature, and we must allow all possible “reactions”
to really occur, this is equivalent to simulating infinite time.

2. ALGORITHMIC CHEMISTRIES
Algorithmic Chemistries (AC) are multisets of objects,

here of instructions2, which cannot be accessed in a specific
order. As usual, instructions consist of one operation id and
three register addresses (two sources and one target). ACs
are executed in an environment called reactor. As Fig.1
shows, this reactor mainly provides the initial values of the
register set accessed by the instructions. There are three
kinds of registers: Connection registers, registers containing
constant values and input registers, which also do not change
over the course of the computation. While instructions are
allowed to read all of these registers, writing is only allowed
to connection registers. In order to execute a chemistry we
repeatedly draw a random instruction and execute it using
the specified registers.

Because there is no explicit order, an arbitrary number
of instructions can be executed in parallel, similar to what
would happen in molecular reactions, for instance, in an
in-vitro experiment. The probability of an instruction being
executed at a specific moment only depends on its frequency
in the multiset. This behavior contrast with most other
program representations, where order determines execution.

If instructions share a common (connection–)register, in
such a way that one instruction uses this register as its
target and the other instruction uses it as one of its source
registers, there is interaction between the two instructions.

2See [2] for a stepwise transformation of Linear Genetic
Programming into Algorithmic Chemistries. Here we just
consider Algorithmic Chemistries in its purest form, selecting
all instructions with identical probability at each point in
time (ζ =∞).
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Figure 1: The reactor provides an environment for
executing a multiset of instructions.The environ-
ment consists of empty connection registers, inputs
from the fitness cases and registers containing con-
stant values.

This corresponds to a data flow, possibly leading to the
desired result of a computation in the target register. Due
to the nature of probabilistic drawing of instructions, CPU
cycle time needs to pass to ensure that the entire data flow
encoded in the multiset actually executes (“synthesizes”).

We use Genetic Programming to program Algorithmic
Chemistries. In addition to the chemistry, each individual of
the GP population consists of a set of evolved constants and a
result register id for determination of the register interpreted
as the chemistry’s final output. Initially a population of
p random individuals is generated. Constant values of an
individual are randomly chosen from a predefined range, its
chemistry is initialized by generating a set of i valid random
instructions and its result register id is chosen randomly from
the set of connection registers.

We use a (µ, λ)–strategy [5] and µ < λ best individuals are
selected as parents of the next generation. A crossover rate
determines the percentage of offspring generated by recom-
bination of two randomly chosen parents. Recombination
is done by drawing a random multiset of instructions from
each of both parents. Size of these two multisets is uniformly
distributed between 1 and the associated parents’ chemistry
size. The maximum size of a new chemistry is limited. The
crossover operator copies each of the evolved constants as
well as the id of the result register randomly from one of
the two parents. The missing percentage of offspring are
generated by reproducing randomly selected parents.

After recombination or reproduction, mutation takes place.
The mutation rate determines the probability of each gene
being mutated. Genes consist of register addresses and the
operation id within instructions, the id of the output register
and the individual’s constants. While register addresses and
operations are mutated by selecting another valid random
value, constants are changed by multiplying them with a
Gaussian variable N(1, 0.1).

The process of evaluation of newly generated individuals
is repeated until a termination criterion is reached. Figure 2
depicts these cyclic steps.
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Figure 2: The evolution of Algorithmic Chemistries
uses the same basic steps as classical evolutionary
algorithms.

3. SYNTHESIS OF DATA FLOW
As mentioned above there is no inherent order of the

instructions of an AC. Instead, instructions are executed in
an arbitrary order in the reactor environment. Synthesis of
the full data flow, however, is a matter of time, since data
flow sequences are not encoded explicitly, but implicitly by
shared connection registers in the multiset of instructions.

While time requirements could be compensated to some
extent by parallelism, it is obvious that Algorithmic Chem-
istries require more computational power for execution than
normal computer programs. A great many CPU cycles have
to be spent on execution of instructions which do not par-
ticipate in data flow towards the register interpreted as the
individual’s output. ACs share this problem with other rep-
resentations of GP, where it is called non–effective code.

We discern two kinds of such dispensable instruction ex-
ecutions. The first kind is similar to introns/non–effective
code in Genetic Programming. Instructions of this type par-
ticipate under no circumstances in data flow, e.g. their target
register is not read by another instruction. The second kind
of instruction differs in that their execution is dispensable
sometimes, and not at others. For example their source
registers may not contain required values yet.

While spending computational power on executing dispens-
able instructions is intended for the benefit of parallelism
during normal execution, it is problematic during the evolu-
tion of chemistries using GP, since many AC evaluations are
needed.

