
Multipopulation Cooperative Coevolutionary Programming
(MCCP) to Enhance Design Innovation

Emily M. Zechman
CB 7908, North Carolina State University

Raleigh, NC 27695

emzechma@ncsu.edu

S. Ranji Ranjithan
CB 7908, North Carolina State University

Raleigh, NC 27695

ranji@ncsu.edu

ABSTRACT
This paper describes the development of an evolutionary al-
gorithm called Multipopulation Cooperative Coevolutionary
Programming (MCCP) that extends Genetic Programming
(GP) to search for a set of maximally different solutions for
program induction problems. The GP search is structured
to generate a set of alternatives that are similar in design
performance, but are dissimilar from each other in the solu-
tion (or design parameter) space. This is expected to yield
potentially more creative designs, thus enhancing design in-
novation. Application of MCCP is demonstrated through
an illustrative example involving GP-based classification of
genetic data to diagnose malignancy in cancer. Four dif-
ferent classifiers, based on highly dissimilar combinations of
genes, but with similar prediction performances were gener-
ated. As these classifiers use a diverse set of genes, they are
collectively more effective in screening cancer samples that
may not all properly express every gene.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming
Program Synthesis

General Terms
Algorithms, Design

Keywords
Genetic Programming, Evolutionary Programming, Nich-
ing, Lymphoma Cancer Classification

1. INTRODUCTION
When faced with a new design problem, humans are likely

to follow incremental steps, anchored on prior or existing so-
lutions, typically leading to only marginally creative designs.
Being a global search heuristic, Genetic Programming (GP)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05,June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006 ...$5.00.

is able to conduct a broad search outside of obvious designs
to identify a potentially more innovative design to a new
problem. In early applications, GP performed well for toy
problems that tested its ability to re-discover functions from
sets of data [14]. Recently, it has been applied to more com-
plex design problems that require creativity and innovation.
For example, [15] demonstrates the use of GP to discover
patentable circuit designs; GP is now used frequently in
generating human-competitive designs for an array of ap-
plications. GP is capable of exploring more creative designs
than humans can since it is not biased towards traditional
or standard designs.

The innovative aspects of a GP-based design procedure
can be further enhanced by structuring the procedure to ex-
plicitly maximize creativity. It is difficult to optimize for
creativity, as it is a subjective quality and is not easily ex-
pressed quantitatively in a mathematical statement. An in-
direct approach for generating more creative designs is to
explore the solution space for not only the best (or optimal)
design, but also a set of near-optimal alternative designs.
An alternative design could be generated by slightly tweak-
ing the design variable values of the best solution; however,
such a marginally different design would not necessarily of-
fer a creative or innovative alternative with any possibly
patentable ideas. On the other hand, an alternative design
with maximally different design variable values, i.e., a de-
sign constituted of greatly dissimilar operators or construc-
tors, is likely to represent a relatively more creative design
manifested by unbiased and unusual combinations of design
variables. Therefore, systematically exploring for a set of so-
lutions with similar design performance but with maximally
different design variable values will likely lead to more cre-
ative designs.

The search for a set of maximally different alternative
solutions has been investigated in the context of numeric
optimization problems. As described in [2], the modeling to
generate alternatives approach implements a systematic ex-
ploration to generate a small number of alternative solutions
that perform similarly well and are located far apart in the
decision space. Several studies (e.g., [3], [4], [5], [10], [16],
and [21]) report the development of an array of alternatives
generation procedures and their application to a number of
realistic problems.

This paper describes the development of an evolutionary
algorithm called Multipopulation Cooperative Coevolution-
ary Programming (MCCP) that extends Genetic Program-
ming to search for a set of maximally different solutions
for program induction problems. Application of MCCP is

1641

demonstrated through an illustrative example involving GP-
based classification of genetic data to diagnose malignancy
in cancer.

