
CGP Visits the Santa Fe Trail – Effects of Heuristics on GP
Cezary Z Janikow

Dept. of Math and Computer Science
University of Missouri – St. Louis

St. Louis, MO 63121 USA

janikow@umsl.edu

Christopher J Mann
Dept. of Math and Computer Science

University of Missouri – St. Louis
St. Louis, MO 63121 USA

cjm5e8@umsl.edu

ABSTRACT
GP uses trees to represent chromosomes. The user defines the
representation space by defining the set of functions and terminals
to label the nodes in the trees, and GP searches the space.
Previous research and experimentation show that the choice of the
function/terminal set, choice of the initial population, and some
other explicit and implicit “design” factors have great influence
on both the quality and the speed of the evolution. Such heuristics
are valuable simply because they improve GP’s performance, or
because they enforce some desired properties on the solutions. In
this paper, we evaluate the effect of heuristics on GP solving the
Santa Fe trail. We concentrate on improving the solution quality,
but we also look at efficiency. Various heuristics are tried and
mixed by hand, while evaluated with the help of the CGP system.
Results show that some heuristics result in very substantial
performance improvements, that complex heuristics are usually
not decomposable, and that the heuristics generalize to apply to
other similar problems, but the applicability reduces with the
complexity of the heuristics and the dissimilarity of the new
problem to the old one. We also compare such user-mixed
heuristics with those generated by the ACGP system which
automatically extracts heuristics improving GP performance.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search

I.2.6 [Artificial Intelligence]: Learning

General Terms
Design, Experimentation.

Keywords
Evolutionary Computation, Genetic Programming, Heuristics.

1. INTRODUCTION
Genetic Programming (GP), proposed by Koza [9], is an
evolutionary algorithm utilizing a population of solutions
evolving under limited resources. The solutions, or chromosomes,
are evaluated by a problem-specific, user-defined evaluation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
GECCO’05, June 25-29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006…$5.00.

method assessing their fitness. They compete for survival based
on this fitness, and they undergo simulated evolution by means of
crossover and mutation operators. GP differs from other
evolutionary methods by using different representation, usually
trees, to represent potential solutions to problems. Trees provide a
rich representation that is sufficient to represent computer
programs, analytical functions, variable length structures, and
even computer hardware [1][9]. The user defines the
representation space by defining the set of functions and terminals
labeling the nodes of the trees. Of course, all of the needed labels
must be predefined or solution trees cannot be evolved. Due to
this principle of sufficiency, and the related closure principle,
which allows functions and terminals to mix in any arity-
consistent fashion [9], the representation space is highly
redundant and enlarged.
GP searches this enlarged/redundant representation space, which
is much greater than just the solution space. Because of this,
obvious questions to be explored are:

• How GP makes its choices as to what subspace the
solutions should come from (the design question).

• What is the impact of early design decisions on the
performance of GP.

• What would be the impact of imposing some design
constraints on GP.

Some researchers have already looked at some of these questions.
McPhee with Hopper [12], and Burke [2] analyzed the effect of
the root node selection on GP. Hall and Soule [4] have performed
even more extensive study of this phenomenon. They concluded
that the choice of the root node has a very highly significant
impact on the solutions generated, and that fixing the root node
properly amounts to limiting the search space needed to be
searched. Supporting this, Daida has shown that later GP
generations introduce little variation into the structure of the
generated trees [3], indicating that these later generations search a
smaller subspace of the search space (close in the genotype
space). Moreover, Langdon has shown that GP typically searches
only a well defined region of the potential search space [11]. Hall
and Soule call these phenomena the design evolved by GP, which
process in fact resembles top-down design strategy [4] – first set
your choice on the most general design issues, then continue with
the more specific ones.
However, very little has been done to study the effect of imposing
specific designs on GP, except for the above mentioned choice of
the root nodes. Such decisions are heuristics which, as previously
shown for the root node, should have a great impact on the
performance of GP when applied globally, or locally across the
whole tree structure. In this paper, we study the impact heuristics
have on GP, using the Santa Fe trail for experimentation. To aid

1697

with this study, we use the CGP software package which allows
processing various heuristics in GP [5][6][8].
In section 2, we look at the role of heuristics in GP, and the
current technologies for processing such constraints, paying
special attention to CGP. In section 3, we define the experimental
methodology, the Santa Fe trail problem, and the heuristics to be
processed. In section 4, we show the results of our experiments,
identifying the best heuristics and the improvements in GP
performance. We also evaluate the generality of the best heuristics
by applying them in other contexts, and we also evaluate the
heuristics by comparing them with those extracted by an
automated heuristics extraction system ACGP [7].

