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ABSTRACT
Resource-Limited Genetic Programming is a bloat control
technique that imposes a single limit on the total amount of
resources available to the entire population, where resources
are tree nodes or code lines. We elaborate on this recent
concept, introducing a dynamic approach to managing the
amount of resources available for each generation. Initially
low, this amount is increased only if it results in better pop-
ulation fitness. We compare the dynamic approach to the
static method where a constant amount of resources is avail-
able throughout the run, and with the most traditional us-
age of a depth limit at the individual level. The dynamic
approach does not impair performance on the Symbolic Re-
gression of the quartic polynomial, and achieves excellent
results on the Santa Fe Artificial Ant problem, obtaining
the same fitness with only a small percentage of the compu-
tational effort demanded by the other techniques.

Categories and Subject Descriptors
I.2 [Computing Methodologies]: Artificial Intelligence

General Terms
Algorithms, Experimentation, Performance

Keywords
Evolutionary computation, genetic programming, bloat, code
growth, limited resources, dynamic limits

1. INTRODUCTION
Genetic Programming (GP) is a problem solving method-

ology that evolves populations of computer programs using
Darwinian evolution and Mendelian genetics as inspiration.
Bloat is an excess of code growth caused by the genetic oper-
ators in search of better solutions, without a corresponding
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improvement in fitness. It is a serious problem in GP, often
leading to the stagnation of the evolutionary process [1].

Several explanations for bloat have been proposed (see
[2–5] for recent work), and many different bloat control tech-
niques have been tried with various degrees of success, most
of them based on parsimony pressure (see [6–10] for a small
sample). But no other method was ever as popular as the
traditional usage of a static tree depth limit imposed on the
individuals accepted into the population, on a tree-based
GP system [11]. This may not even be a good bloat control
method [12,13], but it is still widely used, in spite of its sev-
eral disadvantages. This limit effectively avoids the growth
of trees beyond a certain point, but it does nothing to con-
trol bloat until the limit is reached. Its strict nature may
also prevent the optimal solution to be found for problems
of unsuspected high complexity. Also, depth limits cannot
be used on non tree-based GP systems.

Various approaches have been tried in order to overcome
these difficulties. Some rely on choosing specialized genetic
operators to keep tree growth under control, without im-
posing strict limits [14, 15]. Recent work on Dynamic Lim-
its [16, 17] has achieved promising results without the need
for specific operators.

A different approach, based on limiting the total amount
of tree nodes of the entire population, instead of imposing
limits at the individual level [18] has been further explored
very recently [19], introducing and testing the concept of
Resource-Limited GP, in a simple symbolic regression prob-
lem. The present work elaborates on this idea, testing it
with a harder problem and extending it with the inspiration
provided by the mentioned work on Dynamic Limits [16,17].

The next section describes previous work regarding the
two main concepts involved in this paper: Dynamic Lim-
its and Resource-Limited GP. Section 3 explains how these
concepts were hybridized to produce a new technique we call
Dynamic Resource-Limited GP. Section 4 describes the ex-
periments performed in two problems, Symbolic Regression
and Artificial Ant. Section 5 reports the results obtained,
while Section 6 discusses some methodological issues. Fi-
nally, Section 7 draws some conclusions and points towards
future directions of this work.

2. PREVIOUS WORK
Since the present work is mainly based on the hybridiza-

tion of two existing concepts, Dynamic Limits and Resource-
Limited GP, this section is dedicated to describing them.
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2.1 Dynamic Limits
Dynamic Maximum Tree Depth [16] is a bloat control

technique inspired in the traditional tree depth limit. Tra-
ditionally, whenever crossover creates an offspring that is
deeper than the limit, one of its parents is chosen for the new
generation instead. The same happens in Dynamic Maxi-
mum Tree Depth but, unlike the traditional limit, this one
is dynamic, meaning it can be changed during the run. Ini-
tially set with a low value (but at least as high as the depth
of the initial random trees), it is raised whenever needed to
accommodate a new best-of-run individual that would oth-
erwise break the limit. The result is a succession of limit ris-
ings, as the best solution becomes more accurate and more
complex.

