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ABSTRACT 
We have investigated the potential for using genetic programming 
to evolve compiler parsing and translation routines for processing 
arithmetic and logical expressions as they are used in a typical 
programming language. Parsing and translation are important and 
complex real-world problems for which evolved solutions must 
make use of a range of programming constructs. The exercise also 
tests the ability of genetic programming to evolve extensive and 
appropriate use of abstract data types – namely, stacks. 
Experimentation suggests that the evolution of such code is 
achievable, provided that program function and terminal sets are 
judiciously chosen.   

Categories and Subject Descriptors 
D.1.2 [Programming Techniques]: Automatic Programming; 
D.3.4 [Programming Languages]: Processors – compilers, code 
generation, parsing; I.2.6 [Artificial Intelligence] Learning – 
induction. 

General Terms 
Algorithms, Experimentation. 

Keywords 
Genetic programming, application, software tools. 

1. INTRODUCTION 
The task of analysing a sentence, program or other text to 
determine its grammatical structure, and the job of converting 
such input to another equivalent form, are both important real-
world problems that arise in many areas of computing. In a 
compiler, syntax analysis (parsing) is required to determine the 
grammatical correctness or otherwise of a computer program, and 
to establish the syntactical relationships that exist between the 
constructs which that program encodes. A compiler’s translation 

procedures convert such source code either to an intermediate 
form or to machine code, usually for direct execution on the host 
computer. 

Genetic programming (GP) is a technique that is used to generate 
programs automatically by evolutionary means, and has been 
applied successfully in many problem domains. Since parsers and 
translators are, after all, just programs (albeit complex ones), an 
interesting question is whether GP can be used for the induction 
of these programs too. A step towards answering this is the theme 
of this paper. Since, at this stage, the sophistication of a real 
compiler capable of handling a complete programming language 
seems a little ambitious, we will restrict ourselves to the more 
manageable realm of arithmetic and logical expressions. 

Part of the motivation for this research is that comparatively little 
appears to have been done in applying evolutionary computing 
techniques to the compilation process, although other machine 
learning techniques have been employed [4]. Exceptions include 
the work of Cooper et al, who used genetic algorithms to solve 
compiler phase ordering problems [5], and the work of other 
researchers on the use of GAs to optimize pre-generated 
microcode [1,3]. Within the particular field of genetic 
programming lies the research of Stephenson, O’Reilly et al, who 
used GP to improve the performance of a compiler in respect of 
its ability to deal with the heuristic problems of predicated 
hyperblock formation and register allocation [14]. Although not 
involving programming language compilers, GP has also been 
applied to the related area of natural language parsing [2]. 

Another reason for pursuing this line of research is that the 
problem is a realistic (not toy) one, necessitating a variety of 
commonly used programming constructs. In the experiments that 
we shall describe, the three main control flow constructs of 
sequence, iteration and selection (alternation) will all be needed in 
combination, and to multiple depth levels. Evolved solutions will 
also need to make use of sequential input and output. Input will be 
processed an item at a time, and once an item has been read, the 
input pointer cannot be moved backwards to re-read it. Similarly, 
once an output item has been written, it cannot later be erased. 
Although it is certainly possible to devise other forms of the 
problem in which random access of the input and output strings is 
allowed, we wished to make our version as close as possible to 
real compiler activity, where such inefficiencies must be avoided. 
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Another key feature of the problem is that success can only come 
as a result of the correct use of abstract data types – in this case, 
stacks. The work of Langdon [11,12] on the application of GP to 
stacks and other data structures is well known, and he has even 
evolved programs to manipulate a stack for a postfix calculator 
(the relevance of which will become clearer in the next section) 
[13]. Our own work will further test the ability of GP to evolve 
code that can exploit and manipulate stacks in useful ways. 

Following this introduction, the paper contains a section on 
parsing and another on translation. Within each of those, the 
problem domain is discussed before the experimental work and 
results are presented. The paper then ends with some concluding 
remarks and comments on further work. 