2. HEURISTICS AND CGP
GP users often have some knowledge of the domain, and thus can
either suggest or may want to impose various preferences
(heuristics) for the solution trees. Such heuristics can be classified
along two dimensions. First, we have global heuristics, such as
the choice of a specific root node, and we have local heuristics,
that is preferences regardless of the position in the tree. Second,
we have weak and strong heuristics. Weak heuristics are
probabilistic preferences, while strong heuristics are actual
constraints. For example, disallowing recursion on the sin()
function is a strong constraint, while requiring that some terminal
x labels sin()’s argument half the time is an example of weak
heuristics. Because of the difficulties of enforcing these heuristics,
Koza has proposed the principle of closure [9], which allows any
arity-consistent labeling, often accomplished through elaborate
semantic interpretations. In such a standard GP system, mutation
is always generating subtree structures from the uniform
distribution space, disregarding anything discovered by GP so far.
Crossover does a little better, as it only selects subtrees still
maintained in the population, and thus presumed better. However,
crossover mixes these subtrees out of context, again using uniform
distribution space. Thus, in the standard GP, selective pressure in
reproduction is the only driving force, and many unwanted trees
may show up and be converged to.
Structure-preserving crossover was introduced as the first attempt
to handle some strong constraints [9] (the initial primary intention
was to preserve structural constraints imposed by automatic
modules ADFs). In the nineties, three independent generic
methodologies were developed to allow problem-independent
strong heuristics. Montana proposed STGP [13], which uses types
to control the way functions and terminals can label local tree
structures. For example, if the function if requires a Boolean as its
first argument, only Boolean-producing functions and terminals
would be allowed to label the root of that subtree. Janikow
proposed CGP, which originally required the user to explicitly
specify allowed and/or disallowed labels in different contexts [5].
These local constraints could be based on types, but also on some
problem specific semantics. In v2.1, CGP also added explicit
type-based constraints, along with polymorphic functions and
weak heuristics [6][7]. Finally, those interested in program
induction following specific syntax structure have used similar
ideas in CFG-based GP [14].
CGP (Constrained GP) relies on closing the search space in the
subspace satisfying the desired strong heuristics while putting
more exploratory resources in the subspaces identified by the
weak heuristics. The search space is bound by the strong

heuristics with the help of all operators, initialization included,
which all guarantee valid offspring from valid parents [5]. The
weak heuristics are used to adjust the probabilities of labeling
nodes in mutation and the probabilities of selecting different
subtrees for exchange in crossover. This is done with minimal
overhead [5]. The heuristics allowed are only first-order local
heuristics, that is heuristics on parent-child labeling, and
separately global heuristics on labeling the root node.
The heuristics play a very important role in CGP. They not only
drive the initialization of the population, but in mutation they
allow growing subtrees from a non-uniform space rather than
randomly as in GP. In crossover, they allow selecting subtrees, for
exchange, in such a way that the resulting offspring satisfy the
strong constraints and are also more plausible with respect to the
weak constraints.

3. EXPERIMENTAL METHODOLOGY
3.1 Experimental Methodology and Setup
Our aim is to study various types and levels of heuristics and how
they affect GP’s performance: learning speed and efficiency. We
measure the learning speed by tracing the learning curves, that is
the quality of the best solution per generation. We measure the
efficiency by tracing the average tree size per generation – which
determines the evaluation (and thus execution) time.
We only study strong, or non-probabilistic, constraints. We use
two kinds of heuristics: reducing the function set, and specific
local and global (root) structural heuristics. The experimental
approach is to try such heuristics one at a time, select those
individually showing good performance, and then to combine
them into more complex heuristics. This process is performed by a
human.
All results are averages of 10 independent runs, 50 generations,
population size 1000, half-and-half initialization of depth 2-8,
maximum 1000 nodes and 20 levels, tournament selection of size
7, and crossover, reproduction, and mutation operators with
probabilities 0.85, 0.05, and 0.1, respectively. Other parameters
use default values as in lil-gp. If a particular run solves the
problem before generation 50, we stop the run, assume max on the
learning curve, and 0 for the average tree complexity - this way
the area under the complexity curve is proportional to the amount
of work needed to solve the problem.