2. METHODOLOGIES FOR GENERATING
MAXIMALLY DIFFERENT
ALTERNATIVES

2.1 Mathematical Background for Generating
Alternatives

The mathematical definition of modeling to generate al-
ternatives for a search problem has been provided in [2]. Let
a GP-based search problem be represented as:

Minimize Z = f(X) (1)

where f(X) is the function representing the prediction error
(a surrogate for performance), which is minimized, and X,
a solution to this problem, is the set of instructions or rules
represented as a tree. While f(X) is described in terms
of error in this paper, the MCCP method presented herein
is applicable with any appropriate measure of performance
used in a GP-based search. Let X∗ be the best tree identified
by GP, and Z∗ is the corresponding minimum error value.
An alternative tree that is maximally different from X∗ can
be generated by solving the following model:

Maximize D = d(X, X∗) (2)

Subject to f(X) ≤ T (Z∗) (3)

where D is a difference function based on d(X, X∗), which
represents a “distance” measure between two trees X and
X∗, and T is a target that is specified in relation to the
error value Z∗. T represents an allowable relaxation, if any,
in the prediction error value. For example, if the lowest error
identified is 2%, then the target could be set as two times
the lowest error to allow the search for solutions that have
at most a 4% error value.

Once the first alternative has been identified, additional
alternatives can be generated by modifying the difference
function D so that the new tree being sought is maximally
different from all previous trees, while Eqn. 3 remains un-
changed. The search for alternatives stops when either no
significantly different new alternative is found or a sufficient
number of alternatives is generated. Several algorithms have
been designed for generating a sequence of maximally differ-
ent alternative solutions to numeric optimization problems,
based on mathematical programming search methods, in-
cluding linear programming, nonlinear programming, inte-
ger/binary programming, and dynamic programming (e.g.,
[3] and [5]).

2.2 EA-based Approaches for Generating
Alternatives

Several procedures have been developed to use Evolution-
ary Algorithms (EA) for generating alternatives. The most
direct EA-based approach, as suggested by [10], is to solve
iteratively the model defined in Eqns. 2−3 by incrementally
updating the difference function D when each new alter-
native is found. The application of this approach using a
genetic algorithm (GA) is described in [10]. This simple
approach may become computationally intensive, since re-
peated execution of the EA is required.

A niching operator can be used within EAs for generat-
ing a set of alternative solutions [17]. The niching operator
can be used to generate a number of alternatives, where the
number of niches (or alternative solutions) is changed by
adjusting the sharing distance parameter or the niche count
[16]. Niching will identify different solutions, but cannot
ensure that the alternative solutions will be maximally dif-
ferent in the solution space. A post-screening step can be
used to select from among the niches a few alternatives that
are maximally different with respect to an appropriate dif-
ference function [16]. Niching has been investigated in the
context of GP primarily for the purposes of maintaining di-
versity in the population to avoid premature convergence to
a sub-optimal solution ([8], [12], and [18]). A set of alterna-
tive trees may be identified using niching, but the operator
is not designed to maximize the difference between the trees
and thus will not necessarily yield creative or novel solutions.

A GA-based procedure (GAMGA - Genetic Algorithms
for Modeling to Generate Alternatives) presented in [16] ex-
tends the use of niching to identify maximally different solu-
tions for numeric optimization problems. Niches are formed
around the most different solutions in a population, and re-
strictive mating is used to encourage solutions to maintain
differences in solution space as well as to avoid migrating
from one niche to another. The algorithm introduces sev-
eral additional parameters and algorithmic steps that re-
quire careful tuning.

Another EA-based procedure designed for numeric opti-
mization problems, the Evolutionary Algorithm for Gener-
ating Alternatives (EAGA) [21], is designed with a minimal
number of additional tuning parameters to explicity force so-
lutions to be as different from each other as possible. EAGA
uses a set of subpopulations to generate a predetermined
number of alternative solutions. The first subpopulation
searches for the solution with the best fitness and the sec-
ondary subpopulations search for solutions that are distant
in solution space from each other as well as the first subpop-
ulation while staying within the specified fitness target (Eqn.
3). As the search progresses, this target changes correspond-
ing to the error value (Z∗) of the current best solution in the
first subpopulation. Crossover, reproduction, selection, and
mutation occur in each subpopulation separately, with no
migration. As the structure of EAGA is independent of the
search procedure employed in the subpopulations, it can be
used with genetic algorithms or evolutionary strategies for
numeric optimization problems. The Multipopulation Co-
operative Coevolutionary Programming (MCCP) approach
described in this paper extends the concepts of EAGA to
symbolic optimization problems that are solved using GP.

3. MULTIPOPULATION COOPERATIVE
COEVOLUTIONARY PROGRAMMING

MCCP uses the basic concept of cooperative co-evolution
to evolve a set of instructions or rules, represented as trees,
to minimize prediction error. Subpopulations collectively
search for different alternative solutions, where each subpop-
ulation is guided toward a region in the solution space that
is distant from other subpopulations. Information about the
location of a subpopulation in the solution space (and there-
fore the set of common solution-characteristics of a subpop-
ulation) is shared such that the subpopulations cooperate
in co-evolving toward different regions of the solution space.