2. PARSING 

2.1 The Parsing Problem 
The syntax of expressions can usually be defined using a simple 
grammar, and can be written down using BNF notation. The 
following grammar defines expressions that can be of either 
arithmetic (a-expr) or Boolean (b-expr) type: 

<expr>   ::= <a-expr> | <b-expr> 

 

<a-expr> ::=  <a-term> | <a-expr> + <a-term>   
| <a-expr> - <a-term> 

<a-term> ::=  <a-fact> | <a-term> * <a-fact> 
| <a-term> / <a-fact> 

<a-fact> ::=  <a-prim> | <a-fact> ^ <a-prim> 

<a-prim> ::=  iden | number 

 

<b-expr> ::=  <b-term> 

| <b-expr> “|” <b-term> 

<b-term> ::=  <b-fact> 

| <b-term> “&” <b-fact> 

<b-fact> ::=  iden | true | false 

| <a-expr> <relop> <a-expr> 

<relop>  ::=  = | < | > | >= | <= 

In determining how to evaluate an expression, there is an implicit 
and commonly-understood set of rules governing the ordering of 
operator application. In an expression such as 

a*b+c/d-e 

we know that we have to perform the multiply first, then the 
divide, then the add, and finally the subtract. Informally, these 
rules can be stated as perform multiply and divide before add and 
subtract, work from left right on equivalent-priority operators, and 
so on. 

A grammar such as the one presented above formalises these 
rules. For example, an <a-expr> (containing add and subtract) is 
defined in terms of <a-term> constructs (containing multiply and 
divide), and so it follows that an <a-expr> can be recognised and 
evaluated only once its component <a-terms> have been 

recognised and evaluated. From the grammar given, we can 
derive a set of priorities for all of the operators that may exist in a 
valid expression: 

^   highest priority 

*, / 

+,- 

<,>,=,…    

& (and) 

| (or)  lowest priority 

Based on this prioritisation, a parser can convert an expression 
written in the standard form to a form which makes the order of 
operator application completely explicit. An example of a such an 
alternative form is postfix, or Reverse Polish Notation (RPN). In 
postfix, operators appear after the operands to which they apply. 
As an example, the expression 

a*b+c/d-e 

converts to 

a b * c d / + e – 

A way of thinking about the evaluation of a postfix expression is 
with the use of a stack: we work from left to right, pushing 
variables and numeric values onto the stack as they are 
encountered, and applying each operator to the top two items on 
the stack, leaving the result on the stack. So, for our example 
expression, we have: 

stack a 
stack b 
multiply top 2 stack items and leave  
 result on stack 
stack c 
stack d 
perform divide 
perform add 

etc. 

When the end of an expression is reached, the resulting value of 
that expression is left on the stack. 

Since operator ordering is explicit in the postfix expression, 
parentheses are not needed. For example, an expression such as 

a*(b+c) 

converts to the postfix form 

a b c + * 

Once it has been converted to postfix by a parser, it is possible to 
pass an expression on to subsequent phases of compilation; for 
example, postfix can be used as the basis for code generation. The 
problem that concerns us for the moment is how to perform the 
conversion in the first place. 

There are two main approaches to syntax analysis: top-down and 
bottom-up. In the top-down approach, the parser assumes that its 
input is a valid sentence. It begins by searching for phrases in the 
input that can be combined to make a valid sentence. For each 
phrase, it looks for sub-phrases, and so on, until the search 
reduces to looking for primitive items in the input text. 
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By contrast, a bottom-up parser tries to find groups of primitive 
items that correspond to phrases in the grammar. It replaces these 
groups by the corresponding phrase denotations, then tries to 
group the phrases into higher-level phrases, and so on, until it is 
able to make the final replacement that converts the whole lot to a 
sentence in the language. 