3.2 The Santa Fe Problem
We use the widely studied Santa Fe trail. As noted before, this
problem has been widely studied with prior results indicating the
best function choices for the root node. The problem involves a
simulated ant traveling through a 32x32 grid while following a
food trail. This path is 144 cells long, with 21 turns and 89 pieces
of food. The ant begins on the northwest corner of the grid facing
east (following Koza [9]) and it is allowed a total of 400 basic
actions. The fitness is the number of food pieces consumed.

The terminals include: turn left, right, and also move action. The
functions include: if-food-ahead, progn2, and progn3. The binary
function if-food-ahead tests the position directly ahead (wherever
the ant is facing) for food, and if true it performs the first action,
otherwise it performs the second action. Progn2 and progn3 take

1698

two and three arguments, respectively, and execute them
sequentially.

3.3 Reducing Function and Terminal Sets
The first question we look at is whether the whole function and
terminal sets are necessary for the best performance: we remove
each terminal and function one at a time, and then try various
combinations. As to notation, !R indicates removal of the right
terminal, etc.

3.4 Constraining Tree Structure
Another question is what function is the most effective at the root,
and whether there are any additional constraints or requirements
on the placement of functions and terminals as arguments to other
functions. This is exactly the “design” issue discussed in [2][4],
however here extended to local contexts and not just the root
node. We use the same approach as above: we test individual
heuristics for those most promising, and then we combine them
into more complex heuristics. As to notation, ifroot heuristic
indicates that if-food-ahead should be placed at the root, and if1p
indicates that the second argument of if-food-ahead should use
any of the two available progn functions, etc.

3.5 Combining Both Classes of Heuristics
In this section, we study the result of combining some of the most
promising heuristics from both of the above experiments. That is,
we reduce the function/terminal set while also constraining the
design. For example, !Rif0m indicates the heuristic disallowing
right turns and forcing move as the first argument of every if-food-
ahead (move whenever food is ahead). As another example,
P!P2!P3 indicates that every progn function is prohibited from
using either of the progn as any of its arguments.

3.6 Other Heuristics
Selection of the best complex heuristics is a tedious process of
analyzing, testing, deciding, and more testing by a skilled
operator. Even though CGP allows the heuristics to be entered
without the need for recompilation, it is still a tedious process.
Thus, the obvious question is that of evolving the heuristics
automatically. Here, we used the system designed to accomplish
just this, ACGP, introduced last year [7]. We executed the system
in the off-line mode, and then compared the quality of the
extracted heuristics with those selected by the human operator.
In all experiments, Base refers to GP without any heuristics.

4. EXPERIMENTAL RESULTS
4.1 Reducing Function and Terminal Sets
First, we remove one element at a time. The best learning curves
are shown in figure 1, with the corresponding efficiency as in
figure 2 (as indicated in section 3.1, the area under the complexity
curve is proportional to the number of node evaluations needed to
solve the problem). As seen, some heuristics result in
improvements, while others detriment learning. Clearly, the
learning figure indicates that progn3 is the most unnecessary
function - since progn2 can do the same more efficiently.

This is further supported by the efficiency figure, where solutions
without progn3 are overall of the lowest complexity. It is also
interesting to note that only one turn action is sufficient (left or
right); however, because of the necessary additional turns needed,
such removals seem to detriment both the learning and the
efficiency.

Figure 1. Learning for reduced sets (individually).

Figure 2. Efficiency for reduced sets (individually).

Figure 3. Learning for reduced sets (combined).

30

40

50

60

70

80

90

0 5 10 15 20 25 30 35 40 45 50
Generations

!P3
Base
!P2
!R
!L

A
ve

ra
ge

 F
itn

es
s

0

50

100

150

200

250

300

350

400

0 5 10 15 20 25 30 35 40 45 50

Generations

!P3
Base
!P2
!R
!L

A
ve

ra
ge

 C
om

pl
ex

ity

30

40

50

60

70

80

90

0 5 10 15 20 25 30 35 40 45 50
Generations

!P3

!R!P3

Base
!R

A
ve

ra
ge

 F
itn

es
s

1699

Subsequently, we combine the best individual heuristics. Not all
combinations are vital. For example, !R!L clearly never solves the
problem as it would only allow straight-ahead moves. The most
interesting results are shown in figure 3 and 4. As seen in figure 3,
removing both progn3 and right results in learning
indistinguishable from removing progn3 alone.

