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ABSTRACT 
GP uses trees to represent chromosomes.  The user defines the 
representation space by defining the set of functions and terminals 
to label the nodes in the trees, and GP searches the space. 
Previous research and experimentation show that the choice of the 
function/terminal set, choice of the initial population, and some 
other explicit and implicit “design” factors have great influence 
on both the quality and the speed of the evolution. Such heuristics 
are valuable simply because they improve GP’s performance, or 
because they enforce some desired properties on the solutions.  In 
this paper, we evaluate the effect of heuristics on GP solving the 
Santa Fe trail. We concentrate on improving the solution quality, 
but we also look at efficiency. Various heuristics are tried and 
mixed by hand, while evaluated with the help of the CGP system. 
Results show that some heuristics result in very substantial 
performance improvements, that complex heuristics are usually 
not decomposable, and that the heuristics generalize to apply to 
other similar problems, but the applicability reduces with the 
complexity of the heuristics and the dissimilarity of the new 
problem to the old one. We also compare such user-mixed 
heuristics with those generated by the ACGP system which 
automatically extracts heuristics improving GP performance. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control 
Methods, and Search  

I.2.6 [Artificial Intelligence]: Learning  

General Terms 
Design, Experimentation. 

Keywords 
Evolutionary Computation, Genetic Programming, Heuristics. 

1. INTRODUCTION 
Genetic Programming (GP), proposed by Koza [9], is an 
evolutionary algorithm utilizing a population of solutions 
evolving under limited resources. The solutions, or chromosomes, 
are evaluated by a problem-specific, user-defined evaluation 
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method assessing their fitness. They compete for survival based 
on this fitness, and they undergo simulated evolution by means of 
crossover and mutation operators. GP differs from other 
evolutionary methods by using different representation, usually 
trees, to represent potential solutions to problems. Trees provide a 
rich representation that is sufficient to represent computer 
programs, analytical functions, variable length structures, and 
even computer hardware [1][9]. The user defines the 
representation space by defining the set of functions and terminals 
labeling the nodes of the trees. Of course, all of the needed labels 
must be predefined or solution trees cannot be evolved. Due to 
this principle of sufficiency, and the related closure principle, 
which allows functions and terminals to mix in any arity-
consistent fashion [9], the representation space is highly 
redundant and enlarged.  
GP searches this enlarged/redundant representation space, which 
is much greater than just the solution space. Because of this, 
obvious questions to be explored are: 

• How GP makes its choices as to what subspace the 
solutions should come from (the design question). 

• What is the impact of early design decisions on the 
performance of GP. 

• What would be the impact of imposing some design 
constraints on GP. 

Some researchers have already looked at some of these questions. 
McPhee with Hopper [12], and Burke [2] analyzed the effect of 
the root node selection on GP. Hall and Soule [4] have performed 
even more extensive study of this phenomenon. They concluded 
that the choice of the root node has a very highly significant 
impact on the solutions generated, and that fixing the root node 
properly amounts to limiting the search space needed to be 
searched. Supporting this, Daida has shown that later GP 
generations introduce little variation into the structure of the 
generated trees [3], indicating that these later generations search a 
smaller subspace of the search space (close in the genotype 
space). Moreover, Langdon has shown that GP typically searches 
only a well defined region of the potential search space [11]. Hall 
and Soule call these phenomena the design evolved by GP, which 
process in fact resembles top-down design strategy [4] – first set 
your choice on the most general design issues, then continue with 
the more specific ones.  
However, very little has been done to study the effect of imposing 
specific designs on GP, except for the above mentioned choice of 
the root nodes. Such decisions are heuristics which, as previously 
shown for the root node, should have a great impact on the 
performance of GP when applied globally, or locally across the 
whole tree structure. In this paper, we study the impact heuristics 
have on GP, using the Santa Fe trail for experimentation. To aid 
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with this study, we use the CGP software package which allows 
processing various heuristics in GP [5][6][8]. 
In section 2, we look at the role of heuristics in GP, and the 
current technologies for processing such constraints, paying 
special attention to CGP. In section 3, we define the experimental 
methodology, the Santa Fe trail problem, and the heuristics to be 
processed. In section 4, we show the results of our experiments, 
identifying the best heuristics and the improvements in GP 
performance. We also evaluate the generality of the best heuristics 
by applying them in other contexts, and we also evaluate the 
heuristics by comparing them with those extracted by an 
automated heuristics extraction system ACGP [7]. 

