
Parsing and Translation of Expressions by Genetic
Programming

David Jackson
Dept. of Computer Science

University of Liverpool
Liverpool L69 3BX, United Kingdom

Tel. +44 151 794 3678

d.jackson@csc.liv.ac.uk

ABSTRACT
We have investigated the potential for using genetic programming
to evolve compiler parsing and translation routines for processing
arithmetic and logical expressions as they are used in a typical
programming language. Parsing and translation are important and
complex real-world problems for which evolved solutions must
make use of a range of programming constructs. The exercise also
tests the ability of genetic programming to evolve extensive and
appropriate use of abstract data types – namely, stacks.
Experimentation suggests that the evolution of such code is
achievable, provided that program function and terminal sets are
judiciously chosen.

Categories and Subject Descriptors
D.1.2 [Programming Techniques]: Automatic Programming;
D.3.4 [Programming Languages]: Processors – compilers, code
generation, parsing; I.2.6 [Artificial Intelligence] Learning –
induction.

General Terms
Algorithms, Experimentation.

Keywords
Genetic programming, application, software tools.

1. INTRODUCTION
The task of analysing a sentence, program or other text to
determine its grammatical structure, and the job of converting
such input to another equivalent form, are both important real-
world problems that arise in many areas of computing. In a
compiler, syntax analysis (parsing) is required to determine the
grammatical correctness or otherwise of a computer program, and
to establish the syntactical relationships that exist between the
constructs which that program encodes. A compiler’s translation

procedures convert such source code either to an intermediate
form or to machine code, usually for direct execution on the host
computer.

Genetic programming (GP) is a technique that is used to generate
programs automatically by evolutionary means, and has been
applied successfully in many problem domains. Since parsers and
translators are, after all, just programs (albeit complex ones), an
interesting question is whether GP can be used for the induction
of these programs too. A step towards answering this is the theme
of this paper. Since, at this stage, the sophistication of a real
compiler capable of handling a complete programming language
seems a little ambitious, we will restrict ourselves to the more
manageable realm of arithmetic and logical expressions.

Part of the motivation for this research is that comparatively little
appears to have been done in applying evolutionary computing
techniques to the compilation process, although other machine
learning techniques have been employed [4]. Exceptions include
the work of Cooper et al, who used genetic algorithms to solve
compiler phase ordering problems [5], and the work of other
researchers on the use of GAs to optimize pre-generated
microcode [1,3]. Within the particular field of genetic
programming lies the research of Stephenson, O’Reilly et al, who
used GP to improve the performance of a compiler in respect of
its ability to deal with the heuristic problems of predicated
hyperblock formation and register allocation [14]. Although not
involving programming language compilers, GP has also been
applied to the related area of natural language parsing [2].

Another reason for pursuing this line of research is that the
problem is a realistic (not toy) one, necessitating a variety of
commonly used programming constructs. In the experiments that
we shall describe, the three main control flow constructs of
sequence, iteration and selection (alternation) will all be needed in
combination, and to multiple depth levels. Evolved solutions will
also need to make use of sequential input and output. Input will be
processed an item at a time, and once an item has been read, the
input pointer cannot be moved backwards to re-read it. Similarly,
once an output item has been written, it cannot later be erased.
Although it is certainly possible to devise other forms of the
problem in which random access of the input and output strings is
allowed, we wished to make our version as close as possible to
real compiler activity, where such inefficiencies must be avoided.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’05, June 25-29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006…$5.00.

1681

Another key feature of the problem is that success can only come
as a result of the correct use of abstract data types – in this case,
stacks. The work of Langdon [11,12] on the application of GP to
stacks and other data structures is well known, and he has even
evolved programs to manipulate a stack for a postfix calculator
(the relevance of which will become clearer in the next section)
[13]. Our own work will further test the ability of GP to evolve
code that can exploit and manipulate stacks in useful ways.

Following this introduction, the paper contains a section on
parsing and another on translation. Within each of those, the
problem domain is discussed before the experimental work and
results are presented. The paper then ends with some concluding
remarks and comments on further work.