The original idea has been extended to implement a heavy

dynamic limit that is lowered once the new best-of-run in-
dividual allows it, and to deal with non tree-based GP by
introducing a dynamic limit on size, where size is the num-
ber of nodes, regardless of depth.

Dynamic Maximum Tree Depth was tested in two sim-
ple problems, Symbolic Regression of the quartic polyno-
mial and Even-3 Parity, where it proved to effectively con-
trol bloat maintaining the ability to find good solutions [16].
Two initial values for the dynamic limit were tested, 6 (the
depth of the initial random trees) and 9, and even the most
restrictive option (6) did not pose any problems, achieving
the same results using much smaller (in terms of mean tree
size) populations. Although the heavy limit was able to
achieve even better results under the same conditions, the
dynamic size did not perform so well in one of the prob-
lems [17].

2.2 Resource-Limited GP
The idea of controlling bloat by using limits on the total

number of nodes in the entire population, instead of impos-
ing limits at the individual level, was introduced by [18].
Very recently, it has been further developed by [19], where
the concept of Resource-Limited GP was introduced. We
can think of it as limiting the amount of natural resources
available to a given biological population, where each indi-
vidual competes with the others for its share, and the weak-
est individuals perish when resources are scarce.

In Resource-Limited GP, resources become scarce when
the total number of nodes in the population exceeds the
predefined limit. Beyond this point, not all offspring are
guaranteed to be accepted into the new generation. The al-
location of resources to individuals (ensuring their survival)
is mainly based on fitness, with size playing a secondary role.
The candidates to the new generation are the offspring, fol-
lowed by their parents. Each of these groups is ordered by
fitness, regardless of size. The queued candidates are then
given the resources they need (their number of nodes) in
a first come, first served basis. The individuals requiring
more resources than the amount still available are skipped
(do not survive) and the allocation continues until the end of
the queue, or until population size restrictions apply. Some
resources may remain unused. Some parents may survive
while their offspring perish. A rule emerges from this pro-
cedure, promoting the survival of the best individuals and
the rejection of ‘not good enough for their size’ individu-
als, where the relationship between size and fitness is not
explicitly programmed, but a product of the evolutionary
process.

sort offspring by fitness
sort parents by fitness
list = offspring followed by parents

if steady, my_popsize = initial_popsize
if low, my_popsize = previous_popsize

resources_used = 0
accept_list = empty

for all individuals in list

resources_i = resources needed by individual

if resources_used + resources_i <= resource_limit
accept_list = accept_list + individual
resources_used = resources_used + resources_i

if length of accept_list = my_popsize
break for

new generation = accept_list

Figure 1: Pseudo code of the resource allocation
procedure.

The resource-limited approach removes most of the disad-
vantages of using depth limits at the individual level, while
introducing automatic population resizing, a natural side-
effect of using an approach at the population level. After
the resource limit is reached, and as long as code growth
continues, the population size (defined as the number of in-
dividuals) steadily decreases, something that may actually
improve convergence to good solutions [20–23].

After the resources have reached the exhaustion point and
the population size has been reduced, a new generation of
individuals may use them more sparingly and leave enough
unused to allow the population size to increase again. Al-
though not a frequent occurrence, this has introduced two
different implementation options: After accepting as many
individuals as the previous population size, (1) use the re-
maining resources to allow the survival of additional individ-
uals of the previous generation - the parents who have not
yet been accepted - by continuing the resource allocation
procedure until the resources are exhausted, or until the ini-
tial population size is reached, or (2) do not use them, thus
never allowing the population size to increase. The first
option was designated as Steady, for it enforces a steady us-
age of resources, and the second was called Low, because
it allows a possible low usage of resources. Figure 1 shows
the pseudo code of the resource allocation procedure. See
Figure 3 for an example.