2. HEURISTICS AND CGP 
GP users often have some knowledge of the domain, and thus can 
either suggest or may want to impose various preferences 
(heuristics) for the solution trees. Such heuristics can be classified 
along two dimensions. First, we have global heuristics, such as 
the choice of a specific root node, and we have local heuristics, 
that is preferences regardless of the position in the tree. Second, 
we have weak and strong heuristics. Weak heuristics are 
probabilistic preferences, while strong heuristics are actual 
constraints. For example, disallowing recursion on the sin() 
function is a strong constraint, while requiring that some terminal 
x labels sin()’s argument half the time is an example of weak 
heuristics. Because of the difficulties of enforcing these heuristics, 
Koza has proposed the principle of closure [9], which allows any 
arity-consistent labeling, often accomplished through elaborate 
semantic interpretations. In such a standard GP system, mutation 
is always generating subtree structures from the uniform 
distribution space, disregarding anything discovered by GP so far. 
Crossover does a little better, as it only selects subtrees still 
maintained in the population, and thus presumed better. However, 
crossover mixes these subtrees out of context, again using uniform 
distribution space. Thus, in the standard GP, selective pressure in 
reproduction is the only driving force, and many unwanted trees 
may show up and be converged to.  
Structure-preserving crossover was introduced as the first attempt 
to handle some strong constraints [9] (the initial primary intention 
was to preserve structural constraints imposed by automatic 
modules ADFs). In the nineties, three independent generic 
methodologies were developed to allow problem-independent 
strong heuristics. Montana proposed STGP [13], which uses types 
to control the way functions and terminals can label local tree 
structures. For example, if the function if requires a Boolean as its 
first argument, only Boolean-producing functions and terminals 
would be allowed to label the root of that subtree. Janikow 
proposed CGP, which originally required the user to explicitly 
specify allowed and/or disallowed labels in different contexts [5]. 
These local constraints could be based on types, but also on some 
problem specific semantics. In v2.1, CGP also added explicit 
type-based constraints, along with polymorphic functions and 
weak heuristics [6][7]. Finally, those interested in program 
induction following specific syntax structure have used similar 
ideas in CFG-based GP [14].  
CGP (Constrained GP) relies on closing the search space in the 
subspace satisfying the desired strong heuristics while putting 
more exploratory resources in the subspaces identified by the 
weak heuristics. The search space is bound by the strong 

heuristics with the help of all operators, initialization included, 
which all guarantee valid offspring from valid parents [5]. The 
weak heuristics are used to adjust the probabilities of labeling 
nodes in mutation and the probabilities of selecting different 
subtrees for exchange in crossover. This is done with minimal 
overhead [5]. The heuristics allowed are only first-order local 
heuristics, that is heuristics on parent-child labeling,  and 
separately global heuristics on labeling the root node. 
The heuristics play a very important role in CGP. They not only 
drive the initialization of the population, but in mutation they 
allow growing subtrees from a non-uniform space rather than 
randomly as in GP. In crossover, they allow selecting subtrees, for 
exchange, in such a way that the resulting offspring satisfy the 
strong constraints and are also more plausible with respect to the 
weak constraints.  

3. EXPERIMENTAL METHODOLOGY 
3.1 Experimental Methodology and Setup 
Our aim is to study various types and levels of heuristics and how 
they affect GP’s performance: learning speed and efficiency. We 
measure the learning speed by tracing the learning curves, that is 
the quality of the best solution per generation. We measure the 
efficiency by tracing the average tree size per generation – which 
determines the evaluation (and thus execution) time. 
We only study strong, or non-probabilistic, constraints. We use 
two kinds of heuristics: reducing the function set, and specific 
local and global (root) structural heuristics. The experimental 
approach is to try such heuristics one at a time, select those 
individually showing good performance, and then to combine 
them into more complex heuristics. This process is performed by a 
human. 
All results are averages of 10 independent runs, 50 generations, 
population size 1000, half-and-half initialization of depth 2-8, 
maximum 1000 nodes and 20 levels, tournament selection of size 
7, and crossover, reproduction, and mutation operators with 
probabilities 0.85, 0.05, and 0.1, respectively. Other parameters 
use default values as in lil-gp. If a particular run solves the 
problem before generation 50, we stop the run, assume max on the 
learning curve, and 0 for the average tree complexity - this way 
the area under the complexity curve is proportional to the amount 
of work needed to solve the problem. 