2. PARSING

2.1 The Parsing Problem
The syntax of expressions can usually be defined using a simple
grammar, and can be written down using BNF notation. The
following grammar defines expressions that can be of either
arithmetic (a-expr) or Boolean (b-expr) type:

<expr> ::= <a-expr> | <b-expr>

<a-expr> ::= <a-term> | <a-expr> + <a-term>
| <a-expr> - <a-term>

<a-term> ::= <a-fact> | <a-term> * <a-fact>
| <a-term> / <a-fact>

<a-fact> ::= <a-prim> | <a-fact> ^ <a-prim>

<a-prim> ::= iden | number

<b-expr> ::= <b-term>

| <b-expr> “|” <b-term>

<b-term> ::= <b-fact>

| <b-term> “&” <b-fact>

<b-fact> ::= iden | true | false

| <a-expr> <relop> <a-expr>

<relop> ::= = | < | > | >= | <=

In determining how to evaluate an expression, there is an implicit
and commonly-understood set of rules governing the ordering of
operator application. In an expression such as

a*b+c/d-e

we know that we have to perform the multiply first, then the
divide, then the add, and finally the subtract. Informally, these
rules can be stated as perform multiply and divide before add and
subtract, work from left right on equivalent-priority operators, and
so on.

A grammar such as the one presented above formalises these
rules. For example, an <a-expr> (containing add and subtract) is
defined in terms of <a-term> constructs (containing multiply and
divide), and so it follows that an <a-expr> can be recognised and
evaluated only once its component <a-terms> have been

recognised and evaluated. From the grammar given, we can
derive a set of priorities for all of the operators that may exist in a
valid expression:

^ highest priority

*, /

+,-

<,>,=,…

& (and)

| (or) lowest priority

Based on this prioritisation, a parser can convert an expression
written in the standard form to a form which makes the order of
operator application completely explicit. An example of a such an
alternative form is postfix, or Reverse Polish Notation (RPN). In
postfix, operators appear after the operands to which they apply.
As an example, the expression

a*b+c/d-e

converts to

a b * c d / + e –

A way of thinking about the evaluation of a postfix expression is
with the use of a stack: we work from left to right, pushing
variables and numeric values onto the stack as they are
encountered, and applying each operator to the top two items on
the stack, leaving the result on the stack. So, for our example
expression, we have:

stack a
stack b
multiply top 2 stack items and leave
 result on stack
stack c
stack d
perform divide
perform add

etc.

When the end of an expression is reached, the resulting value of
that expression is left on the stack.

Since operator ordering is explicit in the postfix expression,
parentheses are not needed. For example, an expression such as

a*(b+c)

converts to the postfix form

a b c + *

Once it has been converted to postfix by a parser, it is possible to
pass an expression on to subsequent phases of compilation; for
example, postfix can be used as the basis for code generation. The
problem that concerns us for the moment is how to perform the
conversion in the first place.

There are two main approaches to syntax analysis: top-down and
bottom-up. In the top-down approach, the parser assumes that its
input is a valid sentence. It begins by searching for phrases in the
input that can be combined to make a valid sentence. For each
phrase, it looks for sub-phrases, and so on, until the search
reduces to looking for primitive items in the input text.

1682

By contrast, a bottom-up parser tries to find groups of primitive
items that correspond to phrases in the grammar. It replaces these
groups by the corresponding phrase denotations, then tries to
group the phrases into higher-level phrases, and so on, until it is
able to make the final replacement that converts the whole lot to a
sentence in the language.

In the experiments which follow, we attempt to evolve parsers
which are bottom-up. The reason for this is partly to avoid the
high degree of mutual recursion usually present in top-down
parsers, but also because in many compilers the bottom-up
approach is used for expressions, while the top-down approach is
reserved for statements and declarations.

2.2 Parsing Experiments
Table 1 presents the parameters used for our initial attempt at
solving the parsing problem by genetic programming. The fitness
of an individual in the population is assessed by applying that
individual’s program code to a set of expressions, and comparing
the output with the expected postfix version.

