

Genetic Network Programming with Automatically Defined
Groups for Assigning Proper Roles to Multiple Agents

Tadahiko Murata
Faculty of Informatics,

Kansai University
2-1-1 Ryozenji, Takatsuki, Osaka 569-1095, Japan

+81-72-690-2429

murata@res.kutc.kansai-u.ac.jp

Takashi Nakamura
Computer Science Major,

Kansai University Graduate School
2-1-1 Ryozenji, Takatsuki, Osaka 569-1095, Japan

+81-72-690-2429

fb4m110@edu.kutc.kansai-u.ac.jp

ABSTRACT
In this paper, we apply a Genetic Network Programming (GNP)
Architecture using Automatically Defined Groups (ADG) to a
multi-agent problem where cooperation of agents are required.
GNP is a kind of evolutionary methods inspired from Genetic
Programming (GP). While GP has a tree architecture, GNP has a
network architecture with which an agent works in the virtual
world. In GNP with ADG, each agent is assigned to a group
according to its role to complete some task of a cooperative
problem. We consider two types of problems in this paper: one
problem is to assign an appropriate role to each agent according to
its ability, and the other is to assign a proper role to each agent
with the same ability. While the first problem has the specific
conditions as for the ability of an agent, the latter is a general
problem. We show the effectiveness of GNP with ADG through
computer simulations on the two types of load transportation
problems.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence
– Multiagent systems

General Terms
Algorithms, Performance.

Keywords
Genetic Network Programming, cooperation, role assignment.

1. INTRODUCTION
Recently many researchers have investigated on automatic design
of complex systems using evolutionary computation (EC)
techniques. Genetic Programming [9] is one of well-known EC
techniques that uses a tree structure to describe solutions of
numeral problems, combination optimization problems, and
action control problems for agents. However, GP is known to
have difficulty to converge in one near-optimal solution or to

search an optimal structure efficiently due to its large solution
space. When it is applied to dynamic problems such as action
control problems, some actions should be selected in a chain of
actions. That is, an action should be selected not only by the
current situation but also by the actions already taken. If a
designer of GP notice the necessity of that issue, s/he can try to
define appropriate nodes to utilize previous information. However,
it is difficult to define appropriate nodes in advance even if s/he
knows its importance.

In order to cope with such problems, a new architecture called
Genetic Network Programming (GNP) has been proposed [7]. It is
inspired from GP, but it does not have a tree architecture, but has
a network architecture. While Evolutionary Programming (EP) [1]
also has a network architecture, it may be difficult to predefine all
transitions in advance. GNP can work with only problem-
dependent nodes like GP so that the designer predefine only a
small number of types of nodes. PDGP [13] was also proposed to
represent graph-like structures, however, it can not represent the
repetition of actions since connections among nodes are restricted
only to upwards or the adjacent.

In GNP [7], every agent takes actions according to an identical set
of rules. It is called a homogeneous model. In GP research works,
however, various methods have been proposed for heterogeneous
model [10,4,6]. Luke and Spector [10] showed that the
heterogeneous model performs better than the homogeneous
model because the ability of agents becomes higher and agents
perform more complex cooperative behaviors. However, the
search efficiency for GP becomes worse in the heterogeneous
model as its searching space increases. While these previous
studies [10,6] considered the heterogeneous model, the number of
agents was restricted to two to four. We consider 20 agents in this
paper.

In order to obtain multiple roles for a number of agents, Hara and
Nagao [2,3] have proposed a combined model of the
homogeneous and the heterogeneous model. That is, they
assigned a role to a class of agents. They developed several trees
for classes of agents by GP, and the agents with the same role
refer the same tree. Their model is called Automatically Defined
Groups (ADG) [2]. In their ADG model, the number of roles does
not have to be predefined, but it is obtained automatically through
evolutionary process. They showed their effectiveness for a load
transportation problem [2,3] and the tile world problem [14].

We have combined GNP and ADG for developing control rules
for multiple agents [11] (for details, see [12]). In this paper, we
evaluate the performance of GNP with ADG by applying it to two

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’05, June 25-29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006…$5.00.