1642

The selection of the surviving solutions in each subpopu-
lation depends upon how well the solutions minimize the
prediction error, as well as upon how far they are from the
other subpopulations. MCCP is designed to search explic-
itly for a set of solutions that are as different as possible
in the sets of instructions represented by the trees and are
within a prediction error target (Eqn. 3). The main steps of
the algorithm are described below.

3.1 Algorithmic Steps
Step 1. Create an initial population with P subpopulations
(each with a population size of K), where P is the number
of alternative solutions being sought. Let SPp (p=1,. . . , P)
represent the index for subpopulation p. The first subpopu-
lation (SP1) is dedicated to the search for the tree with the
lowest prediction error.
Step 2. In SP1, evaluate the fitness, or error (Eqn. 1), of
each solution, and identify the best solution in the subpop-
ulation with the lowest error. This solution will serve as the
benchmark for setting the relaxation constraint Eqn. 3.
Step 3. In SPp (p=2,. . . , P), evaluate the error of each in-
dividual solution. Solutions that meet the target constraint
Eqn. 3 are assigned a feasible flag, and solutions that fail to
meet the target are labeled infeasible.
Step 4. For each solution k in subpopulation SPp (p 6= 1),
calculate the difference Dk,p (defined in Section 3.2) in the
solution space between that solution and other subpopula-
tions.
Step 5. Apply an elitism operator to all subpopulations
SPp to preserve the best solution in each subpopulation. In
SP1, the best solution is the solution with the lowest error.
In SPp (p 6= 1), the best solution is the feasible solution
that is located most distantly in solution space from the
other subpopulations. If all solutions in a subpopulation
are infeasible, then the best solution is the solution that has
the lowest error value.
Step 6. Check for termination criteria. Stop the algorithm
if termination criteria (e.g., a maximum number of itera-
tions) are met. Otherwise, go to Step 7.
Step 7. In each subpopulation SPp, apply a selection op-
erator. In SP1, the selection is based on how well a solution
minimizes error. In SPp (p 6= 1), the selection is based on
how well the solution meets the constraint Eqn. 3, as well
as on the value of the difference function (as described in
Section 5.1).
Step 8. In each subpopulation, apply recombination and
mutation operators to the solutions selected in Step 7, and
go to Step 2.

3.2 Definition of Difference
The difference function for a solution is based on the dis-

tance of that solution to a set of subpopulations. The dif-
ference function, Dk,p, for solution k in subpopulation SPp

is the minimum of the distances between solution k and
the other subpopulations SPq, q 6= p. The distance from a
solution in one subpopulation to another subpopulation is
defined as the average of the distances between that solution
and each solution in the other subpopulation. Thus Dk,p is
expressed as:

Dk,p = Min{
∑K

j=1 d(Xk,p, Xj,q)

K
; q = 1, . . . , P, q 6= p} (4)

where d(Xk,p, Xj,q) is the distance between the two solu-

tions Xk,p and Xj,q, K is the number of solutions in a sub-
population, and P is the number of subpopulations.

For a numeric search problem, the distance d between two
vectors of numbers may be easily represented, for example,
as the Euclidean distance. The distance between two in-
dividual solutions in a tree-based GP is difficult to define,
however. A few metrics have been suggested for calculat-
ing the distance between two trees. For example, the edit
distance is based on a dynamic programming algorithm to
calculate the minimum number of transformations that will
change one tree into the other [19]. Edit distance calculation
is computationally intensive and, as a result, typically not
used for GP applications. Alternative measures include a
metric based on the difference between the symbol or value
at each node [8], a node-to-node comparison between trees
starting at the root node [7], and a metric that tallies the
number of similar subtrees between individuals [13]. Sim-
pler methods, such as a binary distance metric that indicates
whether individuals are identical or not [12], and a pheno-
typic distance based on the difference in the behavior of
solutions without consideration of tree structures [18] can
also be used.