Table 1. Initial problem tableau for parsing experiments

Table 2. Expression test data and postfix equivalents

Expr Postfix Expr Postfix Expr Postfix

a a a+b-c*d ab+cd*- a^b*c+d ab^c*d+

b b a+b*c-d abc*+d- a^b+c*d ab^cd*+

a+b ab+ a*b+c-d ab*c+d- a=b+c*d^e abcde^*+=

a*b ab* a*b/c+d ab*c/d+ a+b=c*d^e ab+cde^*=

a+b-c ab+c- a+b*c/d abc*d/+ a+b*c=d^e abc*+de^=

a-b+c ab-c+ a*b+c/d ab*cd/+ a+b*c^d=e abcd^*+e=

a+b*c abc*+ a+b*c^d abcd^*+ a+b<c|d>e ab+c<de>|

a*b+c ab*c+ a+b^c*d abc^d*+ a<b&c>d|e ab<cd>&e|

a/b^c abc^/ a*b+c^d ab*cd^+ a=b|c>d&e ab=cd>e&|

a^b/c ab^c/ a*b^c+d abc^*d+ a+b=c-d|e ab+cd-=e|

The number of test expressions is set at 30, and the fitness value
corresponds to the number of tests which are failed by an
individual. Thus, zero fitness implies that all expressions are
correctly parsed. The full set of test expressions and their postfix
equivalents is given in Table 2.

Since the evolved code may contain loops, a program is
terminated if it exceeds a maximum number of instruction
executions (set at 2000). A single run of the GP system continues
until either the maximum number of generations is reached, or a
solution (a zero-fitness program) is evolved.

More details of the initial function and terminal sets used for this
problem are given in Table 3. Some of these correspond to
operations that are typically available for stack-based algorithms:
i.e. push, pop, stack-top and stack-not-empty. The meaning of
these and most of the others should be fairly obvious. In the case
of the priority function, if a valid arithmetic or logical operator is
supplied as its argument, the function returns a number
representing the position of that operator in the hierarchy of
priorities described earlier. Hence, the or operator has priority 1,
the and operator has priority 2, and so on. The progn2 function is
a connective construct that merely causes each of its two
arguments to be evaluated in turn, and is therefore a way of
enforcing sequencing in a functional paradigm.

Table 3. Initial function and terminal sets for parser

Node name Arity Operation

more-items 0 Return 1 if more items in input, 0
otherwise

stack-not-
empty

0 Return 1 if items on stack, 0
otherwise

get-item 0 Fetch next item from input, return
its value (zero if empty)

item-val 0 Return value of current item

stack-top 0 Return value of item on top of
stack, zero if stack empty

pop 0 Pop item from stack, return its
value (zero if stack empty)

operand 1 Return 1 if arg is operand, 0
otherwise

operator 1 Return 1 if arg is operator, 0
otherwise

output 1 Output arg if it is valid operator or
operand

push 1 Push arg onto stack

priority 1 Return numeric priority of arg (zero
if not valid operator)

le 2 Return 1 if arg1 <= arg2, zero
otherwise

while 2 Execute arg2 while arg1 not 0

progn2 2 Execute arg1, then arg2

if-then-else 3 If arg1 not zero, execute arg2, else
execute arg3

Objective Convert arithmetic expressions to postfix

Terminal set more-items, stack-not-empty, get-item, item-
val, stack-top, pop

Function set operand, operator, output, push, priority, le,
while, progn2, if-then-else

Initial
population

Ramped half-and-half, no duplicates

Evolutionar
y process

Steady-state; 5-candidate tournament
selection

Fitness cases 30 arithmetic expressions

Fitness Number of incorrect postfix expressions

Restrictions Programs timed-out after 2000 instructions

Success
predicate

Zero fitness (all exprs parsed correctly)

Parameters M=2000; G=51; prob. crossover=0.9; no
mutation

1683

The results of this first attempt were disappointing. With the node
sets just described, it proved impossible to evolve a solution in
any run. Figure 1 shows a typical graph of the changes in best and
average fitness of a population. The evolutionary process begins
well, but soon reaches a point beyond which it cannot progress.
Indeed, no run achieved a fitness value lower than 16; that is, the
best programs were able to parse 14 of the 30 expressions.
Alterations to the population size and the number of generations
made no difference to this outcome.

0

5

10

15

20

25

30

35

0 4 8 12 16 20 24 28 32 36 40 44 48
Generation

Fi
tn

es
s

Best fitness
Av. fitness

Figure 1. Fitness graph for initial parsing experiment

In an effort to address this problem, two other mechanisms were
tried. The first of these involved making the fitness determination
more fine-grained. Instead of the all-or-nothing approach for a
given expression, the idea is to award a score based on how
‘close’ a program’s output comes to the expected postfix
expression. For each item in the expected postfix string, the score
is augmented (i.e. the penalty increases) by an amount equal to
the distance from the item’s position in the program’s output
string. A fixed penalty is applied if the item is not present at all.
Hence, zero (best) fitness is achieved if and only if all items are
present in the output string and in their correct positions. The
approach is similar in concept to the inversion counting method
used by Kinnear in the evolution of sorting programs [7,8].