In the experiments which follow, we attempt to evolve parsers 
which are bottom-up. The reason for this is partly to avoid the 
high degree of mutual recursion usually present in top-down 
parsers, but also because in many compilers the bottom-up 
approach is used for expressions, while the top-down approach is 
reserved for statements and declarations. 

2.2 Parsing Experiments 
Table 1 presents the parameters used for our initial attempt at 
solving the parsing problem by genetic programming. The fitness 
of an individual in the population is assessed by applying that 
individual’s program code to a set of expressions, and comparing 
the output with the expected postfix version. 

Table 1. Initial problem tableau for parsing experiments 

 

Table 2. Expression test data and postfix equivalents 

Expr Postfix Expr  Postfix Expr Postfix 

a a a+b-c*d ab+cd*- a^b*c+d ab^c*d+ 

b b a+b*c-d abc*+d- a^b+c*d ab^cd*+ 

a+b ab+ a*b+c-d ab*c+d- a=b+c*d^e abcde^*+=

a*b ab* a*b/c+d ab*c/d+ a+b=c*d^e ab+cde^*=

a+b-c ab+c- a+b*c/d abc*d/+ a+b*c=d^e abc*+de^=

a-b+c ab-c+ a*b+c/d ab*cd/+ a+b*c^d=e abcd^*+e=

a+b*c abc*+ a+b*c^d abcd^*+ a+b<c|d>e ab+c<de>| 

a*b+c ab*c+ a+b^c*d abc^d*+ a<b&c>d|e ab<cd>&e|

a/b^c abc^/ a*b+c^d ab*cd^+ a=b|c>d&e ab=cd>e&|

a^b/c ab^c/ a*b^c+d abc^*d+ a+b=c-d|e ab+cd-=e| 

The number of test expressions is set at 30, and the fitness value 
corresponds to the number of tests which are failed by an 
individual. Thus, zero fitness implies that all expressions are 
correctly parsed. The full set of test expressions and their postfix 
equivalents is given in Table 2. 

Since the evolved code may contain loops, a program is 
terminated if it exceeds a maximum number of instruction 
executions (set at 2000). A single run of the GP system continues 
until either the maximum number of generations is reached, or a 
solution (a zero-fitness program) is evolved. 

More details of the initial function and terminal sets used for this 
problem are given in Table 3. Some of these correspond to 
operations that are typically available for stack-based algorithms: 
i.e. push, pop, stack-top and stack-not-empty. The meaning of 
these and most of the others should be fairly obvious. In the case 
of the priority function, if a valid arithmetic or logical operator is 
supplied as its argument, the function returns a number 
representing the position of that operator in the hierarchy of 
priorities described earlier. Hence, the or operator has priority 1, 
the and operator has priority 2, and so on. The progn2 function is 
a connective construct that merely causes each of its two 
arguments to be evaluated in turn, and is therefore a way of 
enforcing sequencing in a functional paradigm. 

Table 3. Initial function and terminal sets for parser 

Node name Arity Operation 

more-items 0 Return 1 if more items in input, 0 
otherwise 

stack-not-
empty 

0 Return 1 if items on stack, 0 
otherwise 

get-item 0 Fetch next item from input, return 
its value (zero if empty) 

item-val 0 Return value of current item 

stack-top 0 Return value of item on top of 
stack, zero if stack empty 

pop 0 Pop item from stack, return its 
value (zero if stack empty) 

operand 1 Return 1 if arg is operand, 0 
otherwise 

operator 1 Return 1 if arg is operator, 0 
otherwise 

output 1 Output arg if it is valid operator or 
operand 

push 1 Push arg onto stack 

priority 1 Return numeric priority of arg (zero 
if not valid operator) 

le 2 Return 1 if arg1 <= arg2, zero 
otherwise 

while 2 Execute arg2 while arg1 not 0 

progn2 2 Execute arg1, then arg2 

if-then-else 3 If arg1 not zero, execute arg2, else 
execute arg3 

Objective Convert arithmetic expressions to postfix 

Terminal set more-items, stack-not-empty, get-item, item-
val, stack-top, pop 

Function set operand, operator, output, push, priority, le, 
while, progn2, if-then-else 