4. GP-BASED SEARCH FOR CLASSIFIERS
FOR A LYMPHOMA DATA SET

Accurate prediction and diagnosis of cancer is important
in making appropriate treatment decisions. Because it is
difficult to diagnose and predict cancer types, efficient ways
to use available information are needed to assist in cancer
classification. Large amounts of diagnostic data are gener-
ated using the DNA microarray technology. This technique
places thousands of genes on a single square inch slide so
that the expression of each gene, whether it is turned off or
on in a cancer cell, can be visualized. A function is used
to convert the visual data into a numeric value to represent
the gene expression. The data provided by DNA microar-
rays can be used to discover rules to classify cancer based on
gene expression information. Several approaches, including
neural networks, k-nearest neighbor method, support vec-
tor machine, and GP [6], have been used to construct rules
based on this data.

To diagnose cancer cells, a classifier is constructed as a
function of a set of gene expressions, as demonstrated in
[11]. The type of cancer may be identified based on the
value given by the function, where a positive function value
will place the cancer in one class, and a negative value will
place the cancer in another class. An example of a sample
cell is given in Table 1 with its associated array of genes,
represented as G1, G2, . . . , G16, and respective gene expres-
sions. Suppose two classifiers for this type of cancer have
been identified, Classifier #1 and #2, which are represented
by the trees and the decoded functions shown in Fig. 1. If
only Classifier #1 were available, it would be impossible to
classify the sample given in Table 1 because the expression
of gene G11 is not recorded. If Classifier #2 is also avail-
able, then this sample could be diagnosed. The availability
of alternative rules that use different genes is useful when
the expressions of all genes are not recorded for all samples.

The data set used to demonstrate MCCP involves the clas-
sification of diffuse large B-cell lymphoma (DLBCL) using
a microarray dataset for lymphoma cancer [1] (available at
http://llmpp.nih.gov/lymphoma/). DLBCL can typically

1643

Table 1: Sample data for genes and gene expressions
Gene Expression Gene Expression
G1 −0.47 G9 0.04
G2 −0.04 G10 −0.35
G3 0.98 G11 unknown
G4 −0.14 G12 −0.18
G5 −0.07 G13 0.07
G6 0.35 G14 0.60
G7 0.67 G15 0.23
G8 unknown G16 −0.87

Figure 1: Two sample classifiers

be classified as“activated B-like” or “germinal centre B-like”
(GC), where patients with GC B-like DLBCL show a signifi-
cantly better overall survival than patients with activated B-
like DLBCL. The goal is to use the gene expression informa-
tion to classify the lymphoma, leading to potentially more
appropriate treatment decisions. The microarray dataset
consists of 24 samples of GC B-like and 23 samples of acti-
vated B-like. Each sample consists of 4026 expressed genes.

GP was used by [11] to identify lymphoma classifiers based
on a selected set of the genes available in the DLBCL mi-
croarray dataset for lymphoma cancer. Signal-to-ratio fea-
ture selection was used to choose 30 genes, labeled F1, F2,
. . . , F30, out of the 4026 genes for classification. A se-
lected set of the available 47 samples was used as the training
dataset to calculate the training error when developing the
classifiers. Each classifier was represented as a tree, which
decodes to a simple arithmetic function, similar to the ex-
ample demonstrated above. The function was evaluated for
each sample, and a sample was classified as active B-like if
the function value was negative, and as GC B-like if pos-
itive. A correctly classified sample was labeled as a hit.
The number of misclassifications represents the error, and
was calculated using the number of hits out of the training
dataset:

Error = samples− hits (5)

where samples is the size of the dataset. The samples not
used for training were used as a validation dataset to assess
a classifier’s predictive capabilities. The validation error as-
sociated with a classifier was calculated using Eq. 5, where
samples was set as the size of the validation dataset.

The GP approach used by [11] produced first a classifier
using the 30 selected genes. An alternative classifier was
produced by using an alternative set of functions for building
the trees. A third alternative classifier was produced by

Table 2: Settings for the MCCP Implementation
Described in Section 5.1

Parameter Setting

No. of Generations 100
No. of Subpopulations (P) 4
Subpopulation Size (K) 200
Function Set +, −, ×, ÷ , ln, exp
Terminal Set R, Genes {F1, F2, . . . ,

F30}
Max. Initial Depth 8
nmax 11
β 5
Selection Elitist Graduated Overse-

lection
Mutation 5%
Crossover 90%

altering the tree representation to include a weighting at
each terminal node [11]. These classifiers were constructed
using a leave-one-out cross-validation process based on 46
out of the 47 samples for training and the remaining one
for validation. Instead of changing the GP implementation
to generate the alternatives, MCCP is applied as described
below to generate simultaneously a set of different classifiers.