Unfortunately, this change to the fitness function brought about
no improvement, and in fact most runs were made much worse.

The second mechanism attempted was that of complementary
phenotype selection [6]. The idea here is to select parents for
mating according to how well they offer a combined coverage of
successful test cases. The way this proceeds is that the first parent
is selected according to its fitness in the customary way; the
second parent is chosen not by fitness, but by its ability to
maximize the number of distinct test cases passed by both parents.
Hence, if parent 1 passes test cases {1, 3, 5, 7}, candidate parent
2A passes cases {1, 5, 7, 8}, and candidate parent 2B passes tests
{1, 10, 14}, then 2B should be selected as the second parent
despite having a worse fitness score than 2A, since the combined
test coverage ({1,3,5,7,10,14}) is better than that achieved with
2A ({1,3,5,7,8}).

Again, however, no improvement was obtained using this method.
As before, no individual achieved more than 14 hits. Analysis

showed that combined coverage during mate selection never
achieved more than 20 out of the 30 test cases. Particularly
problematic, it seems, are expressions containing several
operators in ascending order of priority (e.g. a+b*c^d), as these
require extensive use of the stack. Since these expressions are
hardly ever parsed correctly, the chances that complementary
phenotype selection will lead to completely correct programs are
correspondingly slim.

Table 4. Reduced node sets for parsing experiment

Node name Arity Operation

item-val 0 Return value of current item

stack-top 0 Return value of item on top of stack
(zero if empty)

operand 0 Return 1 if input item is operand, 0
otherwise

lteq 0 Return 1 if priority of item <=
priority of stack-top, else zero

output-item 0 If not at end of input, output current
item & advance input ptr

output-stack 0 Output top of stack (if not empty)

push-item 0 If not at end of input, push item onto
stack & advance input ptr

while 2 Execute arg2 while arg1 not zero

progn2 2 Execute arg1, then arg2

if-then-else 3 If arg1 not zero, execute arg2, else
execute arg3

Following extensive experimentation, it was decided to reduce the
number of program node types available. Table 4 shows the
function and terminal sets that were eventually settled upon. It can
be seen that, while the terminal set has been increased by one
member, the number of functions has been significantly
decreased. Moreover, many of the terminal set members are more
powerful in their functionality, performing operations that
previously would have required several nodes. Figure 2 shows the
evolutionary progress of best and average fitnesses during a single
run using this new node set. In this case, an 844-node solution
was evolved at generation 20.

0

5

10

15

20

25

30

35

0 2 4 6 8 10 12 14 16 18 20
Generation

Fi
tn

es
s Best fitness

Av. fitness

Figure 2. Fitness graph for reduced node sets

1684

0

50

100

0 25 50
Generation

Pr
ob

ab
ili

ty
 o

f s
uc

ce
ss

0

200000

400000

600000

800000

1000000

1200000

In
di

vi
du

al
s

to
 b

e
pr

oc
es

se
dP(M,i)

I(M,i,z)

14 E=300,000

(5,5%)

(14,37%)
(50,56%)

M = 2000 z = 99%
R(z) = 10 N = 100

Figure 3. Performance graph for parsing experiment

Following Koza [9,10], we can plot a graph of the probability of
success of finding a solution by any generation i, using a
population size M. This is shown as the line labelled P(M, i) in
Figure 3. For example, at generation 5 the probability of success
is only 5%, while by generation 50 it has risen to 56%. Data for
the graph is obtained from N=100 runs of the GP system. In the
same graph, we can also plot the number of individuals required
to be processed in order to achieve a probability of z=99% that a
solution will be found by a given generation. This is given by the
line labelled I(M, i, z). The minimum value of this line, or the
‘computational effort,’ is E=300,000, meaning that 300,000
individuals must be processed to achieve a probability of at least
99% that a solution will be obtained. As can be seen from the
graph, this value of the computational effort corresponds to R(z) =
10 runs to generation 14.