Resource-Limited GP was tested on a simple problem, the
Symbolic Regression of the quartic polynomial. To compare
its performance with the traditional usage of depth limits at
the individual level, a static resource limit (14500) was found
that would provide an amount of cumulative resources (used
during the entire run) similar to the cumulative amount used
with the traditional limit on depth 17. The results showed
that both Steady and Low techniques behaved in a similar
manner, achieving the same performance as the traditional
depth limit [19].
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3. DYNAMIC RESOURCE-LIMITED GP
Like the traditional depth limit, the original Resource-

Limited GP relies on a static limit, imposed in the beginning
of the run and never changed until the end. This hardly
reflects the needs of a search process that must grow its
individuals in search of better solutions. Although Resource-
Limited GP has the natural ability to compensate higher
tree size with lower population size, in complex problems
this may lead to a dangerous shrinking of population size, as
code growth proceeds. On the other hand, providing enough
static resources to last until the end of the run may lead to
the occurrence of bloat from the very beginning. The need
for a dynamic resource limit becomes obvious.

The dynamic approach to Resource-Limited GP naturally
arises from the hybridization of the two concepts described
in the last section. A dynamic resource limit is implemented,
one that is initially set with a low value, and raised whenever
it results in better mean population fitness. The details are
described next.

After generating the offspring, the candidates to the new
generation are ordered and given the available resources, fol-
lowing the procedure described in Section 2.2. The alloca-
tion continues until the resources are exhausted, or until the
initial population size is reached, according to the Steady
option. So far, this is the original Resource-Limited GP,
but now comes the decision on whether to raise the resource
limit.

The rejected individuals are now given a second chance.
In turn, each of them is reconsidered as a candidate for the
new generation, and as many as possible are accepted, as
long as their inclusion causes an improvement of the mean
population fitness. This improvement may be relative to the
best-of-run mean population fitness, or to the mean popula-
tion fitness of the previous generation, creating two different
implementation options we will call Dyn and DynLight, re-
spectively. DynLight is expected to implement a limit that
is raised much easier, hence the name. As soon as one of the
previously rejected individuals is rejected again, the process
of reselection stops and the resource limit is increased to
provide the additional needed resources. Figure 2 shows the
pseudo code of the reselection procedure. See Figure 3 for
an example.

4. EXPERIMENTS
The aim of these experiments is to check whether the

reported performance of the Resource-Limited GP on the
Symbolic Regression of the quartic polynomial (see Sec-
tion 2.2) holds on a much harder problem like the Artifi-
cial Ant with the Santa Fe trail, and to test the dynamic
approach (both Dyn and DynLight methodologies, see Sec-
tion 3) on both problems.

For the Symbolic Regression problem we used 21 points
of the quartic polynomial (x4 + x3 + x2 + x), equidistant in
the interval −1 to +1. The function and terminal sets were
{+,−,×,÷, sin, cos, log, exp} (protected as in [11]) and {x},
respectively. For the Artificial Ant problem we used the
Santa Fe trail where each ant was given 400 time steps
to search for the 89 food pellets available. The function
and terminal sets were {if-food-ahead , progn2, progn3} and
{left, right, move}, as defined in [11]. For both problems,
an initial population of 500 individuals (Ramped Half-and-
Half initialization [11] with maximum tree depth 6) was

if dyn , my_meanpopfit = best_meanpopfit
if dynlight, my_meanpopfit = previous_meanpopfit

reject_list = list - accept_list
current_meanpopfit = mean fitness of accept_list

if current_meanpopfit better than best_meanpopfit
best_meanpopfit = current_meanpopfit

for all individuals in reject_list

tmp_accept_list = accept_list + individual
new_meanpopfit = mean fitness of tmp_accept_list

if new_meanpopfit better than my_meanpopfit
accept_list = tmp_accept_list
resources_i = resources needed by individual
resources_used = resources_used + resources_i

else
break for

if length of accept_list = initial_popsize
break for

new generation = accept_list
resource_limit = resources_used

Figure 2: Pseudo code of the reselection procedure.