5. IDENTIFYING A SET OF ALTERNATIVE
CLASSIFIERS USING MCCP

5.1 Implementation
MCCP was applied to the lymphoma dataset to identify

a set of four maximally different classifiers. The 30 genes se-
lected for use in [11] were used as the set of terminal nodes.
Forty-one out of the 47 samples were used as the training
dataset, and the training error was defined using Eq. 5 with
samples set to 41. The validation error corresponds to the
prediction error corresponding to the remaining six samples.
The target constraint (Eqn. 3) was set as two times the er-
ror of the best classifier in Subpopulation 1. The following
sections describe the key MCCP operators that were imple-
mented for this problem. The parameter values used in the
implementation are given in Table 2.

5.1.1 Initialization
The trees in the subpopulations are initialized by varying

the probability of selecting functional or terminal nodes with
increasing depth. The probability that a terminal node will
be selected at the root node is set to 0.01, and increases lin-
early to 1.0 at a specified depth (noted as Maximum Initial
Depth in Table 2). The terminal set consists of the variables
representing genes and a real number (R) between zero and
one, as shown in Table 2. The initial probability that a
unary function will be chosen is 0.1, and the initial prob-
ability that a binary function will be chosen is 0.89. The
probability of selecting a unary function and the probability
of selecting a binary function both decrease linearly to 0.0
at the Maximum Initial Depth.

5.1.2 Penalty Function
Tree sizes tend to grow excessively large in a GP, resulting

in long, complex equations for symbolic regression problems.

1644

An additive penalty function was used to limit the number
of nodes in a tree and directed the search toward fit solutions
with more compact representations. The penalty function
was applied as follows to trees consisting of a larger number
nodes than a prespecified treshhold, nmax:

Fitness = −Error× (1 + β × (n− nmax)) (6)

where n is the number of nodes in the tree, nmax is the
maximum number of nodes allowed in a tree and β is a
user-defined constant that represents a relative weight of
the penalty associated with the fitness value.

5.1.3 Distance between two trees
Because the purpose of this application is to identify alter-

native classifiers that use maximally different sets of genes,
the distance (d) between two trees was based on the char-
acteristics of terminal nodes only. It was defined as the sum
of the number of different genes, or genes not duplicated
between two trees. For example, the distance between the
two trees represented in Fig. 1 is five.

5.1.4 Selection
The results presented in this paper are based on an imple-

mentation of MCCP that uses generational elitism and an
elitist graduated overselection strategy [9]. The elitist grad-
uated overselection strategy is used to select solutions for re-
production and crossover. The solutions in a subpopulation
are ranked. In subpopulation SP1, the solutions are ranked
based on their error values. For selection in subpopulations
SPp (p 6= 1) a subpopulation is partitioned into a group of
feasible solutions and a group of infeasible solutions, where
the feasibility of a solution is determined using Eqn. 3 (as
described in Step 3 in Section 3.1). Feasible solutions are
ranked based on the difference function, and infeasible solu-
tions are subsequently ranked, based on error values. A pool
of candidate solutions consisting of the five best solutions in
the subpopulation is created. A solution is selected from the
pool with equal probability for all candidate solutions. Each
time a solution is selected, it is replaced, and the next best
solution from the ranked vector of solutions is added to the
pool. Thus, the pool size grows by one solution each time a
solution is selected.

5.1.5 Mutation
A solution selected for mutation undergoes either muta-

tion of real number values at the terminal nodes or tree
mutation. The type of mutation a solution undergoes is
chosen at random. Real number mutation changes the real
numbers in the terminal nodes to a new random number
between zero and one with a uniform distribution. Tree mu-
tation generates a new sub-tree to replace the sub-tree at a
randomly selected node in the existing tree.

5.1.6 Recombination
For recombination, constrained complexity crossover [20]

is used. As described in [20], the complexity of each node
in a tree can be calculated such that function nodes are
weighted more heavily than terminal nodes, and the com-
plexity of a node is based on the complexity of each node
below it. Two trees are randomly chosen for crossover, and a
node is selected at random from both trees. The node is de-
fined as the root node of the new sub-tree that will undergo
crossover. If the nodes chosen for crossover are within two

units of complexity, then the two new sub-trees are swapped.
This crossover ensures a level of similarity between sub-trees
that undergo crossover, minimizing the disruptive effects of
crossover and suppressing excessive code bloat.