Initial 
population 

Ramped half-and-half, no duplicates 

Evolutionar
y process 

Steady-state; 5-candidate tournament 
selection 

Fitness cases 30 arithmetic expressions 

Fitness Number of incorrect postfix expressions 

Restrictions Programs timed-out after 2000 instructions 

Success 
predicate 

Zero fitness (all exprs parsed correctly) 

Parameters M=2000; G=51; prob. crossover=0.9; no 
mutation 
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The results of this first attempt were disappointing. With the node 
sets just described, it proved impossible to evolve a solution in 
any run. Figure 1 shows a typical graph of the changes in best and 
average fitness of a population. The evolutionary process begins 
well, but soon reaches a point beyond which it cannot progress. 
Indeed, no run achieved a fitness value lower than 16; that is, the 
best programs were able to parse 14 of the 30 expressions. 
Alterations to the population size and the number of generations 
made no difference to this outcome. 
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Figure 1. Fitness graph for initial parsing experiment 

 

In an effort to address this problem, two other mechanisms were 
tried. The first of these involved making the fitness determination 
more fine-grained. Instead of the all-or-nothing approach for a 
given expression, the idea is to award a score based on how 
‘close’ a program’s output comes to the expected postfix 
expression. For each item in the expected postfix string, the score 
is augmented (i.e. the penalty increases) by an amount equal to 
the distance from the item’s position in the program’s output 
string. A fixed penalty is applied if the item is not present at all. 
Hence, zero (best) fitness is achieved if and only if all items are 
present in the output string and in their correct positions. The 
approach is similar in concept to the inversion counting method 
used by Kinnear in the evolution of sorting programs [7,8]. 

Unfortunately, this change to the fitness function brought about 
no improvement, and in fact most runs were made much worse. 

The second mechanism attempted was that of complementary 
phenotype selection [6]. The idea here is to select parents for 
mating according to how well they offer a combined coverage of 
successful test cases. The way this proceeds is that the first parent 
is selected according to its fitness in the customary way; the 
second parent is chosen not by fitness, but by its ability to 
maximize the number of distinct test cases passed by both parents. 
Hence, if parent 1 passes test cases {1, 3, 5, 7}, candidate parent 
2A passes cases {1, 5, 7, 8}, and candidate parent 2B passes tests 
{1, 10, 14}, then 2B should be selected as the second parent 
despite having a worse fitness score than 2A, since the combined 
test coverage ({1,3,5,7,10,14}) is better than that achieved with 
2A ({1,3,5,7,8}). 

Again, however, no improvement was obtained using this method. 
As before, no individual achieved more than 14 hits. Analysis 

showed that combined coverage during mate selection never 
achieved more than 20 out of the 30 test cases. Particularly 
problematic, it seems, are expressions containing several 
operators in ascending order of priority (e.g. a+b*c^d), as these 
require extensive use of the stack. Since these expressions are 
hardly ever parsed correctly, the chances that complementary 
phenotype selection will lead to completely correct programs are 
correspondingly slim. 

Table 4. Reduced node sets for parsing experiment 

Node name Arity Operation 

item-val 0 Return value of current item 

stack-top 0 Return value of item on top of stack 
(zero if empty) 

operand 0 Return 1 if input item is operand, 0 
otherwise 

lteq 0 Return 1 if priority of item <= 
priority of stack-top, else zero 

output-item 0 If not at end of input, output current 
item & advance input ptr 

output-stack 0 Output top of stack (if not empty) 

push-item 0 If not at end of input, push item onto 
stack & advance input ptr 

while 2 Execute arg2 while arg1 not zero 

progn2 2 Execute arg1, then arg2 

if-then-else 3 If arg1 not zero, execute arg2, else 
execute arg3 

 