1705

types of problems: one problem is to assign an appropriate role to
each agent according to its ability, and the other is to assign a
proper role to each agent where all agents have the same ability.
While the first problem has the specific conditions as for the
ability of an agent, the latter has few conditions as a general
problem, so that the problem has larger solutions space to be
searched. We show the effectiveness of GNP with ADG through
computer simulations on these two problems.

2. GENETIC NETWORK PROGRAMMING
2.1 Basic Architecture of GNP
In this section, we describe the basic architecture of GNP [5,7,8].
GNP uses a network architecture instead of using a tree
architecture. Fig. 1 shows the basic structure of GNP. In GNP, we
have three types of nodes: start node, judgment node and
processing node. In Fig. 1, the start node, the judgment node and
the processing node are denoted by a square, a diamond and an
open circle, respectively. The start node is like a root node in GP.
The other two nodes, the judgment node and the processing node,
correspond to the function node and the terminal node,
respectively. Therefore we can employ the same function node
and the terminal node used in GP as the judgment node and the
processing node in GNP. Main difference between GP and GNP
lies in the terminal node or the processing node. As shown in Fig.
2, the terminal node of GP can not have a further connection. That
is the reason why it is called as “terminal” node. On the other
hand, the processing node in GNP can connect other nodes as
shown in Fig. 1.

The difference between GNP and GP lies only in their
architectures, but it brings great difference between them. For
example, because the action of an agent is determined only in the
terminal node in GP, the agent should return to the root node to
take a next action. On the other hand, an agent in GNP acts when
it finds a processing node, and it does not have to return to the
start node after making decision.

As for another disadvantage of GP, the performance of the tree
may change greatly if the sub tree is exchanged by genetic
operations at the node near to the root node in GP. On the other
hand, the node exchange in GNP does not have such a great
influence on the performance of the network.

2.2 Chromosome Representation
In order to generate a network as an individual in GNP, we assign

1+N nodes for one network randomly. The representation of
each node is shown in Fig. 3. Each node has its ID number i
(Ni ,...,2,1,0=). As shown in Fig. 3, each node consists of two
parts: node gene and connection gene. In the node gene, iNT
shows the type of the node i: “0” denotes the processing node and
“1” denotes the judgment node. iID indicates the function of the
node. If we assume that there are P types of the processing node,

iID varies from 0 to 1−P . When there are J types of the
judgment node, iID varies from 0 to 1−J . The function of the
node i is defined according to the values of iNT and iID . As for
the start node, we do not assign 0NT and 0ID in the node gene.

In the connection gene, ijC indicates the j-th connection from the
node i, and ark

in shows the number of connections from the node
i. If 0=iNT , 1=ark

in because the processing node has only one
connection. When 1=iNT , 2≥ark

in because a judgment node

has several connections according to its condition. The value of
the ijC indicates the ID number of the node connected from the
node i.

In the initial generation, we first generate N nodes by assigning
iNT and iID for Ni ,...,1= randomly. After that we copy the set

of generated N nodes for popN individuals. To the N nodes in
each individual, we randomly assign the connection gene ijC for
each individual to form a population with the specified number of
individuals. Therefore, the node gene of each individual has the
same iNT and iID , but the connection gene has different
connections among N nodes.

2.3 Genetic Operations for GNP
GNP has the two types of genetic operations: crossover and
mutation. Fig. 4 shows an example of the crossover operation for
GNP. The procedure of the crossover is as follows:

[Crossover in GNP]
Step 1: Using the tournament selection, select two networks for

crossover (Parents 1 and 2 in Fig. 4).
Step 2: Select nodes randomly in one network (closed and

slashed circles and diamonds).
Step 3: Exchange the selected nodes between two networks

(right side of Fig. 4).
Step 4: Repeat Step 1 through 4 until the prespecified number

of offspring is generated.

start node

judgment node processing node

Figure 1. Basic Structure of GNP.

root node

 function node terminal node

Figure 2. Basic Structure of GP.

 Node Gene Connection Gene

inode iNT iID 1iC 2iC ---- ---- ark
iinC

Figure 3. Representation for the node.