However, looking at figure 4 we can see that this is done at the
expense of about 50% greater work needed (number of nodes
processed). Therefore, removing the function progn3 alone, or
heuristic !P3, is identified as the best heuristic here.

4.2 Structural Heuristics
First, we evaluate basic structural heuristics individually,
including global constraints on the root. The learning curves and
the corresponding efficiency for the most interesting basic
heuristics are shown in figure 5 and 6, respectively. It is very
interesting to see that even though forcing if-food-ahead in the
root and forcing move to be the first action of every if-food-ahead
hasn’t helped a great deal when applied individually, when
combined they produce a much more powerful heuristic for
improving the learning speed (figure 5).

What is even more interesting, we can see from figure 6 that while
forcing move in if-food-ahead produces trees double the size,
when combined with the other root heuristic the tree size remains
in check. This leads to the hypothesis that heuristics are
unfortunately non-decomposable. We will see more to support
this claim in what follows.

Subsequently, we combine these and other basic structural
heuristics into more complex ones. The results are presented in
figure 7 (learning) and 8 (efficiency). As seen, ifrootif0m still
remains the heuristic producing the best learning speed while
doing it relatively efficiently. It is also interesting to observe that
forcing the ant to do a sequence of actions if there is no food
ahead (if1p forces either progn2 or progn3 to be the second
argument to if-food-ahead) reduces the learning speed
substantially. This is counterintuitive to our initial beliefs, but
upon closer examination we realize that this is beneficial in some
nodes but cannot be always required – this is an example where
probabilistic heuristics would be useful, a feature available in
CGP [6][8] but not used here.

Figure 4. Efficiency for reduced sets (combined).

Figure 5. Learning for basic structural heuristics.

Figure 6 Efficiency for basic structural heuristics.

Figure 7. Learning for combined structural heuristics.

0

50

100

150

200

250

300

350

400

0 5 10 15 20 25 30 35 40 45 50

Generations

!P3
!R!P3
Base
!R

A
ve

ra
ge

 C
om

pl
ex

ity

30

40

50

60

70

80

90

0 5 10 15 20 25 30 35 40 45 50
Generations

ifrootif0m

if0m

Base

ifroot

A
ve

ra
ge

 F
itn

es
s

0
50

100
150
200
250
300
350
400

450
500
550
600

0 5 10 15 20 25 30 35 40 45 50

Generations

ifrootif0m
if0m
Base
ifroot

A
ve

ra
ge

 C
om

pl
ex

ity

30

40

50

60

70

80

90

0 5 10 15 20 25 30 35 40 45 50
Generations

ifrootif0m
ifrootif0mif1p
Base
if1p

A
ve

ra
ge

 F
itn

es
s

1700

4.3 Combining Both Kinds of Heuristics
Next, we combine some of the best heuristics identified separately
in the two processes above: function/terminal set reduction and
structural heuristics. The resulting learning and efficiency curves
are presented in figure 9 and 10, respectively.

Figure 9 indicates that combining the best two heuristics from the
previous experiments produce the best results (!P3ifrootif0m),
with !P3if0m coming close behind. Looking at the efficiency
chart we observe that these two also reduce the overall time: first,
the trees are smaller from the beginning; second, these heuristics
allow solving the problem quite often before generation 50.
Then, we test the idea of also removing the right turn from the set.
As seen previously, this was detrimental when combined with
removal of progn3 alone, but surprisingly when added to the
combined heuristic it improves the learning speed (figure 11).
Because problems are being solved more rapidly, the efficiency
also improves (figure 12). This heuristic, denoted
!R!P3ifrootif0m prohibits GP from using right turn and progn3
function, while forcing if-food-ahead in the root and requiring
that the first argument of this function be the move action. This
further supports the idea that heuristics are not decomposable.