Following extensive experimentation, it was decided to reduce the 
number of program node types available. Table 4 shows the 
function and terminal sets that were eventually settled upon. It can 
be seen that, while the terminal set has been increased by one 
member, the number of functions has been significantly 
decreased. Moreover, many of the terminal set members are more 
powerful in their functionality, performing operations that 
previously would have required several nodes. Figure 2 shows the 
evolutionary progress of best and average fitnesses during a single 
run using this new node set. In this case, an 844-node solution 
was evolved at generation 20. 
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Figure 2. Fitness graph for reduced node sets 
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Figure 3. Performance graph for parsing experiment 

 

Following Koza [9,10], we can plot a graph of the probability of 
success of finding a solution by any generation i, using a 
population size M. This is shown as the line labelled P(M, i) in 
Figure 3. For example, at generation 5 the probability of success 
is only 5%, while by generation 50 it has risen to 56%. Data for 
the graph is obtained from N=100 runs of the GP system. In the 
same graph, we can also plot the number of individuals required 
to be processed in order to achieve a probability of z=99% that a 
solution will be found by a given generation. This is given by the 
line labelled I(M, i, z). The minimum value of this line, or the 
‘computational effort,’ is E=300,000, meaning that 300,000 
individuals must be processed to achieve a probability of at least 
99% that a solution will be obtained. As can be seen from the 
graph, this value of the computational effort corresponds to R(z) = 
10 runs to generation 14. 

Two important points about the ‘solutions’ obtained in these runs 
must be made. Firstly, the programs were all very large. 
Secondly, and more importantly, many of them did not generalise. 
In other words, although they were capable of parsing the 
expressions present in the input data set, they were not able to 
parse more complex expressions that they had not previously 
encountered. 

 

Table 5. Post-evolutionary test data 

Expr Postfix 

a*b/c=d|e>f&g ab*c/d=ef>g&| 

a=b&c<d|e>f-1 ab=cd<&ef1->| 

a+b=c*d-1|x<y ab+cd*1-=xy<| 

a=b*c|d=x/y&e<f abc*=dxy/=ef<&| 

h*6+m=3+6*2|t h6*m+362*+=t| 

 

To address this, an additional post-evolutionary test data set was 
introduced; it can be seen in Table 5. During a run, an individual 
is adjudged to be correct if and only if it correctly parses the 
expressions in Table 2 and those in Table 5. However, the latter 
expressions are evaluated only after an individual’s fitness has 
been evaluated. Success or failure on this new data set does not 
affect the fitness score, and so does not alter the course of 
evolution except to determine when a solution has been found. It 
should also be pointed out that, although the second test set is 
small, its members are more sophisticated, and it was found to be 
sufficient to distinguish between generalising and non-
generalising programs. 

As before, the computational effort can be calculated, and was 
found to have a value of 640,000 individuals, corresponding to 20 
runs to generation 15. This is more than twice the computational 
effort required in the previous experiment, where generality was 
not a requirement. The following is one example solution, 
consisting of 19 nodes: 

WHILE (OPERAND 
   IF (PROGN2 
        (IF (OUTPUT_ITEM OUTPUT_ITEM LTEQ) 
         WHILE (LTEQ OUTPUT_STACK)) 
   //then 
        PROGN2(LTEQ PROGN2(ITEM_VAL 
  PUSH_ITEM)) 
   //else 
        PROGN2(ITEM_VAL PUSH_ITEM))) 

It can be simplified to the following 9-node program: 

WHILE (OPERAND 
   PROGN2 
      (PROGN2 
         (OUTPUT_ITEM 
          WHILE (LTEQ OUTPUT_STACK)) 
       PUSH_ITEM)) 

A point that should be made about many of the solutions obtained 
in this experiment is that they contained infinite loops. They 
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terminated only when they were forced to by the GP system 
because the maximum instruction count was exceeded. This is 
obviously an undesirable property of any real-world parsing 
program, and we therefore performed a further experiment in 
which finite termination was a necessary condition of program 
correctness. As might be expected, this pushed the computational 
effort up still further, to a value of 1,776,000 individuals, 
representing 24 runs to generation 36. 