1706

 Parent 1

Offspring 2

Offspring 1

Parent 2

Figure 4. Crossover in GNP.

 Parent

Offspring

Figure 5. Mutation for connection gene in GNP.

As shown in Fig. 4, the connections of the randomly selected four
nodes are exchanged by this crossover.

Fig. 5 shows a mutation operation for connection gene. The
procedure of the mutation for the connection gene is as follows:

[Mutation in GNP]
Step 1: Select a network randomly.
Step 2: According to the mutation probability mP , select a

connection (Closed circle and diamonds).
Step 3: Turn the value of the selected connection to another

node ID.

Since these genetic operations modify the network among the
nodes, all network generated by them have the same number of
nodes.

2.4 Algorithm of GNP
Using the initialization process and the genetic operations in
Subsections 2.2 and 2.3, we form the following algorithm for
GNP.

[GNP Algorithm]
Step 1 (Initialization)

Initialize the population with popN individuals.
Step 2 (Fitness evaluation)

Calculate the fitness value of each individual, and find an elitist
individual with the best fitness value in the population.

Step 3 (Genetic operations)
Step 3-1 (Selection): Select parents for crossover by the

tournament selection.
Step 3-2 (Crossover): Apply the crossover operator to the

selected parents.
Step 3-3 (Mutation): Apply the mutation operator to the

connection genes.
Step 3-4 (Elite strategy): Preserve the elitist individual found

in Step 2 or Step 5.
Step 4 (Replacement)

Replace the newly generated population with the previous
population.

Step 5 (Fitness evaluation)
Calculate the fitness value of each individual, and find an elitist
individual with the best fitness value in the population.

Step 6 (Termination Condition)
Terminate the algorithm if the specified condition is satisfied.
Otherwise return to Step 3.

3. GNP with the ADG MODEL
3.1 Automatically Defined Groups
We employ the Automatically Defined Groups (ADG) model
[2,3] for developing several roles of agents and assigning them to
one of the roles. According to its role, each agent refers to the
action control rules described by GNP. In the concept of the ADG
model, each agent has its own role, and the agents with the same
role take actions under the identical set of rules. This is likened to
social insects such as bees and ants. They have several specialized
classes among them such as queens, drones, workers and so on. It
is considered that a number of workers take action under the
identical rules. While these rules of a class are developed by GP
in [2,3], we have introduced this model into GNP [11,12]. In the
ADG model, a set of several classes is considered as one
individual to be governed by genetic operations. That is, a set of
several networks of GNP is considered as an individual. We refer
this individual including several networks as an ADG individual
in this paper.

In our ADG model, each agent belongs to one of the classes of the
network. Therefore each ADG individual has three pieces of
information: the class structure, a network structure for each class,
and the class IDs for all agents.

3.2 Genetic Operations for the ADG Model
Genetic operations for the ADG model aim to acquire several
classes according to the number of roles of agents. There are two
tasks to attain this aim:
1) Acquire the number of roles, and develop a network of GNP

for each role.
2) Assign an appropriate role to each agent.
In order to attain these tasks, Hara and Nagao [2,3] proposed a
group mutation and a crossover for ADG individuals. They
proposed a group mutation to change the members of a class (or a
group) as follows:

[Group Mutation in ADG]
Step 1: According to the group mutation probability gmP , select

an ADG individual.

1707

Step 2: For the selected ADG individual, select an agent, and
identify the class (or the group) of the selected agent.

Step 3: Change the class ID of the selected agent randomly.
Step 4: If the class ID specified in Step 3 is the same class ID to

which the agent belonged, generate a new network only
for the selected agent. The structure of the newly
generated network is the same one to which the agent
belonged. Then go to Step 5. If the class ID chosen in
Step 3 is different, go to Step 5.

Step 5: Return to Step 1 until the mutation is applied to all the
ADG individuals.

By this mutation, the class structure (i.e., the number of classes
and assigned agents to each class) is modified before the
crossover operation.

After applying the group mutation to each ADG individual, the
following crossover is applied to the ADG population.