5.2 Results
MCCP was executed for 20 random trials, where each

trial generated four alternative classifiers. The performance
of the algorithm for a single trial is demonstrated in Fig. 2
and Fig. 3. Fig. 2 shows the convergence of each subpopula-
tion toward solutions with low error values (Eqn. 5). In all
subpopulations, the lowest error converges in approximately
the first 30 generations. The average errors of Subpopula-
tions 2, 3, and 4 stabilize around the target error (Eqn. 3),
with respect to the best solution in Subpopulation 1.

Figure 2: Convergence of the four subpopulations.
Bold lines represent the error of the best individ-
ual in a subpopulation. Dotted lines represent the
average error of the subpopulation.

Fig. 3 demonstrates the behavior of Subpopulations 2,
3, and 4 in maximizing the differences in the trees. Al-
though the difference is relatively large at the beginning of
the search, the solutions are not good with respect to the
error values (Fig. 2). After the error value is improved in
the first 10-15 generations in each subpopulation, the selec-
tion pressure is on the improvement of the difference of the

1645

solutions in the subpopulation. Around generation 30, the
first subpopulation identifies a solution with an error value
of 0.0. The secondary subpopulations minimize the error to
meet the tightened constraint, and the average difference of
the population drops. Once the secondary subpopulations
identify solutions that meet the target error, then the search
applies pressure to identify more different solutions, and the
average difference improves again.

Figure 3: Convergence of Average Difference

The overall performance of the classifiers generated in the
20 random trials is summarized in Fig. 4 and Fig. 5. Fig. 4
shows the average and the range of the prediction perfor-
mance for the training dataset (of 41 samples). The predic-
tion accuracy represents the percentage of correct hits for
the given training dataset used in developing the classifiers.
All classifiers show relatively similar average prediction per-
formance, and they vary only slightly in range. Fig. 5 shows
the average and the range of the prediction performance for
the validation dataset (of six samples). The overall perfor-
mance of the classifiers is approximately similar when diag-
nosing the samples in the validation dataset.

Figure 4: Average and range of prediction accuracy
(% of correct hits) based on training dataset for 20
random trials.

A typical set of four classifiers generated by MCCP is
shown in Fig. 6 and the corresponding training and valida-
tion error values are listed in Table 3. Each of the four clas-
sifiers uses a different set of genes to diagnose a lymphoma
sample. This may be an advantage when the expression of a
gene used in a classifier is unknown or unrecorded. For ex-
ample, for samples where the gene expression for F1 is not

Figure 5: Average and range of prediction accuracy
(% of correct hits) based on validation dataset for
20 random trials.

Figure 6: Tree representation of a typical set of four
classifiers found by MCCP

available, Classifier #3 or #4, instead of #1 or #2, could
be used for diagnosis.

The predicted classifications given by each of the four clas-
sifiers for the six validation samples are shown in Table 4.
Collectively using the set of alternative classifiers may pro-
vide a more robust diagnosis of the data. For example, Sam-
ple #3 is classified incorrectly as B-like by Classifier #1, but
correctly as GC B-like by Classifiers #2, #3, and #4. Us-
ing only the first classifier leads to the wrong classification,
while using all four classifiers gives the user some confidence
in the classification of the sample as GC B-like.

Among this typical set, classifiers are constructed with as
low as four genes in Classifiers #2 and #4 and with as high
as six genes in Classifier #3 (Table 5). Only two genes are
used in more than one classifier (e.g., F1 in Classifier #1 and
Classifier #2, and F19 in Classifier #2 and Classifier #3).
This can be attributed to the explicit operations in MCCP
that maximize the differences among the sets of genes used
to construct the alternative classifiers. Collectively the four

1646

Table 3: Performance characteristics of a typical set of four classifiers found by MCCP

Classifier # Function Training Error (Eqn. 5) Validation Error (Eqn. 5)
(Out of 41 samples) (Out of 6 samples)

1 F1 + F10− F28 + F12− 2× F30 0 1

2 F1− exp(F19) + exp(F9)− F26 0 0

3 F3 + F2 + F4− F22− F25− F19 0 0

4 F8− F21 + F14× F11 0 0

Table 4: Performance based on the six validation samples for the four classifiers shown in Fig. 6