Variables:
initial_popsize = 10

previous_popsize = 6

resource_limit = 400

best_meanpopfit = 42

previous_meanpopfit = 35

Candidates to the new generation:
(from left to right, 6 children followed by 6 parents,
each group sorted by fitness - higher is better)

Id C1 C2 C3 C4 C5 C6 P1 P2 P3 P4 P5 P6

Fitness 80 70 60 60 50 10 90 40 40 20 10 10
Size 90 100 50 100 80 80 80 70 70 10 20 10

New generation obtained with each technique:
(Dyn and DynLight begin the reselection
from the Steady results)

Id C1 C2 C3 C4 C5 C6 P1 P2 P3 P4 P5 P6

Steady ✓ ✓ ✓ ✓ ✗1 ✗1 ✗1 ✗1 ✗1 ✓ ✓ ✓

Low ✓ ✓ ✓ ✓ ✗1 ✗1 ✗1 ✗1 ✗1 ✓ ✓ ✗2

Dyn ✓ ✓ ✓ ✓ ✔ ✘3 – – – ✓ ✓ ✓

DynLight ✓ ✓ ✓ ✓ ✔ ✔ ✔ ✘4 – ✓ ✓ ✓

Reasons for not accepting individual:
1Resources not available
2previous_popsize exceeded - stop procedure
3new_meanpopfit worse than best_meanpopfit - stop procedure
4initial_popsize exceeded - stop procedure

Figure 3: Example of resource allocation and rese-
lection procedures.
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evolved for at least 50 generations (see Section 5 for de-
tails), even if the optimal solution was found earlier. Tree
crossover was the only genetic operator used, and reproduc-
tion rate was set at 0.1. Selection for reproduction used
the Lexicographic Parsimony Pressure tournament [8] and
selection for survival used no elitism. All the results pre-
sented refer to mean values found over 50 runs, for each of
the following techniques:

None → no limits
Depth → traditional tree depth limit
Steady → static resources, forced steady usage
Low → static resources, possible low usage
Dyn → dynamic resources, improvement of best-of-run
DynLight → dynamic resources, improvement of previous

The first technique (None) does absolutely nothing to con-
trol the growth of trees. The second technique (Depth) uses
the traditional tree depth limit [11] with the typical value
of 17. We use it because of its high popularity. The follow-
ing two techniques, Steady and Low, implement the original
Resource-Limited GP as described in Section 2.2. They use
limited static resources set at 14500 (Symbolic Regression)
or 135000 (Artificial Ant). The last two techniques, Dyn and
DynLight, implement the dynamic approach to Resource-
Limited GP, described in the previous section. They use
limited dynamic resources, initially set at exactly the same
amount used by the initial random generation. As described,
Dyn raises the resource limit only if it causes an improve-
ment of the best-of-run mean population fitness, while Dyn-
Light raises it as long as it results in better mean population
fitness than the previous generation.

When choosing the static resource limit for Steady and
Low, we used the value suggested for the Symbolic Regres-
sion problem [19], and applied the same rationale to find
a suitable value for the Artificial Ant problem (see Sec-
tion 2.2): a limit such that, by the end of 50 generations,
the total amount of resources provided during the entire run
is similar to the amount used by the Depth technique [19].
Regarding the initial dynamic limit for Dyn and DynLight,
we chose the lowest possible value, drawing inspiration (see
Section 2.1) from the better performance achieved by the
original Dynamic Limits under the same conditions [16].

All the experiments were performed using the GPLAB
toolbox [24]. Statistical significance of the null hypothesis
of no difference was determined with Kruskal-Wallis non-
parametric ANOVAs at p = 0.01.

5. RESULTS
The following plots are based on the mean values over the

50 runs performed for each experiment. They cover four
important elements of the Resource-Limited GP concept:
resource usage, fitness versus computational effort, popula-
tion size (defined as the number of individuals), and tree size
(defined as the number of nodes). Most of the plots show
the results obtained per generation, where each value is not
dependent on the values of previous generations, the excep-
tion being the fitness versus computational effort plots. The
computational effort can be roughly expressed as the total
number of nodes evaluated – in other words, the cumula-
tive amount of resources used. The relationship between
fitness and effort is obtained by plotting, for each genera-
tion, the best fitness achieved against the effort expended
so far (mean values over 50 runs). Although the evolution

lasted 50 generations for most techniques, some were given
additional time (namely Dyn and DynLight in the Artifi-
cial Ant problem) to compensate for their very low resource
usage, thus providing comparable results.