[Crossover in ADG]
Step 1: According to the crossover probability gcP , select two

ADG individuals among the ADG population.
Step 2: Select one agent randomly.
Step 3: Identify the network of GNP to which the selected agent

refers in each of the selected ADG individuals. Let Net
and tNe ′ denote each network of the selected ADG
individuals, respectively.

Step 4: Identify the set of agents)(NetA that refer to the
network Net as action control rules. Identify)(tNeA ′ ,
too.

Step 5: Apply the crossover operator for GNP (see Subsection
2.3) to the selected networks Net and tNe ′ .

In Step 5, the following three relations between)(NetA and
)(tNeA ′ are examined and the merger or the division of the

classes is implemented before applying the crossover operator.
(Type a))()(tNeANetA ′= ,
(Type b))()(tNeANetA ′⊂ or)()(tNeANetA ′⊃ ,
(Type c) Otherwise.
In the case of Type a, the crossover for GNP is applied to Net
and tNe ′ without the merger or the division of the classes. If

)(NetA and)(tNeA ′ are in the relation of Type b, the division of
the class is occurred in the larger set. On the other hand in Type c,
the merger of the classes is taken place when)(NetA and

)(tNeA ′ are neither the same set nor in the inclusion relation.
Using Figs. 6 - 8, we explain these three cases.

In Figs. 6 - 8, two ADG individuals are already selected for the
crossover operator, and Agent 2 is selected in Step 2 of the
crossover operation for the ADG model.

(Type a)
Fig. 6 shows an example of this case. In this case, there is no
change among the class structure in an ADG individual since
Agent 2 is a member of the set {1, 2} in both the ADG individuals
in Fig. 6. Apply the crossover for GNP in Subsection 2.3 to the
selected networks.

(Type b)
When Agent 2 is selected in Step 2, it is a member of the set {2}
in the left parent, and a member of the set {1, 2, 3, 4} in the right

one in Fig. 7. If the network for the set {1, 2, 3, 4} in the right
parent is modified with the network in the left by the crossover,
Agents 1, 3, 4 are also influenced by the modification. In order to
restrict the influence of the network for Agent 2 in the left parent,
the same network of {1, 2, 3, 4} is newly generated in the right
and Agent 2 is assigned to the newly generated network. After
that, apply the crossover to the network of the left parent and the
newly generated network in the right parent.

(Type c)
As shown in Fig. 8, Agent 2 is included in {1, 2} in the left
parent, and in {2, 3} in the right one. Since these two sets are not
included each other, the union of these two sets is assigned to the
networks generated by the crossover.

 agent
1,2 3 3,44 1,2

1,2 3 3,44 1,2

{1,2} = {1,2}

Crossover

agent

agent agent

Figure 6. Crossover for ADG in the case of)()(tNeANetA ′=
(Type a).

 agent
1 3

2

4 1,2,3,4

{2} ⊂ {1,2,3,4}

Crossover

agent
2

agent
1 3 4 2 1,3,4

agent

Figure 7. Crossover for ADG in the case of)()(tNeANetA ′⊂
or)()(tNeANetA ′⊃ (Type b).

 agent
1,2 3 1,44 2,3

1,2,3 4 4 1,2,3

{1,2} ⊂ {2,3}
{1,2} ⊃ {2,3}

Crossover

agent

agent agent

Figure 8. Crossover for ADG in the case of no inclusion of
)(NetA and)(tNeA ′ (Type c).

1708

3.3 Overall Algorithm of GNP with ADG
Using the ADG model, we develop networks of GNP by the
following algorithm:

[Algorithm for GNP with ADG]
Step 1 (Initialization)

Initialize the population with ADG
popN ADG individuals.

Step 2 (Fitness evaluation)
Calculate the fitness value of each ADG individual, and find an
elitist individual with the best fitness value in the population.

Step 3 (Genetic operations)
Step 3-1 (Group Mutation): Select 1−ADG

popN ADG individuals
by the tournament selection, and apply the group mutation to
ADG individuals according to the group mutation probability.

Step 3-2 (Crossover): Apply the crossover operator in
Subsection 3.2 to the selected parents.