Finally, we analyze the solution trees by hand looking for
patterns. We identify four such basic patterns, and we test them
individually and in combination. The results are presented in
figure 13 and 14. The individual heuristics were: constrain
progn2 and progn3 so that neither can call neither (P!P2!P3),
constrain root to always test for food (ifroot), constrain if-food-
ahead to always move first if there is food ahead (if0m), and
disallowing testing for food again if there is no food ahead

Figure 8. Efficiency for combined structural heuristics.

Figure 9. Learning for combinations of heuristics.

Figure 10. Efficiency for combinations of heuristics.

Figure 11. Learning for more combined heuristics.

Figure 12. Efficiency for more combined heuristics.

0
50

100
150
200
250
300
350
400
450
500
550
600

0 5 10 15 20 25 30 35 40 45 50
Generations

ifrootif0m
ifrootif0mif1p
Base
if1p

A
ve

ra
ge

 C
om

pl
ex

ity

30

40

50

60

70

80

90

0 5 10 15 20 25 30 35 40 45 50

Generations

!P3ifrootif0m

!P3if0m

!P3

if0m

Base

A
ve

ra
ge

 F
itn

es
s

0
50

100
150

200
250
300

350
400
450
500

550
600

0 5 10 15 20 25 30 35 40 45 50

Generations

!P3ifrootif0m
!P3if0m
!P3
if0m
Base

A
ve

ra
ge

 C
om

pl
ex

ity

30

40

50

60

70

80

90

0 5 10 15 20 25 30 35 40 45 50
Generations

!R!P3ifrootif0m
!P3ifrootif0m
ifrootif0m
!P3
!R!P3
Base

A
ve

ra
ge

 F
itn

es
s

0

50

100

150

200

250

300

350

0 5 10 15 20 25 30 35 40 45 50

Generations

!R!P3ifrootif0m
!P3ifrootif0m
ifrootif0m
!P3
!R!P3
Base

A
ve

ra
ge

 C
om

pl
ex

ity

1701

(if1!if). As seen in these figures (results with previously shown
constraints if0m and ifroot are not shown on this chart), the
individual heuristics do not help a great deal, but when used in
combination (heuristic CJM) they produce the fastest and most
effective learning. In fact, the initial population when initialized
under the CJM heuristics, contains solutions better than those
evolved under no heuristics after 50 generations.

Figure 15 summarizes the learning curves of the best heuristics
identified in the various experiments so far, while figure 16
summarizes their efficiencies while solving the problem. As seen,
the CJM complex heuristic is the best, with the less complex
!R!P3ifrootif0m heuristic nearly as good, both in quality and in
efficiency.

The best solution discovered had only 13 nodes:
(if-food-ahead move (progn3 right (if-food-
ahead move (progn3 left left (if-food-ahead
move right))) move))

4.4 Assessing Generality of the Heuristics
The next question is that of generality of the heuristics – are they
specific to this particular trail, or do they extend to other trails as
well. This is similar question to that explored by Kuscu [10], yet
different. In [10], the generality of the solutions themselves are
assessed, while we are assessing the generality of the heuristics -
which in turn help shape the solutions. A good analogy for the
difference between the two cases would be a screwdriver vs. a
tool factory. The question in [10] is how good a screwdriver,
designed for one screw, would be to drive a new screw. Our
question is how good a factory, designed to produce screwdrivers,
is in producing a screwdriver for the new screw.
To answer the question, we use two sets of five new trails. The
first set contains five trails with similar characteristics to Santa Fe,
that is constructed of the same basic primitives [10] just
rearranged. The second set contains five trails constructed with
the same plus slightly different set of primitive features. Both
trails used the same grid and the same number of food pieces. We
then repeat the same experiments, with 10 independent runs,
using the previously identified best heuristics for the Santa Fe
trail. The learning results for the two sets of trails are presented in
figure 17 and 18, respectively.
As seen in figure 17, the heuristics still substantially outperform
GP without any heuristics, and their relative performance is
retained. However, while the magnitude of the resulting
improvements is about the same for the two worse heuristics, it is
somehow reduced for the more complex heuristics. This illustrates
the obvious hypothesis that the more complex the heuristics, the
more specific they are to a given problem.

Figure 13. Learning with CJM heuristic.

Figure 14. Efficiency with CJM heuristic.

Figure 15. Learning summaries.

Figure 16. Efficiency summaries.