3.2 The Santa Fe Problem 
We use the widely studied Santa Fe trail. As noted before, this 
problem has been widely studied with prior results indicating the 
best function choices for the root node. The problem involves a 
simulated ant traveling through a 32x32 grid while following a 
food trail. This path is 144 cells long, with 21 turns and 89 pieces 
of food.  The ant begins on the northwest corner of the grid facing 
east (following Koza [9]) and it is allowed a total of 400 basic 
actions. The fitness is the number of food pieces consumed. 
 
The terminals include: turn left, right, and also move action. The 
functions include: if-food-ahead, progn2, and progn3. The binary 
function if-food-ahead tests the position directly ahead (wherever 
the ant is facing) for food, and if true it performs the first action, 
otherwise it performs the second action. Progn2 and progn3 take 
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two and three arguments, respectively, and execute them 
sequentially.  

3.3 Reducing Function and Terminal Sets 
The first question we look at is whether the whole function and 
terminal sets are necessary for the best performance: we remove 
each terminal and function one at a time, and then try various 
combinations. As to notation, !R indicates removal of the right 
terminal, etc. 

3.4 Constraining Tree Structure 
Another question is what function is the most effective at the root, 
and whether there are any additional constraints or requirements 
on the placement of functions and terminals as arguments to other 
functions. This is exactly the “design” issue discussed in [2][4], 
however here extended to local contexts and not just the root 
node. We use the same approach as above: we test individual 
heuristics for those most promising, and then we combine them 
into more complex heuristics. As to notation, ifroot heuristic 
indicates that if-food-ahead should be placed at the root, and if1p 
indicates that the second argument of if-food-ahead should use 
any of the two available progn functions, etc. 

3.5 Combining Both Classes of Heuristics 
In this section, we study the result of combining some of the most 
promising heuristics from both of the above experiments. That is, 
we reduce the function/terminal set while also constraining the 
design. For example, !Rif0m indicates the heuristic disallowing 
right turns and forcing move as the first argument of every if-food-
ahead (move whenever food is ahead). As another example, 
P!P2!P3 indicates that every progn function is prohibited from 
using either of the progn as any of its arguments.  

3.6 Other Heuristics 
Selection of the best complex heuristics is a tedious process of 
analyzing, testing, deciding, and more testing by a skilled 
operator. Even though CGP allows the heuristics to be entered 
without the need for recompilation, it is still a tedious process. 
Thus, the obvious question is that of evolving the heuristics 
automatically. Here, we used the system designed to accomplish 
just this, ACGP, introduced last year [7]. We executed the system 
in the off-line mode, and then compared the quality of the 
extracted heuristics with those selected by the human operator.   
In all experiments, Base refers to GP without any heuristics. 

4. EXPERIMENTAL RESULTS 
4.1 Reducing Function and Terminal Sets 
First, we remove one element at a time. The best learning curves 
are shown in figure 1, with the corresponding efficiency as in 
figure 2 (as indicated in section 3.1, the area under the complexity 
curve is proportional to the number of node evaluations needed to 
solve the problem). As seen, some heuristics result in 
improvements, while others detriment learning. Clearly, the 
learning figure indicates that progn3 is the most unnecessary 
function - since progn2 can do the same more efficiently. 

 

 

 

 

 

 

 

 

 

 

This is further supported by the efficiency figure, where solutions 
without progn3 are overall of the lowest complexity. It is also 
interesting to note that only one turn action is sufficient (left or 
right); however, because of the necessary additional turns needed, 
such removals seem to detriment both the learning and the 
efficiency. 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Learning for reduced sets (individually). 

Figure 2. Efficiency for reduced sets (individually). 

Figure 3. Learning for reduced sets (combined). 
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Subsequently, we combine the best individual heuristics. Not all 
combinations are vital. For example, !R!L clearly never solves the 
problem as it would only allow straight-ahead moves. The most 
interesting results are shown in figure 3 and 4. As seen in figure 3, 
removing both progn3 and right results in learning 
indistinguishable from removing progn3 alone.  
 
 
 
 
 
 
 
 
 
 
 
 
 
However, looking at figure 4 we can see that this is done at the 
expense of about 50% greater work needed (number of nodes 
processed). Therefore, removing the function progn3 alone, or 
heuristic !P3, is identified as the best heuristic here.  