We also present boxplots regarding resource usage and
fitness, where each technique is represented by a box and
pair of whiskers. Each box has lines at the lower quartile,
median, and upper quartile values, and the whiskers mark
the furthest value within 1.5 of the quartile ranges. Outliers
are represented by +, and × marks the mean.

5.1 Symbolic Regression
Figure 4 shows the amount of resources used per gener-

ation by each of the techniques listed in Section 4, on the
Symbolic Regression problem (see also Figure 6, left, for a
boxplot regarding the amount of cumulative resources). Due
to its enormous resource usage, the None curve is only par-
tially shown. When the 50 generations are complete this line
reaches somewhere between 8×104 and 9×104. The dotted
line represents the static resource limit (14500) imposed to
techniques Steady and Low. The plot shows that both these
techniques consume more resources than Depth until they
reach the limit, after which their resource usage tends to
(forcibly) stabilize very close to the limit. The three tech-
niques (Depth, Steady, Low) do not show any statistically
significant differences between their overall (cumulative) re-
source usage by the end of the run. As expected, both dy-
namic techniques (Dyn, DynLight) show significantly lower
resource usage when compared to the rest. Also expected
was the easier increase of DynLight resources when com-
pared to Dyn, resulting in significantly higher resource us-
age by the end of the run. Although the Dyn and DynLight
curves represent the real resource usage of the techniques,
and not the dynamic resource limit, in practical terms the
difference between them is perfectly irrelevant.

Figure 5 shows the relationship between best (lowest) fit-
ness and the computational effort spent in achieving it, for
all techniques. There are obvious differences in the effort
demanded (during the same number of generations) by the
different techniques (see also Figure 6, left). The None tech-
nique represents a terrible waste of resources; as intended,
both static techniques (Steady, Low) spend approximately
the same as Depth; both dynamic techniques (Dyn, Dyn-
Light) use very few resources. These findings had already
been provided in the description of Figure 4, since the com-
putational effort is just another way of expressing the cu-
mulative amount resources used. However, the present fig-
ure provides the important information that, regardless of
the effort demanded by each technique, after 50 generations
they have all achieved similar fitness (note the logarithmic
scale), with no significant differences between them. Fig-
ure 6 shows the boxplots regarding both computational ef-
fort (total amount of resources used in the entire run) and
best fitness of run.

Figure 10 reveals what happens during the run regarding
the evolution of tree size (number of nodes) and its conse-
quences on population size (number of individuals). Note
that Figure 4 is obtained by “multiplying” these two plots.

The left plot shows the mean tree size measured along
the 50 generations, for all techniques. It is not surprising to
see that Depth, the only technique that imposes restrictions
at the individual level, has the slowest growth of mean tree
size, finishing with a significantly lower mean tree size than
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Figure 4: Resource usage by each technique, per
generation, on the Symbolic Regression problem.
The dotted line represents the static resource limit.
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Figure 5: Best fitness as a function of computational
effort, on the Symbolic Regression problem. The ar-
rows mark the end of the run on Dyn and DynLight.
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Figure 6: Boxplots of computational effort (left) and
best fitness of run (right), on the Symbolic Regres-
sion problem.
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Figure 7: Resource usage by each technique, per
generation, on the Artificial Ant problem. The dot-
ted line represents the static resource limit.
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Figure 10: Evolution of mean tree size (left) and
population size (right), on the Symbolic Regression
problem.

the rest. All the other techniques seem to allow free growth
of their trees, with no significant difference in final mean
tree size, except between Low and Dyn. The code growth
observed in this plot inevitably triggers the main ability of
all resource-limited techniques, both static and dynamic: re-
ducing the population size to compensate for the higher tree
size.