Two important points about the ‘solutions’ obtained in these runs
must be made. Firstly, the programs were all very large.
Secondly, and more importantly, many of them did not generalise.
In other words, although they were capable of parsing the
expressions present in the input data set, they were not able to
parse more complex expressions that they had not previously
encountered.

Table 5. Post-evolutionary test data

Expr Postfix

a*b/c=d|e>f&g ab*c/d=ef>g&|

a=b&c<d|e>f-1 ab=cd<&ef1->|

a+b=c*d-1|x<y ab+cd*1-=xy<|

a=b*c|d=x/y&e<f abc*=dxy/=ef<&|

h*6+m=3+6*2|t h6*m+362*+=t|

To address this, an additional post-evolutionary test data set was
introduced; it can be seen in Table 5. During a run, an individual
is adjudged to be correct if and only if it correctly parses the
expressions in Table 2 and those in Table 5. However, the latter
expressions are evaluated only after an individual’s fitness has
been evaluated. Success or failure on this new data set does not
affect the fitness score, and so does not alter the course of
evolution except to determine when a solution has been found. It
should also be pointed out that, although the second test set is
small, its members are more sophisticated, and it was found to be
sufficient to distinguish between generalising and non-
generalising programs.

As before, the computational effort can be calculated, and was
found to have a value of 640,000 individuals, corresponding to 20
runs to generation 15. This is more than twice the computational
effort required in the previous experiment, where generality was
not a requirement. The following is one example solution,
consisting of 19 nodes:

WHILE (OPERAND
 IF (PROGN2
 (IF (OUTPUT_ITEM OUTPUT_ITEM LTEQ)
 WHILE (LTEQ OUTPUT_STACK))
 //then
 PROGN2(LTEQ PROGN2(ITEM_VAL
 PUSH_ITEM))
 //else
 PROGN2(ITEM_VAL PUSH_ITEM)))

It can be simplified to the following 9-node program:

WHILE (OPERAND
 PROGN2
 (PROGN2
 (OUTPUT_ITEM
 WHILE (LTEQ OUTPUT_STACK))
 PUSH_ITEM))

A point that should be made about many of the solutions obtained
in this experiment is that they contained infinite loops. They

1685

terminated only when they were forced to by the GP system
because the maximum instruction count was exceeded. This is
obviously an undesirable property of any real-world parsing
program, and we therefore performed a further experiment in
which finite termination was a necessary condition of program
correctness. As might be expected, this pushed the computational
effort up still further, to a value of 1,776,000 individuals,
representing 24 runs to generation 36.

3. TRANSLATION

3.1 The Translation Problem
The postfix notation that our evolved programs produced in the
previous experiments is well-suited to the subsequent generation
of target code for stack-based machines. For example, the
expression

a*b+c/d-e

which converts to the postfix string

a b * c d / + e –

is then trivially translated to machine code such as the following:

PUSH a
PUSH b
MULT
PUSH c
PUSH d
DIV
ADD
PUSH e
SUB

However, postfix notation is not a very suitable representation for
translation on more general register-based machines. One of the
difficulties with it is that it corresponds to a fixed traversal of the
abstract tree form of the original expression; as such, it leaves
little room for optimization and code generation decisions.

An alternative, more flexible form of representation is provided in
the form of triples. When used to encode expressions, each triple
comprises a single operator and two operands. The operands may
be references to other triples. Consider the following expression:

 a*b/c = d | e>f & g

This may be translated to the following sequence of triples:

#1: * a b
#2: / #1 c
#3: = #2 d
#4: > e f
#5: & #4 g
#6: | #3 #5

This may be thought of as a form of pseudo-assembly code, in
which the first instruction is to multiply a and b, leaving the result
in register (or temporary variable) 1; the second instruction says
to divide the contents of register 1 by variable c, leaving the result
in register 2; and so on. On many machines, conversion of triples
to the target machine code is relatively straightforward. Triples
are sometimes produced as a form of intermediate code, created

internally by a compiler before it is passed to a final code
generation phase.

Triples can also be viewed as a linear form of the associated
expression tree. Each numbered triple corresponds to a labelled
node of the tree, with the final result triple forming the root node.
The tree for our example expression is shown in Figure 4. The
value of such tree structures is that the compiler can make
dynamic decisions as to how best to traverse the tree when
generating code, and can also perform certain tree-based
optimisation procedures.