4.2 Structural Heuristics 
First, we evaluate basic structural heuristics individually, 
including global constraints on the root. The learning curves and 
the corresponding efficiency for the most interesting basic 
heuristics are shown in figure 5 and 6, respectively. It is very 
interesting to see that even though forcing if-food-ahead in the 
root and forcing move to be the first action of every  if-food-ahead 
hasn’t helped a great deal when applied individually, when 
combined they produce a much more powerful heuristic for 
improving the learning speed (figure 5).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

What is even more interesting, we can see from figure 6 that while 
forcing move in if-food-ahead produces trees double the size, 
when combined with the other root heuristic the tree size remains 
in check. This leads to the hypothesis that heuristics are 
unfortunately non-decomposable. We will see more to support 
this claim in what follows. 
 
 
 
 
 
 
 
 
 

 
 
 
 
Subsequently, we combine these and other basic structural 
heuristics into more complex ones. The results are presented in 
figure 7 (learning) and 8 (efficiency). As seen, ifrootif0m still 
remains the heuristic producing the best learning speed while 
doing it relatively efficiently. It is also interesting to observe that 
forcing the ant to do a sequence of actions if there is no food 
ahead (if1p forces either progn2 or progn3 to be the second 
argument to if-food-ahead) reduces the learning speed 
substantially. This is counterintuitive to our initial beliefs, but 
upon closer examination we realize that this is beneficial in some 
nodes but cannot be always required – this is an example where 
probabilistic heuristics would be useful, a feature available in 
CGP [6][8] but not used here. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Efficiency for reduced sets (combined). 

Figure 5. Learning for basic structural heuristics. 

Figure 6 Efficiency for basic structural heuristics. 

Figure 7. Learning for combined structural heuristics.
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4.3 Combining Both Kinds of Heuristics 
Next, we combine some of the best heuristics identified separately 
in the two processes above: function/terminal set reduction and 
structural heuristics. The resulting learning and efficiency curves 
are presented in figure 9 and 10, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9 indicates that combining the best two heuristics from the 
previous experiments produce the best results (!P3ifrootif0m), 
with !P3if0m coming close behind. Looking at the efficiency 
chart we observe that these two also reduce the overall time: first, 
the trees are smaller from the beginning; second, these heuristics 
allow solving the problem quite often before generation 50.  
Then, we test the idea of also removing the right turn from the set. 
As seen previously, this was detrimental when combined with 
removal of progn3 alone, but surprisingly when added to the 
combined heuristic it improves the learning speed (figure 11). 
Because problems are being solved more rapidly, the efficiency 
also improves (figure 12). This heuristic, denoted 
!R!P3ifrootif0m prohibits GP from using right turn and progn3 
function, while forcing if-food-ahead in the root and requiring 
that the first argument of this function be the move action. This 
further supports the idea that heuristics are not decomposable.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Finally, we analyze the solution trees by hand looking for 
patterns. We identify four such basic patterns, and we test them 
individually and in combination. The results are presented in 
figure 13 and 14. The individual heuristics were: constrain  
progn2 and progn3 so that neither can call neither (P!P2!P3), 
constrain root to always test for food (ifroot), constrain if-food-
ahead to always move first if there is food ahead (if0m), and 
disallowing testing for food again if there is no food ahead 

Figure 8. Efficiency for combined structural heuristics.

Figure 9. Learning for combinations of heuristics. 

Figure 10. Efficiency for combinations of heuristics. 

Figure 11. Learning for more combined heuristics. 

Figure 12. Efficiency for more combined heuristics. 
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(if1!if). As seen in these figures (results with previously shown 
constraints if0m and ifroot are not shown on this chart), the 
individual heuristics do not help a great deal, but when used in 
combination (heuristic CJM) they produce the fastest and most 
effective learning.  In fact, the initial population when initialized 
under the CJM heuristics, contains solutions better than those 
evolved under no heuristics after 50 generations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15 summarizes the learning curves of the best heuristics 
identified in the various experiments so far, while figure 16 
summarizes their efficiencies while solving the problem. As seen, 
the CJM complex heuristic is the best, with the less complex 
!R!P3ifrootif0m heuristic nearly as good, both in quality and in 
efficiency.  
 