 

3. TRANSLATION 

3.1 The Translation Problem 
The postfix notation that our evolved programs produced in the 
previous experiments is well-suited to the subsequent generation 
of target code for stack-based machines. For example, the 
expression 

a*b+c/d-e 

which converts to the postfix string 

a b * c d /  + e – 

is then trivially translated to machine code such as the following: 

PUSH a 
PUSH b 
MULT 
PUSH c 
PUSH d 
DIV 
ADD 
PUSH e 
SUB 

However, postfix notation is not a very suitable representation for 
translation on more general register-based machines. One of the 
difficulties with it is that it corresponds to a fixed traversal of the 
abstract tree form of the original expression; as such, it leaves 
little room for optimization and code generation decisions. 

An alternative, more flexible form of representation is provided in 
the form of triples. When used to encode expressions, each triple 
comprises a single operator and two operands. The operands may 
be references to other triples. Consider the following expression: 

 a*b/c = d | e>f & g 

This may be translated to the following sequence of triples: 

#1:  *  a  b 
#2:  /  #1  c 
#3:  =  #2  d 
#4:  >  e  f 
#5:  &  #4  g 
#6:  |  #3  #5 

This may be thought of as a form of pseudo-assembly code, in 
which the first instruction is to multiply a and b, leaving the result 
in register (or temporary variable) 1; the second instruction says 
to divide the contents of register 1 by variable c, leaving the result 
in register 2; and so on. On many machines, conversion of triples 
to the target machine code is relatively straightforward. Triples 
are sometimes produced as a form of intermediate code, created 

internally by a compiler before it is passed to a final code 
generation phase. 

Triples can also be viewed as a linear form of the associated 
expression tree. Each numbered triple corresponds to a labelled 
node of the tree, with the final result triple forming the root node. 
The tree for our example expression is shown in Figure 4. The 
value of such tree structures is that the compiler can make 
dynamic decisions as to how best to traverse the tree when 
generating code, and can also perform certain tree-based 
optimisation procedures. 

 
                               #6: | 
 
                #3: =                        #5: & 
 
       #2: /                d           #4: >          g
 
  #1: *         c                     e             f 
 
 a           b 

 

 
Figure 4. Expression tree for triples from a*b/c = d | e>f & g 

 

It is known that translating an expression directly to triples can be 
done with the aid of two stacks: one for operators and one for 
operands. In this next experiment, we wished to investigate 
whether a GP system could evolve a translator that was capable of 
this more sophisticated use of stack data structures. 

3.2 Translation Experiments 
For this problem, the tableau of GP parameters remains much as it 
did for the parsing experiment. The only real change is to the 
terminal set, which now becomes: 

{item-val, stack-top, operand, lteq, output-
triple, push-rator, push-rand} 

The first four members of this set are as before. The single push 
operation now becomes two: one to push the current input item 
onto the operator stack, and one to push it onto the operand stack. 
There is also now an output-triple operator. This forms a triple 
from the top item of the operator stack and the top two items of 
the operand stack, assigns the next integer in sequence to the 
triple, outputs the triple, and leaves the triple number on the 
operand stack. 

The test data also remains as before, except for the two simplest 
cases consisting of single variables, since these cannot form 
triples. In performing this experiment we proceeded directly to 
the evolution of translators that were capable of generalising, i.e. 
able to solve both the initial training set and the post-evolutionary 
test set. Some of the test cases drawn from both sets, together with 
the corresponding triples, are shown in Table 6. 
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Table 6. Sample test data and triples for translator 
experiment 