 #6: |

 #3: = #5: &

 #2: / d #4: > g

 #1: * c e f

 a b

Figure 4. Expression tree for triples from a*b/c = d | e>f & g

It is known that translating an expression directly to triples can be
done with the aid of two stacks: one for operators and one for
operands. In this next experiment, we wished to investigate
whether a GP system could evolve a translator that was capable of
this more sophisticated use of stack data structures.

3.2 Translation Experiments
For this problem, the tableau of GP parameters remains much as it
did for the parsing experiment. The only real change is to the
terminal set, which now becomes:

{item-val, stack-top, operand, lteq, output-
triple, push-rator, push-rand}

The first four members of this set are as before. The single push
operation now becomes two: one to push the current input item
onto the operator stack, and one to push it onto the operand stack.
There is also now an output-triple operator. This forms a triple
from the top item of the operator stack and the top two items of
the operand stack, assigns the next integer in sequence to the
triple, outputs the triple, and leaves the triple number on the
operand stack.

The test data also remains as before, except for the two simplest
cases consisting of single variables, since these cannot form
triples. In performing this experiment we proceeded directly to
the evolution of translators that were capable of generalising, i.e.
able to solve both the initial training set and the post-evolutionary
test set. Some of the test cases drawn from both sets, together with
the corresponding triples, are shown in Table 6.

1686

Table 6. Sample test data and triples for translator
experiment

Expr Triples Expr Triples

a+b-c #1: + a b
#2: - 1 c

a*b/c=d|e>f&g #1: * a b
#2: / #1 c
#3: = #2 d
#4: > e f
#5: & #4 g
#6: | #3 #5

a+b-c*d #1: + a b
#2: * c d
#3: - #1
#2

h*6+m=3+6*2|t #1: * h 6
#2: + #1 m
#3: * 6 2
#4: + 3 #3
#5: = #2 #4
#6: | #5 t

a=b+c*d^
e

#1: ^ d e
#2: * c #1
#3: + b #2
#4: = a #3

Over 100 runs of the system, the calculated computational effort
was 714,000 individuals, equating to 17 runs to generation 20.
This figure is 11.5% higher than the computational effort required
for the generalised parsers discussed earlier. An example solution
is the following, consisting of 38 nodes:

IF (WHILE (PUSH_RAND OPERAND) PROGN2 (
PUSH_RAND OPERAND) IF (WHILE (WHILE (
PUSH_RATOR LTEQ) PUSH_RAND) WHILE (IF (
IF (PUSH_RAND OPERAND LTEQ) OPERAND LTEQ)
IF (OUTPUT_TRIPLE LTEQ STACK_TOP)) WHILE
(STACK_TOP IF (IF (PUSH_RAND PUSH_RATOR
WHILE (LTEQ OUTPUT_TRIPLE)) OPERAND WHILE
(PUSH_RATOR LTEQ)))))

This can be simplified to the following:

PROGN2 (PUSH_RAND PROGN2 (PUSH_RATOR WHILE
(STACK_TOP PROGN2 (PUSH_RAND PROGN2 (
WHILE (LTEQ OUTPUT_TRIPLE) PUSH_RATOR))
)))

As before, many of the solutions are non-terminating. If we insist
on termination, the computational effort rises to 2,668,000
individuals, representing 29 runs to generation 45. This is over
50% higher than the effort required for a terminating generalised
parser.

4. CONCLUSIONS
In this paper we have described experiments aimed at evolving
programs to handle the parsing and translation of arithmetic and
logical expressions. In the case of parsing, we have evolved
programs to convert expressions to postfix form. Initially, it was
hoped that a general set of relatively low-level primitives might
be used to induce the parsers, but this proved not to be the case,
despite extensive experimentation with varying parameters. That
said, there remain a number of approaches that were not
attempted: for example, the use of mutation and alternative
genetic operators, and the use of encapsulation methods such as
automatically defined functions (ADFs) [10]. At present, the

problem as stated with our initial function and terminal sets
remains an open one, and the author would be interested to learn
of any success achieved by researchers applying their own pet
methods to it.

Employing a slimmed-down set of more powerful primitives did
lead to solutions, although it was found that success on the
training set did not always imply generality in the evolved
parsers. Use of an additional post-evolution test data set was able
to rectify this, at the expense of additional computational effort.
Similarly, an insistence that solutions should terminate in a finite
number of steps was also achievable at a computational cost.