30

40

50

60

70

80

90

0 5 10 15 20 25 30 35 40 45 50
Generations

CJM
P3!P2!P3
base
P2!P2!P3
if1!if

A
ve

ra
ge

 F
itn

es
s

0

50

100

150

200

250

300

350

0 5 10 15 20 25 30 35 40 45 50

Generations

CJM
P3!P2!P3
base
P2!P2!P3
if1!if

A
ve

ra
ge

 C
om

pl
ex

ity

30

40

50

60

70

80

90

0 5 10 15 20 25 30 35 40 45 50
Generations

CJM
!R!P3ifrootif0m
ifrootif0m
!P3
Base

A
ve

ra
ge

 F
itn

es
s

0

50

100

150

200

250

300

350

0 5 10 15 20 25 30 35 40 45 50

Generations

CJM
!R!P3ifrootif0m
ifrootif0m
!P3
Base

A
ve

ra
ge

 C
om

pl
ex

ity

1702

When applied to completely different trails, the same happens to
an even greater extent. The overall relative performance of
individual heuristics is the same, but they all result in even
smaller improvements. Again, the improvements for the more
detailed heuristics are reduced more (figure 18).

4.5 Comparing with Automatically Extracted
Heuristics
In the final experiment, we assess the overall quality of the
heuristics used for the Santa Fe trail. To do so, we evolve the best
heuristics using the recently introduced system ACGP [7]. The
system was executed in the off-line mode, for 500 generations, in
nineteen 25-generation long iterations starting after generation 50.
At the end of each iteration, the population was reinitialized while
using the newly discovered heuristics. For more details, see [7].
The ACGP performance is illustrated in figure 19. As seen, the
first 50 generations are indistinguishable from those of the base
run, as no heuristics are adjusted until the first iteration
terminates. At that time, the population is reinitialized using the
newly discovered heuristics, and then the process is repeated
every 25 generations. At every reinitialization we can observe a
sudden drop in the performance, resulting from the randomly
reinitialized population. However, the overall performance
improves over time.

Subsequently, we take the resulting heuristics after 500
generations, and we compare them against the other previously
identified heuristics. As we can see in figure 20, the ACGP
discovered heuristics clearly outperform our best heuristics, even
CJM. However, because ACGP discovers probabilistic heuristics,
they are not easily comprehensible nor directly comparable
(ACGP can be forced to discover strong heuristics).

5. CONCLUSIONS
In this paper, we used an experimental process to evaluate various
strong non-probabilistic heuristics for GP running the Santa Fe
trail problem. The heuristics included global constraints on
labeling the root node and local first-order heuristics on parent-
child constraints. We measured the improvements in terms of the
quality of the generated solutions, but we also evaluated the
learning efficiency by looking at the average number of nodes
being processed. As seen, some heuristics improved GP’s
performance substantially. However, the more complex heuristics
are not necessarily decomposable, that is a given heuristic can be
beneficial even if their basic components are not, and vice-versa.
We then evaluated the resulting best heuristics on different trails,
assessing their generality. We concluded that the heuristics are
still beneficial, but the level of improvements diminishes with the

Figure 19. Learning curve in ACGP (off-line mode). Figure 17. Learning for slightly different trails.

Figure 18. Learning on substantially different trails.

Figure 20. Comparing our heuristics against ACGP’s.

30

40

50

60

70

80

90

0 50 100 150 200 250 300 350 400 450 500

Generations

ACGP Learning Curve

baseA
ve

ra
ge

 F
itn

es
s

30

40

50

60

70

80

90

0 5 10 15 20 25 30 35 40 45 50

Generations

CJM
!R!P3ifrootif0m
ifrootif0m
!P3
Base

A
ve

ra
ge

 F
itn

es
s

20

30

40

50

60

70

80

90

0 5 10 15 20 25 30 35 40 45 50
Generations

CJM
!R!P3ifrootif0m
ifrootif0m
!P3
Base

A
ve

ra
ge

 F
itn

es
s

30

40

50

60

70

80

90

0 5 10 15 20 25 30 35 40 45 50
Generations

CJM
!R!P3ifrootif0m
ifrootif0m
!P3
Base
ACGP

A
ve

ra
ge

 F
itn

es
s

Magnification of Top Three

87

88

89

0 5 10 15 20 25 30 35 40 45 50

1703

specialization of the heuristics and the dissimilarity of the new
problem to the original one.
Finally, we used the ACGP system to generate weak heuristics
and we compared those against our human-discovered strong
heuristics. As seen, ACGP-generated weak heuristics
outperformed our best human-generated strong heuristics.