Expr Triples Expr Triples 

a+b-c #1: + a b 
#2: - 1 c 

a*b/c=d|e>f&g #1: * a b
#2: / #1 c
#3: = #2 d
#4: > e f
#5: & #4 g
#6: | #3 #5 

a+b-c*d #1: + a b 
#2: * c d 
#3: - #1 
#2 

h*6+m=3+6*2|t #1: * h 6
#2: + #1 m
#3: * 6 2
#4: + 3 #3
#5: = #2 #4
#6: | #5 t 

a=b+c*d^
e 

#1: ^ d e 
#2: * c #1 
#3: + b #2 
#4: = a #3 

    

 

Over 100 runs of the system, the calculated computational effort 
was 714,000 individuals, equating to 17 runs to generation 20. 
This figure is 11.5% higher than the computational effort required 
for the generalised parsers discussed earlier. An example solution 
is the following, consisting of 38 nodes: 

IF ( WHILE ( PUSH_RAND OPERAND ) PROGN2 ( 
PUSH_RAND OPERAND ) IF ( WHILE ( WHILE ( 
PUSH_RATOR LTEQ ) PUSH_RAND ) WHILE ( IF ( 
IF ( PUSH_RAND OPERAND LTEQ ) OPERAND LTEQ ) 
IF ( OUTPUT_TRIPLE LTEQ STACK_TOP ) ) WHILE 
( STACK_TOP IF ( IF ( PUSH_RAND PUSH_RATOR 
WHILE ( LTEQ OUTPUT_TRIPLE ) ) OPERAND WHILE 
( PUSH_RATOR LTEQ) ) ) ) ) 

This can be simplified to the following: 

PROGN2 ( PUSH_RAND PROGN2 ( PUSH_RATOR WHILE 
( STACK_TOP PROGN2 ( PUSH_RAND PROGN2 ( 
WHILE ( LTEQ OUTPUT_TRIPLE ) PUSH_RATOR ) ) 
) ) ) 

As before, many of the solutions are non-terminating. If we insist 
on termination, the computational effort rises to 2,668,000 
individuals, representing 29 runs to generation 45. This is over 
50% higher than the effort required for a terminating generalised 
parser. 

4. CONCLUSIONS 
In this paper we have described experiments aimed at evolving 
programs to handle the parsing and translation of arithmetic and 
logical expressions. In the case of parsing, we have evolved 
programs to convert expressions to postfix form. Initially, it was 
hoped that a general set of relatively low-level primitives might 
be used to induce the parsers, but this proved not to be the case, 
despite extensive experimentation with varying parameters. That 
said, there remain a number of approaches that were not 
attempted: for example, the use of mutation and alternative 
genetic operators, and the use of encapsulation methods such as 
automatically defined functions (ADFs) [10]. At present, the 

problem as stated with our initial function and terminal sets 
remains an open one, and the author would be interested to learn 
of any success achieved by researchers applying their own pet 
methods to it. 

Employing a slimmed-down set of more powerful primitives did 
lead to solutions, although it was found that success on the 
training set did not always imply generality in the evolved 
parsers. Use of an additional post-evolution test data set was able 
to rectify this, at the expense of additional computational effort. 
Similarly, an insistence that solutions should terminate in a finite 
number of steps was also achievable at a computational cost. 

As mentioned in the introduction, the experiments carried out here 
act as a good test of the ability of evolving programs to make 
appropriate use of stack data structures. This is especially true in 
the case of translation of expressions to triples, where two stacks 
are required. Success was achieved, but with more computational 
effort than that required for the postfix-producing parsers – 
considerably so when finite termination was made a pre-requisite 
for correctness. 

In summary, then, it can be concluded that the experiments 
showed that there is some potential for the use of genetic 
programming in the generation of parsers and translators for 
expressions, albeit with judicious choice of the function and 
terminal sets made available to the GP system. Expression 
analysis and processing is, of course, just a small part of what a 
complete compiler does, and we are a long way from evolving 
such a complex piece of software. However, one of the 
advantages of using compilers as a subject of study in this way is 
that they are highly modular systems, containing many interacting 
algorithms of varying sophistication. For the future, we will 
continue to investigate the applicability of genetic programming 
to some of these other aspects of the compilation process. 
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