As mentioned in the introduction, the experiments carried out here
act as a good test of the ability of evolving programs to make
appropriate use of stack data structures. This is especially true in
the case of translation of expressions to triples, where two stacks
are required. Success was achieved, but with more computational
effort than that required for the postfix-producing parsers –
considerably so when finite termination was made a pre-requisite
for correctness.

In summary, then, it can be concluded that the experiments
showed that there is some potential for the use of genetic
programming in the generation of parsers and translators for
expressions, albeit with judicious choice of the function and
terminal sets made available to the GP system. Expression
analysis and processing is, of course, just a small part of what a
complete compiler does, and we are a long way from evolving
such a complex piece of software. However, one of the
advantages of using compilers as a subject of study in this way is
that they are highly modular systems, containing many interacting
algorithms of varying sophistication. For the future, we will
continue to investigate the applicability of genetic programming
to some of these other aspects of the compilation process.

5. REFERENCES
[1] Ahmad, I., Dhodhi, M. K. and Saleh, K. A. An Evolutionary

Technique for Local Microcode Compaction.
Microprocessors and Microsystems, 19, 8 (Oct. 1995) 467-
474.

[2] Araujo, L. Genetic Programming for Natural Language
Parsing. In Proc. EuroGP 2004, Lecture Notes in Computer
Science 3003, Springer-Verlag, Berlin Heidelberg, 2004,
230-239.

[3] Beaty, S., Whitley, D. and Johnson, G. Motivation and
Framework for Using Genetic Algorithms for Microcode
Compaction. In Proc. 23rd Annual Workshop on
Microprogramming and Microarchitecture (MICRO-23),
Orlando, FL, USA, 1990, 117-124.

[4] Calder, N., Grunwald, D., Jones, M., Lindsay, D., Martin, J.,
Mozer, M. and Zorn, B. Evidence-Based Static Branch
Prediction Using Machine Learning. ACM Trans.
Programming Languages and Systems (ToPLaS) 19, 1
(1997), 188-222.

[5] Cooper, K., Scheilke, P. and Subramanian, D. Optimizing for
Reduced Code Space Using Genetic Algorithms. In
Languages, Compilers, Tools for Embedded Systems, 1999,
1-9.

1687

[6] Dolin, B., Arenas, M. G. and Merelo, J. J. Opposites Attract:
Complementary Phenotype Selection for Crossover in
Genetic Programming. In Proc. PPSN VII, Lecture Notes in
Computer Science 2439, Merelo Guervos, J. J. et al (eds),
2002, 142-152.

[7] Kinnear, Jr., K. E. Generality and difficulty in genetic
programming: Evolving a sort. In Proc. Fifth International
Conf. on Genetic Algorithms (University of Illinois), S.
Forrest (ed), Morgan Kaufmann, San Mateo, CA, 1993, 287-
294.

[8] Kinnear, Jr., K. E. Evolving a sort: Lessons in genetic
programming. In Proc. 1993 International Conf. on Neural
Networks (San Francisco, USA), IEEE Press, 1993, 881-888.

[9] Koza, J. R. Genetic Programming: On the Programming of
Computers by Means of Natural Selection. MIT Press,
Cambridge, MA, 1992.

[10] Koza, J. R. Genetic Programming II: Automatic Discovery of
Reusable Programs, MIT Press, Cambridge, MA, 1994.

[11] Langdon, W. B. Data Structures and Genetic Programming.
In Advances in Genetic Programming, vol. 2, Angeline, P.J.
and Kinnear, K.E. (eds), MIT Press, Cambridge MA, 1996,
395-414.

[12] Langdon, W. B. Genetic Programming and Data Structures.
Kluwer, 1998.

[13] Langdon, W. B. Using Data Structures within Genetic
Programming. In Genetic Programming 1996: Proceedings
of the First Annual Conference, Koza, J. R., Goldberg, D. E.,
Fogel, D. B. and Riolo, R. L. (eds), MIT Press, Cambridge
MA, 1996, 141-149.

[14] Stephenson, M., O’Reilly, U-M., Martin, M. C. and
Amarasinghe, S. Genetic Programming Applied to Compiler
Heuristic Optimization. In Proc. EuroGP 2003, Lecture
Notes in Computer Science 2610, Springer-Verlag, Berlin
Heidelberg, 2003, 238-253.

1688