The right plot shows the evolution of population size along
the 50 generations of the run. It reveals a sharp decrease
of population size for all resource-limited techniques. Be-
cause of the initially fewer resources available to the dy-
namic techniques, these start dropping much sooner, around
generation 10, while the static techniques only start around
generation 20. By the end of the run, the population sizes
of the dynamic techniques show a significant difference be-
tween them, and both appear to begin stabilizing. On the
contrary, the static techniques also finish with no signifi-
cant difference between them, but both maintaining a steep
decrease in population size.

It should be noted (not shown in the plots) that half of
the runs converge to the optimal solution around generation
15, and by the end of the 50 generations only 8% (Low)
to 28% (None) of the runs are still looking for the opti-
mal solution. The percentages of non-converged runs for
the other techniques are 14% (Depth), 16% (Steady), 24%
(Dyn), and 22% (DynLight). Summing up, the None tech-
nique has the lowest convergence rate (72%), followed by
both dynamic approaches (76-78%) and the remaining tech-
niques (84-92%).

5.2 Artificial Ant
Figure 7 shows the resource usage per generation for each

of the tested techniques, on the Artificial Ant problem (see
also Figure 9, left, for a boxplot regarding the amount of cu-
mulative resources). Additional generations are shown for
both Dyn and DynLight, allowing these techniques to reach
appropriate fitness levels for comparison with the other tech-
niques (see Figure 8). While the other techniques used 50
generations, Dyn and DynLight were given 100 and 75, re-
spectively. As in Figure 4 (see Section 5.1), the None curve
is only partially shown because of its high resource usage,
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Figure 11: Evolution of mean tree size (left) and
population size (right), on the Artificial Ant prob-
lem.

reaching higher than 3 × 105 in generation 50. The dotted
line once again represents the static resource limit (135000
for this problem) of techniques Steady and Low. The be-
havior of Depth and both static techniques (Steady, Low),
namely the relationship between the three, is the same as
previously observed for the Symbolic Regression problem
(see Section 5.1), with no significant differences between
their overall (cumulative) resource usage (see Figure 9, left).
Also previously observed was a significantly lower resource
usage by the dynamic techniques Dyn and DynLight. How-
ever, the DynLight limit (or actual usage, see comments in
Section 5.1) now seems to emphasize its lightness and ‘take
off’ from Dyn much sooner after the run begins.

Figure 8 shows the best (highest) fitness against the com-
putational effort, or amount of resources, spent to obtain it.
Techniques Dyn and DynLight where given additional gen-
erations (50 more and 25 more, respectively) because their
very low resource usage would not allow them to reach com-
parable results otherwise. The crosses in their curves mark
the point when generation 50 was completed. As it is, the
differences between the best fitness achieved by any of the
techniques are not statistically significant, thus providing
the same base of comparison we had in the Symbolic Re-
gression problem. Figure 9 shows the boxplots regarding
both computational effort (total amount of resources used
in the entire run) and best fitness of run.

Figure 11 shows the evolution of tree size (number of
nodes) and population size (number of individuals) during
the run. In the left plot, the Depth technique has a slow
growth of tree size, as in the previous problem, but this time
it is accompanied by the Dyn technique until around gener-
ation 40, when both curves diverge. By the end of the run
(additional generations included), Depth shows significantly
lower mean tree size that the other techniques, while Dyn
shows no significant difference from None or the static tech-
niques (Steady, Low). DynLight finishes with significantly
higher mean tree size than the rest.

Regarding the evolution of population size, on the right
plot, the static techniques behave much like they did in
the previous problem, dropping steeply from around gen-
eration 20 and finishing with no significant differences be-
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tween them, still decreasing steeply. The dynamic tech-
niques, however, cause a vertiginous drop in population size
from the very beginning of the run, tending to stabilize soon
after. DynLight stabilizes much sooner than Dyn, and by
the end of the run (additional generations included) the dif-
ference between both is statistically significant.