Algorithm 1 outlines our original approach to evaluating
AC–based individuals [1]. After preparing the reactor en-
vironment, for each fitness case the inner loop executes a
number of randomly chosen (line 1.6) instructions. Sub-
sequently, the value in the result register specified by the
individual is used to calculate the contribution of this fitness
case to fitness (line 1.14–1.15). In the end we compute the
average contribution.

Here we call this approach “fixed”, since a constant multi-
ple c of the AC’s size has to be specified in advance and fixes
the number of executed instructions (line 1.5). Choosing c
requires a balance between different considerations. On the
one hand it is desirable to have a large c to ensure complete
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Algorithm 1: Function to evaluate individual I
using a set of fitness cases F and fixed number
of executed instructions.

Input: Set of fitness cases F , Individual
I = (chemistry, constants, id of result
register r), number of cycles c,
connection registers C

Output: Fitness of I in respect to F
f = 0;1.1

foreach fitness case ∈ F do1.2

/* prepare reactor environment */
Ci = 0,∀i;1.3

R← (C, fitness case, constants);1.4

for 1 to c×sizeOf( chemistry) do1.5

instruction← getRandomInst(chemistry);1.6

j ← getTargetID();1.7

(k, l)← getSourceIDs(instruction);1.8

m← getRegister(k,R);1.9

n← getRegister(l,R);1.10

value← execute(instruction, m, n);1.11

setRegister(j,value,R);1.12

end1.13

result← getRegister(r,R);1.14

f ← f+ objective(fitness case,result);1.15

end1.16

return f/|F |;1.17

data flow synthesis, on the other hand a small c is desirable
for speeding up evolution.

By introducing total synthesis3, we aim at synthesizing the
entire data flow, something that is just ensured at infinite
execution time otherwise. In addition, this should happen at
the fastest speed possible, under the constraint that a reduc-
tion of randomness in the choice of instructions participating
in the data flow is to be avoided.

Algorithm 2: Frame to totally synthesize an
Algorithmic Chemistry.

Input: Set of fitness cases F , Individual
I = (chemistry, constants, id of result
register r)

Output: Fitness of I in respect to F
f = 0;2.1

S = (S1, . . .)← GroupByTargetID(chemistry);2.2

foreach fitness case ∈ F do2.3

T ← (fitness case, constants);2.4

result← recEval(r, S, T, ∅);2.5

f ← f + objective(fitness case,result);2.6

end2.7

return f/|F |;2.8

Total synthesis happens by recursively synthesizing one of
the possible data flows each time an individual is executed.
This is shown in Algo.2. First, the reactor environment does
not access connection registers directly any more (line 1.4 vs.
line 2.4). Instead, each access to a connection register evokes
a recursive call of function recEval. T contains register
values, which cannot be modified during evaluation. In order

3In chemistry this term is used for the complete synthesis of
complex molecules from simple precursors.

to be consistent with GP, we call T terminal set, since data
flow branches terminate in those registers.

In addition a preparation step is advisable to execute
an individual AC: First we have to group the chemistry
(multiset of instructions) into sub–multisets Si by the id i of
the connection register they use as their target. This has to
be done only once before executing an AC on a set of fitness
cases (line 2.2), and is analog to removing structural introns
before executing a linear GP individual (see [7]).

Algorithm 3: Pseudocode of the recursive evalu-
ation function recEval(r,S,T,V ) used in Algo.2.

Input: id i of connection register to compute
value for, set S of instruction multisets,
terminal registers T , set V of connection
register ids visited on recursive path

Output: possible value of register i at t→∞
if i is connection register then3.1

if i ∈ V then3.2

value← 0 ;3.3

else3.4

instruction← getRandomInst(Si);3.5

(k, l)← getSourceIDs(instruction);3.6

m← recEval(k, S, T, V ∪ {i});3.7

n← recEval(l, S, T, V ∪ {i});3.8

value← execute(instruction, m, n);3.9

end3.10

else3.11

value← getRegister(i, T);3.12

end3.13

return value3.14

The (connection–)register r used by an individual to com-
pute output is known in advance, since its id r is an evolved
component of the individual. Because r is the last register in
the data flow the program writes to, a recursion is called by
requesting its value (line 2.5). Function recEval presented
in Algo.3 knows from its first attribute which connection
register i is requested. Thus the sub–multiset Si of relevant
instructions targeting register i is known. An instruction is
selected randomly from this multiset (line 3.5). Before the re-
sult of this instruction can be calculated, however, its source
registers need to contain appropriate values. If sources are
non–connection registers they are read from the terminal set
T . If the current instruction reads any source k or l from
connection registers, it needs to be ensured recursively that
random instructions sk ∈ Sk or sl ∈ Sl have already been
executed before.

Infinite loops are avoided by terminating recursion if a
connection register id i is written to twice on a recursive
path (line 3.2). Instead of drawing an instruction si ∈ Si,
recEval returns zero (line 3.3). Because all AC loops run
the risk of being infinite, loops are terminated after the first
cycle. If loops are required, bounded loops could be evolved
by replacing V by a set of counters, counting the number of
write accesses to a register an return zero (line 3.2–3.3) if a
predefined number of writes accesses is reached.