 
 
 
 
 
 
 
 
 
 
 
 
The best solution discovered had only 13 nodes: 
(if-food-ahead move (progn3 right (if-food-
ahead move (progn3 left left (if-food-ahead 
move right))) move))  

4.4 Assessing Generality of the Heuristics 
The next question is that of generality of the heuristics – are they 
specific to this particular trail, or do they extend to other trails as 
well. This is similar question to that explored by Kuscu [10], yet 
different.  In [10], the generality of the solutions themselves are 
assessed, while we are assessing the generality of the heuristics  - 
which in turn help shape the solutions. A good analogy for the 
difference between the two cases would be a screwdriver vs. a  
tool factory. The question in [10] is how good a screwdriver, 
designed for one screw, would be to drive a new screw. Our 
question is how good a factory, designed to produce screwdrivers, 
is in producing a screwdriver for the new screw.  
To answer the question, we use two sets of five new trails. The 
first set contains five trails with similar characteristics to Santa Fe, 
that is constructed of the same basic primitives [10] just 
rearranged. The second set contains five trails constructed with 
the same plus slightly different set of primitive features. Both 
trails used the same grid and the same number of food pieces. We 
then repeat the same experiments, with 10 independent runs, 
using the previously identified best heuristics for the Santa Fe 
trail. The learning results for the two sets of trails are presented in 
figure 17 and 18, respectively.  
As seen in figure 17, the heuristics still substantially outperform 
GP without any heuristics, and their relative performance is 
retained. However, while the magnitude of the resulting 
improvements is about the same for the two worse heuristics, it is 
somehow reduced for the more complex heuristics. This illustrates 
the obvious hypothesis that the more complex the heuristics, the 
more specific they are to a given problem.  
 

Figure 13. Learning with CJM heuristic. 

Figure 14. Efficiency with CJM heuristic. 

Figure 15. Learning summaries. 

Figure 16. Efficiency summaries. 
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When applied to completely different trails, the same happens to 
an even greater extent. The overall relative performance of 
individual heuristics is the same, but they all result in even 
smaller improvements. Again, the improvements for the more 
detailed heuristics are reduced more (figure 18). 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.5 Comparing with Automatically Extracted 
Heuristics 
In the final experiment, we assess the overall quality of the 
heuristics used for the Santa Fe trail. To do so, we evolve the best 
heuristics using the recently introduced system ACGP [7]. The 
system was executed in the off-line mode, for 500 generations, in 
nineteen 25-generation long iterations starting after generation 50. 
At the end of each iteration, the population was reinitialized while 
using the newly discovered heuristics. For more details, see [7].  
The ACGP performance is illustrated in figure 19. As seen, the 
first 50 generations are indistinguishable from those of the base 
run, as no heuristics are adjusted until the first iteration 
terminates. At that time, the population is reinitialized using the 
newly discovered heuristics, and then the process is repeated 
every 25 generations. At every reinitialization we can observe a 
sudden drop in the performance, resulting from the randomly 
reinitialized population. However, the overall performance 
improves over time.  

 
 
 
 
 
 
 
 
 
 
 
 
 
Subsequently, we take the resulting heuristics after 500 
generations, and we compare them against the other previously 
identified heuristics. As we can see in figure 20, the ACGP 
discovered heuristics clearly outperform our best heuristics, even 
CJM. However, because ACGP discovers probabilistic heuristics, 
they are not easily comprehensible nor directly comparable 
(ACGP can be forced to discover strong heuristics).  
 
 
 
 
 
 
 
 
 
 
 
 
 

5. CONCLUSIONS 
In this paper, we used an experimental process to evaluate various 
strong non-probabilistic heuristics for GP running the Santa Fe 
trail problem. The heuristics included global constraints on 
labeling the root node and local first-order heuristics on parent-
child constraints. We measured the improvements in terms of the 
quality of the generated solutions, but we also evaluated the 
learning efficiency by looking at the average number of nodes 
being processed. As seen, some heuristics improved GP’s 
performance substantially. However, the more complex heuristics 
are not necessarily decomposable, that is a given heuristic can be 
beneficial even if their basic components are not, and vice-versa. 
We then evaluated the resulting best heuristics on different trails, 
assessing their generality. We concluded that the heuristics are 
still beneficial, but the level of improvements diminishes with the 

Figure 19. Learning curve in ACGP (off-line mode). Figure 17. Learning for slightly different trails. 

Figure 18. Learning on substantially different trails. 

Figure 20. Comparing our heuristics against ACGP’s.
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specialization of the heuristics and the dissimilarity of the new 
problem to the original one. 
Finally, we used the ACGP system to generate weak heuristics 
and we compared those against our human-discovered strong 
heuristics. As seen, ACGP-generated weak heuristics 
outperformed our best human-generated strong heuristics. 
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