6. DISCUSSION
The results presented in the previous section show the

effectiveness of the resource-limited techniques in reducing
the amount of resources used and still obtaining the same
results. Although the advantages of reducing computational
effort are unquestionable, a deeper methodological issue re-
mains. Because none of these techniques imposes restric-
tions at the individual level, nothing is done to directly
counteract code growth. So is Resource-Limited GP pre-
venting bloat, or simply learning to live with it? The emer-
gent rule that prevents the survival of ‘not good enough for
their size’ individuals (see Section 2.2) actually ensures that
bloat does not occur, as long as we define bloat as “an ex-
cess of code growth without a corresponding improvement in
fitness” (from Section 1). But how much code growth is con-
sidered excessive? And how much fitness gain is considered
a corresponding improvement? The fact is, the methodology
presented here allows seemingly free code growth, and the
lower resource usage is only obtained thanks to a prompt
reduction of population size.

We know it is possible to obtain similar results when code
growth is restricted. The Depth technique, as well as the
extremely restrictive Dynamic Limits [16, 17], have proved
it. The ideal bloat control method should restrict the pro-
liferation of introns without hindering the exploration of
the search space. Curiously, in the Artificial Ant problem
(where introns represent 70-80% of the code, not shown) the
best intron control technique was Depth, the only one act-
ing at the individual level, but in the Symbolic Regression
problem (intron percentage less than 20%, not shown) it
was the population-level techniques that achieved the best
results. How much could we gain from imposing limits at the
individual level and at the population level? Would the per-
formance get equally good in both problems, or would the
evolutionary process simply collapse under such pressure?

Resource-Limited GP alone does not seem to impose too
much pressure on the evolution, even using the dynamic ap-
proach. The population size does suffer a large reduction,
frequently dropping as low as only 10% of its initial size (see
Figs. 10 and 11), but still the population diversity (based on
the variety measure [25], the percentage of distinct individ-
uals in the population) suffers little or nothing when com-
pared to Depth (not shown). Of course the absolute number
of unique individuals is inevitably decreased as the popula-
tion size drops, but if anything, this seems to improve the
convergence ability.

The performance of Dynamic Resource-Limited GP in
the two problems tested ranged from good to excellent. In
the Symbolic Regression problem, it provided similar fitness
with significantly lower resource usage, but the convergence
rate (see Section 5.1, last paragraph) to the optimal solution
was lower than with the static approach. However, in the
more complex problem of the Artificial Ant, the same fitness
level was also achieved with significantly lower resource us-
age, with the results showing fine prospects of reaching the
optimal much easier than the other techniques. Methodolog-

ical issues aside, the dynamic approach to Resource-Limited
GP appears to be a strong candidate to reducing the high
computational effort expended by most GP systems.

7. CONCLUSIONS AND FUTURE WORK
The dynamic approach to Resource-Limited GP was im-

plemented, tested and compared to the original static re-
source limit, and to the traditional usage of tree depth lim-
its. It achieved good performance in the Symbolic Regres-
sion of the quartic polynomial, obtaining similar fitness with
significantly lower resource usage, but a lower convergence
rate than the static approach or the traditional depth lim-
its. Its performance was excellent in the Santa Fe Artificial
Ant problem, where the same results were also achieved us-
ing significantly less resources, and showing fine prospects
of converging to the optimal solution much sooner than the
other techniques.

Although Dynamic Resource-Limited GP is already a hy-
bridization of ideas from both Dynamic Limits [16, 17] and
Resource-Limited GP [19], we plan to actually test how both
techniques behave when used in conjunction. Drawing in-
spiration from the heavy dynamic limit [17], we also intend
to implement a version of the dynamic approach where the
available resources can be reduced whenever the evolution-
ary process justifies it. We may also adopt different criteria
to decide when to raise (or decrease) the resource limit, and
try different rankings for placing the individuals in the queue
used by the allocation procedure. Finally, a careful compar-
ison between all the mentioned techniques, both pure and
hybridized, with detailed analysis of the strengths and weak-
nesses of each, should be performed in order to combine their
best features in a single and powerful bloat control method.
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