Figure 3 depicts the basic idea of total synthesis. Starting
at the result register chosen by evolution, instructions are
executed recursively. As in earlier work multiple instances
of the same instruction increase its probability of being exe-
cuted.
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R3 = R1 ∨ R4

R3 = R1 ∨ R4

R3 = R3 ∨ R2 R3 = R2 ∧ R2

R4 = R1 ∧ R3 R4 = R3 ∨ R2

R4 = R1 ∨ R1

R3 = R3 ∨ R2

R4 = R3 ∨ R2

Figure 3: With total synthesis of Algorithmic Chem-
istries, we build up data flow from the ground.
Thereby a “wheel of Fortune” selects the instruc-
tion writing a connection register every time it is
read.

4. RESULTS
Here we investigate the influence of total synthesis in the

evolution of an Algorithmic Chemistries by considering the
odd–parity problem.

The odd–parity problem has been used earlier in GP [10].
Individuals can use four logic operations {AND, OR, NAND,
NOR} for a proper combination to detect parity. The cost
for a random search on this problem has been discussed in
[11].

Solving this problem does not require constant values, so
the number of constant values is chosen to be zero. The
fitness function (really an error function) corresponds to the
fraction of fitness cases an individual cannot generate odd
parity for. The solution hoped for is to have a fitness of zero.

As discussed in [12] noise evoked by the stochastic nature
of executing instructions in ACs is a difficulty. This difficulty
is amplified by problems with a small training set, such as
is the case on the 3 bit odd–parity problem, which affords
just 23 = 8 fitness cases.

For example, the reader might think of an individual that
contains the following two instructions targeting the individ-
ual’s result register:

Rres = Ri ∨Ri; Rres = Ri ∨Ri;

Suppose that the value of Ri is fixed, perhaps fixed by a
unique data flow or by employing input or constant values.
Every time this individual is executed, the output has an
equal chance to be true or false. In other words, there is
a small but finite probability of 1/28 for this individual to
achieve a perfect fitness. Such behavior misleads evolution
during the selection step, much in contrast to what happens
in linear or tree–based GP, where the same instruction enters
into the result for each fitness case and therefore fitness is
always 0.5.

Because fitness calculations become more accurate with
an increased number of samples, the number of fitness cases
is an important parameter for the evolution of Algorithmic

Chemistries. A remedy in applications with a small number
of fitness cases is to allow multiple consideration of fitness
cases, whereas we ensure that frequencies of fitness cases do
not differ by more than one. Training sets are resampled
in each generation. For evaluating system performance, one
selects the best individual on the basis of a validation set
containing 128 fitness cases and test its fitness on a test set
of 128 fitness cases4. Then the probability for the individual
to achieve a fitness of zero by chance is 2−128 < 10−39.

We perform parameter optimization using [3, 4]. In short,
this is a sequential iterative approach for stochastic model
building, prediction and verification. First, the success rate
is estimated after 108 instructions have been executed based
on 10 runs at 200 points within our parameter space, chosen
by an initial Latin Hypercube Sampling. The success rate
corresponds to the proportion of runs that evolve an individ-
ual which computes the correct parity for all fitness cases of
the test set. Success rates are used to model the response of
the system. A quadratic regression model and a model for its
prediction error using kriging interpolation can be employed.
Using this composed model success rates of 2000 points from
an Latin Hypercube Sampling can be predicted and the most
promising settings by running real experiments. The sample
size is doubled at the best (two) points known so far and for
new settings we run the same number of experiments. After
this verification step a new model is created, including the
newly evaluated points. Again we predict success rates at
points of a new Latin hypercube design and verify the most
promising settings.

Table 1: Optimization ranges and optimal settings
AC∗

c for executing a fixed number of instructions and
AC∗

t for totally synthesized ACs.
range setting

parameter min max AC∗
c AC∗

t

offspring λ 500 8000 3250 1323
crossover rate 0 1 11.78% 1.98%
mutation rate 0.01 0.15 7.32% 2.4%
initial length i 1 30 8 11
connection registers 5 30 8 11
training set size 8 128 67 15
cycles c 1 16 8.49 —

fixed values
parents µ 100
evolved constants 0
max. instructions 2000

Table 1 shows the parameter ranges for optimization. The
column denoted AC∗

t shows the best settings found for total
synthesis.

With AC∗
t , 400 runs were performed over a period of 109

instruction executions each. Every 2× 107 performance of
the best individual so far has been logged, using validation
and test set as described above.

The solid line in Fig.4 shows the success rate using AC∗
t .