Predicted classification
Sample Sample True by Classifier
Number Name Classification #1 #2 #3 #4

1 SUDHL6 GC B-like GC B-like GC B-like GC B-like GC B-like

2 DLCL-0010 GC B-like GC B-like GC B-like GC B-like GC B-like

3 DLCL-0020 GC B-like B-like GC B-like GC B-like GC B-like

4 OCI Ly3 B-like B-like B-like B-like B-like

5 DLCL-0014 B-like B-like B-like B-like B-like

6 DLCL-0036 B-like B-like B-like B-like B-like

classifiers use a total of 17 different genes out of the 30 that
were considered for building the functions (Table 5). This
indicates that no one gene is dominantly associated with the
classification of this sample dataset. More different classi-
fiers may be found if more subpopulations are used by ap-
propriately setting a larger value for the MCCP parameter
P .

6. FINAL REMARKS
MCCP is structured to explore for a set of good designs

that constitute unusual and dissimilar combinations of de-
sign variable values. Operators in MCCP are introduced to
co-evolve subpopulations toward maximally different regions
(or niches) in the solution space. The subpopulations coop-
eratively identify a set of designs with the most dissimilar
characteristics, representing potentially creative and inno-
vative designs. These alternative designs, which perform
similarly well, are not biased by prior or existing solutions,
unlike incrementally different designs generated by humans.
Thus, MCCP can help generate innovative and competent
designs in a systematic manner.

Results were presented from an illustrative application of
MCCP to identify a set of classifiers for diagnosing the type
of cancer based on gene expression information. As all gene
expression information may not be recorded for each sample,
a classifier that is based only on a few genes may not be ro-
bust. By exploring for alternative classifiers that are based
on as many different genes as possible, a set of innovative
classifiers with a more robust diagnostic performance was
generated by MCCP. Each of these classifiers uses at most
only one gene that is common to another, and collectively
they use about 57% of the available genes to cover a broad
spectrum of the available gene expression information. Con-
sequently, the collective classification performance shows a
more robust diagnosis of the validation data set.

MCCP is structured in a generic manner to enable its ap-
plication with any GP-based design procedure. Thus, it can
be readily used to extend existing GP implementations for

Table 5: Genes used in the construction of the set
of typical classifiers

Gene Ref. Classifier
Gene Number 1 #1 #2 #3 #4

F1 75 X X
F2 2439 X
F3 2417 X
F4 2244 X
F5 2438
F6 2412
F7 2205
F8 2243 X
F9 682 X
F10 2416 X
F11 2436 X
F12 2437 X
F13 2415
F14 2206 X
F15 2263
F16 1276
F17 1277
F18 1279
F19 1281 X X
F20 1278
F21 1317 X
F22 1291 X
F23 1275
F24 1280
F25 1321 X
F26 1316 X
F27 1315
F28 1320 X
F29 1284
F30 1312 X
1 As reported in [1]

1647

a variety of problems, e.g., in the discovery of alternative
functions to model data representing natural physical pro-
cesses, in developing rules or instructions for robot designs,
and in generating creative designs for electrical circuits or
computer programs. Further investigation is needed to ex-
plore the full potential of MCCP in generating innovative
human-competitive designs.

7. ACKNOWLEDGEMENTS
The research leading to the reported results was sup-

ported partly by grants from the National Science Foun-
dation (BES-0312841) and the US Environmental Protec-
tion Agency (R82946101). The viewpoints presented here
are those of the authors and do not necessarily reflect those
of the funding agencies. The authors would like to thank
Jin-Hyuk Hong at Yonsei University for providing the lym-
phoma dataset.

8. REFERENCES
[1] A. A. Alizadeh, M. B. Eisen, R. E. Davis, C. Ma,

I. Lossos, A. Rosenwald, J. Boldrick, H. Sabet,
T. Tran, X. Yu, J. I. Powell, L. Yang, G. E. Marti,
T. Moore, J. Hudson, Jr., L. Lu, D. B. Lewis,
R. Tibshirani, G. Sherlock, W. C. Chan, T. C.
Greiner, D. D. Weisenburger, J. O. Armitage,
R. Warnke, R. Levy, W. Wilson, M. R. Grever, J. C.
Byrd, D. Botstein, P. O. Brown, and L. M. Staudt.
Distinct types of diffuse large B-cell lymphoma
identified by gene expression profiling. Nature,
403(6769):503–511, 2000.