REFERENCES
[1] Banzhaf, Wolfgang, Nordin, Peter, Keller, Robert E., and

Francone, Frank D. Genetic Programming. Morgan
Kaufmann 1998.

[2] Burke, Edmund, Gustafson, Steven, and Kendall, Graham. A
survey and analysis of diversity measures in genetic
programming. In Langdon, W., Cantu-Paz, E. Mathias, K.,
Roy, R., Davis, D., Poli, R., Balakrishnan, K., Honavar, V.,
Rudolph, G., Wegener, J., Bull, L., Potter, M., Schultz, A.,
Miller, J., Burke, E. and Jonoska, N., editors. GECCO2002:
Proceedings of the Genetic and Evolutionary Computation
Conference, 716-723, New York. Morgan Kaufmann.

[3] Daida, Jason, Hills, Adam, Ward, David, and Long, Stephen.
Visualizing tree structures in genetic programming. In
Cantu-Paz, E., Foster, J., Deb, K., Davis, D., Roy, R.,
O’Reilly, U., Beyer, H., Standish, R., Kendall, G., Wilson,
S., Harman, M., Wegener, J., Dasgupta, D., Potter, M.,
Schultz, A., Dowsland, K., Jonoska, N., and Miller, J.,
editors, Genetic and Evolutionary Computation – GECCO-
2003, volume 2724 of LNCS, 1652-1664, Chicago. Springer
Verlag.

[4] Hall, John M. and Soule, Terence. Does Genetic
Programming Inherently Adopt Structured Design
Techniques? In O’Reilly, Una-May, Yu, Tina, and Riolo,
Rick L., editors. Genetic Programming Theory and Practice
(II). Springer, New York, NY, 2005, 159-174.

[5] Janikow, Cezary Z. A Methodology for Processing Problem
Constraints in Genetic Programming. Computers and
Mathematics with Applications, 32(8):97-113, 1996.

[6] Janikow, Cezary Z. and DeWeese, Scott. Processing
Constraints in GP with CGP2.1. In Proceedings of the GP
1998 International Conference, 173-180.

[7] Janikow, Cezary Z. ACGP: Adaptable Constrained Genetic
Programming. In O’Reilly, Una-May, Yu, Tina, and Riolo,
Rick L., editors. Genetic Programming Theory and Practice
(II). Springer, New York, NY, 2005, 191-206.

[8] Janikow, Cezary Z. CGP.
http://www.cs.umsl.edu/~janikow/CGP.

[9] Koza, John R. Genetic Programming II: Automatic
Discovery of Reusable Programs. MIT Press, Cambridge
Massachusetts, May 1994.

[10] Kuscu, Ibrahim. Evolving a Generalized Behavior: Artificial
Ant Problem Revisited. In Porto, V.W., Saravanan, N.,
Waagen, D., and Eiben, A.E., editors, Evolutionary
Programming VII 1998, pages 799-808, San Diego,
California, Mar. 1998.

[11] Langon, William. Quadratic bloat in genetic programming.
In Whitley, D., Goldberg, D., Cantu-Paz, E., Spector, L.,
Parmee, I., and Beyer, H-G., editors, Proceedings of the
Genetic and Evolutionary Conference GECCO 2000, 451-
458, Las Vegas. Morgan Kaufmann.

[12] McPhee, Nicholas F. and Hopper, Nicholas J. Analysis of
genetic diversity through population history. In Banzhaf, W.,
Daida, J., Eiben, A. Garzon, M. Honavar, V., Jakiela, M. and
Smith, R., editors Proceedings of the Genetic and
Evolutionary Computation Conference, volume 2, pages
1112-1120, Orlando, Florida, USA. Morgan Kaufmann.

[13] Montana, David J. Strongly Typed Genetic Programming.
Evolutionary Computation, 3(2):199-230, 1995.

[14] Whigham, P. A. Grammatically-based Genetic Programming.
In Rosca, Justinian P., editor, Proceedings of the Workshop
on Genetic Programming: From Theory to Real-World
Applications, pages 33-41, Tahoe City, California, 9 July
1995.

1704