After the period of time available for optimization (108)
nearly 60% of all runs find a solution and correctly detect
odd–parity. After 109 instruction executions more than 90%
of all runs find a perfect solution. For comparison with
the approach executing a fixed number of instructions, the

4Results achieved for the validation or test set do not find
their way back into evolution
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Figure 4: The solid line presents success rate on 3 bit
odd–parity problem using optimized setting AC∗

t for
total synthesis of Algorithmic Chemistries. The non
solid lines present success rate for the same setting
spending different amounts of executed instructions.

number of executed instructions is limited in the latter case
to a multiple c of the instructions contained in a chemistry.
400 runs are performed using c ∈ {4, 8, 16}, dashed lines in
Fig.4 show performance of these runs. At first, performance
increases with an increase in c. Chemistries benefit from
an increased number of instruction executions, since this
increases the chance to synthesize the data flow within exe-
cution time. If c increases beyond the value where data flow
can be synthesized completely, no further gains for evolution
can be registered, as less generations are accomplished in
the same amount of time.

To ensure, that performance of the “fixed” approach is
inferred on an equitable basis, another optimization is per-
formed, this time including parameter c. Fig. 4 shows that
only a low success rate can be expected after 108 instruction
executions. The number is therefore increased to 5 × 108

instruction executions. Because the success rate is still low
there, mean fitness instead of success rate is optimized. Col-
umn AC∗

c in Tab.1 shows the best settings found. While most
parameter settings differ from the optimal setting for total
synthesis, a number of c = 8.49 matches our expectation
from Fig.4. Training set size is increased to 67. While total
synthesis presented here is still a source of stochastic noise,
it is much less so than in the “fixed” approach of execution.

Figure 5 shows the performance for AC∗
c . To enable cross

validation we also depict AC∗
t and AC∗

c using total synthesis
and AC∗

t executing a fixed number of instructions (c = 8).
One can observe that optimization for fixed number of exe-
cuted instructions AC∗

c does not result in a performance as
good as AC∗

t with c = 8. Obviously one can simply adjust
c a posteriori to get good results without total synthesis.
This decreases computational power required for optimiza-
tion, since one can optimize for an earlier moment (e.g. 108

instead of 5× 108 here).

5. DISCUSSION AND OUTLOOK
The new execution algorithm groups instructions by their

target register address into submultisets. It then randomly
executes an instruction from this subset.

We can think of this procedure as a probabilistic instruc-

instruction executions
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Figure 5: Comparison of success rate using opti-
mized settings AC∗

t for total synthesis and settings
AC∗

c optimized for randomly executing c times the
number of instructions contained in chemistry.

tion execution5, where the probability P (i) of executing
instruction i depends on its frequency f(i) in the chemistry.
Assuming target register t(i) of i is requested, we can for-
mulate P (i) in relation to frequencies of other instructions
targeting the same register t(i):

P (i) =
f(i)P

j|t(i)=t(j) f(j)
.

The previous equation assumes, that t(i) is requested.
This is the case for t(i) = r where r is the individual’s
result register. Otherwise, it depends on next instruction in
data flow, which is the parent in the expanded tree. The
probability of executing instruction i on a specific path p
with distance d from final instruction (root) also depends
on the next instruction’s j source sp(j) on this path. So a
multivariate distribution P p

d (i) describes the probability of
instruction i being executed on a specific path p at distance
d from the final instruction:

P p
d (i) = P (i)

X
j|sp(j)=t(i)

P p
d−1(j), d > 0 and

P p
0 (i) =


P (i), t(i) = r

0, else
.

There are further approaches in Genetic Programming, to
represent individuals in a probabilistic way, e.g.:

• Probabilistic Incremental Program Evolution(PIPE)
[15] utilizes a single probabilistic prototype tree, which
stores a random constant and a vector in each node,
describing the probabilities of executing a particular
instruction or using this constant.

• Extended Compact Genetic Programming (eCGP) [16]
additionally considers multivariate interactions between
nodes.

• Grammar based Estimation–of–Distribution for Ge-
netic Programming [6] use simple grammars, limited

5Or even grammar expansion, e.g. replace instruction Rk =
Ri ∨Rj by production rule Sk → Si ∨ Sj .
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to one symbol. A probability for each production rule
and (limited) expansion depth is adjusted.

The approaches all have in common that they explicitly
model the probability distribution of instructions or produc-
tion rules. They do not use crossover, but resample the
next generation’s population from the adjusted distribution.
Therefore they are related to Estimation–of–Distribution
algorithms (EDA) introduced in [13].

In the future, we would like to examine, whether Algorith-
mic Chemistries could benefit from this population genetic
view of recombination in which we want to form offspring
from the population distribution. Without making the dis-
tribution explicit, we are going to achieve this by sampling
offspring chemistries from the common chemistry of all se-
lected parents. In this way recombination will be similar to
Gene Pool Recombination[14], a direct ancestor of EDA.
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