[2] E. D. Brill, Jr. Use of optimization models in
public-sector planning. Management Science,
25(5):413–422, 1979.

[3] E. D. Brill, Jr., S.-Y. Chang, and L. D. Hopkins.
Modeling to generate alternatives: The HSJ approach
and an illustration using a problem in land use
planning. Management Science, 25(2):221–235, 1982.

[4] E. D. Brill, Jr., J. M. Flach, L. D. Hopkins, and
S. Ranjithan. MGA: A decision support system for
complex, incompletely defined problems. IEEE
Transactions on Systems, Man, and Cybernetics,
20(4):745–757, 1990.

[5] S.-Y. Chang, E. D. Brill, Jr., and L. D. Hopkins. Use
of mathematical models to generate alternative
solutions to water resources planning problems. Water
Resources Research, 18(1):58–64, 1982.

[6] S.-B. Cho and H.-H. Won. Machine learning in DNA
microarray analysis for cancer classification. In
Proceedings of the First Asia-Pacific Bioinformatics
Conference (APBC 2003), pages 193–206. Australian
Computer Society, Inc., 2003.

[7] E. D. de Jong, R. A. Watson, and J. Pollack.
Reducing bloat and promoting diversity using
multi-objective methods. In Proceedings of the Genetic
and Evolutionary Computation Conference, pages
11–18. Morgan Kaufmann Publishers, 2001.

[8] A. Ekart and S. Nemeth. Maintaining the diversity of
genetic programs. In Proceedings of the 5th European
Genetic Programming Conference, pages 162–171.
Springer-Verlag, 2002.

[9] T. Fernandez and M. Evett. The impact of training
period size on the evolution of financial trading

systems. In Genetic Programming 1997: Proceedings
of the Second Annual Conference. AAAI Publishers,
1997.

[10] L. Harrell. Methods for Generating Alternatives to
Manage Water Quality in Watersheds. PhD thesis,
North Carolina State University, Raleigh, NC, USA,
1998.

[11] J.-H. Hong and S.-B. Cho. Lymphoma cancer
classification using genetic programming with SNR
features. In Genetic Programming: Proceedings of the
7th European Conference, EuroGP 2004, pages 78–88.
Springer, 2004.

[12] J. Hu, K. Seo, S. Li, Z. Fan, R. Rosenberg, and
E. Goodman. Structure fitness sharing (SFS) for
evolutionary design by genetic programming. In
Proceedings of the Genetic and Evolutionary
Computation Conference, pages 780–787. Morgan
Kaufmann Publishers, 2002.

[13] M. Keijzer. Efficiently Representing Populations in
Genetic Programming. In Advances in Genetic
Programming: Volume II, pages 259–278. MIT Press,
1996.

[14] J. R. Koza. Genetic Programming. The MIT Press,
Cambridge, Massachusetts, 1986.

[15] J. R. Koza. Genetic Programming IV. The MIT Press,
Cambridge, Massachusetts, 2004.

[16] D. H. Loughlin, S. Ranjithan, J. W. Baugh, and E. D.
Brill, Jr. Genetic algorithm approaches for addressing
unmodeled objectives. Engineering Optimization,
33(5):549–569, 2001.

[17] S. W. Mahfoud. Niching Methods for Genetic
Algorithms. PhD thesis, University of Illinois at
Urbana-Champaign, Urbana-Champaign, Illinois,
USA, 1995.

[18] R. McKay. Fitness sharing in genetic programming. In
Proceedings of the Genetic and Evolutionary
Computation Conference, pages 435–442. Morgan
Kaufmann Publishers, 2000.

[19] U.-M. O’Reilly. Using a distance metric on genetic
programs to understand genetic operators. In
Proceedings of the IEEE International Conference on
Systems, Man, and Cybernetics, Computational
Cybernetics and Simulation, Vol. 5, pages 4092–4097.
IEEE Computer Society Press, 1997.

[20] A. H. Watson and I. C. Parmee. Improving
engineering design models using an alternative genetic
programming approach. In Proceedings of the
International Conference on Adaptive Computing in
Design and Manufacture, pages 193–206.
Springer-Verlag, 1998.

[21] E. M. Zechman and S. Ranjithan. An evolutionary
algorithm to generate alternatives (EAGA) for
engineering optimization problems. Engineering
Optimization, 36(5):539–553, 2004.

1648