Step 3-3 (Mutation): Apply the mutation operator for
GNP in Subsection 2.3 to the connection genes.

Step 3-4 (Elite strategy): Preserve the elitist individual
found in Step 2 or Step 5.

Step 4 (Replacement)
Replace the newly generated population with the previous
population.

Step 5 (Fitness evaluation)
Calculate the fitness value of each ADG individual, and find an
elitist individual with the best fitness value in the population.

Step 6 (Termination Condition)
Terminate the algorithm if the specified condition is satisfied.
Otherwise return to Step 3.

4. LOAD TRANSPORTATION PROBLEM
In this section, we employ a simple load transportation problem
[2,3] to show the effectiveness of GNP comparing to GP. Later,
the effectiveness of the ADG model is shown by comparing it
with the heterogeneous model using the same problem. We
consider two types of problems: one problem is to assign an
appropriate role to each agent according to its ability, and the
other is to assign a proper role to each agent with the same ability.

4.1 Problem Settings
In the load transportation problem [2,3], there are two types of
loads that differ in weight. Each of the two types loads is placed
in a point in a two-dimensional grid world (1011×). That is, the
heavy loads are placed at one point (10, 9) in the environment,
and the light ones are placed at the other point (0, 9). These loads
are inexhaustible in this problem settings. The number of agents is
20. The aim of this transportation problem is to carry as many
loads as possible to the goal point (5, 0) within a limited duration.
The fitness of a team of 20 agents is measured by how many loads
are transported to the goal point within the allotted time. The
score of a heavy load is 5 and that of light one is 1. We allow 100
time steps for each agent. During that time steps each agent can
bring a load back to the goal point three times if it moves along
with a short way between the goal and load places.

We consider two types of settings for this transportation problem.
In the first problem, there are only five agents that can bring either
load among them. The other 15 agents can carry only a light load.

The aim of this problem can be said that to find the five agents
with the ability to carry heavy loads first and to assign them that
task. And the task to carry light loads is assigned to the other
agents.

In the other problem settings, we have 20 agents that have the
same ability. But still we have two places where there are loads.
In order to carry all the loads in two places, the agents should be
divided to be assigned to one of load places. This problem has
many solutions to assign role to each agent, but it may become a
bit difficult since the search space becomes larger than the first
one. We call the first problem as Ability-Based Role Assignment
Problem, and the second one as General Role Assignment
Problem.

4.2 Ability-Based Role Assignment Problem
4.2.1 Comparison Between GNP and GP
In this section, we compare the performance of GNP with GP
using the load transportation problem, that is the role assignment
problem according to agents’ ability. We employed the
homogeneous model in this section. That is, the algorithm in
Subsection 2.4 is used for GNP. In order to compare the
performance of GNP with GP, we employ the same judgment
(function) and processing (terminal) nodes in both the algorithms.
Table 1 shows two judgment nodes and four processing nodes.
These nodes are commonly used in GNP and GP. We did not
employ “Prog N” node to concatenate processing nodes in GP. If
we employ “Prog N” nodes in GP, there is a possibility to enhance
the performance of GP.

Since we prepare five nodes for each node type, each initial
individual for GNP consists of 30 nodes with a start node. In
order to use the same number of nodes in GP, we specified the
maximum depth of the tree was five.

Table 1. Nodes used for GNP and GP.

Name Description

if_carrying_load Carry load or not
if_load_here There is a load or not
Pick_up Pick up load at the current position
Move_goal Move to the goal point
Move_heavy_load Move to the heavy load point
Move_light_load Move to the light load point

Table 2. Parameter Specifications in GNP and GP.

Parameter Value

Population Size (Common) 200
Tournament Size (Common) 5
Elite Size (Common) 1
Crossover Rate (Common) 0.9
Mutation Rate (Common) 0.01
Group Mutation Rate (GNP with ADG) 0.9

1709

Table 3. Results of GNP and GP.

Fitness GNP GP

Average 105.8 75.0
Standard Deviation 7.19 0.00
Max 120 75
Min. 75 75

Table 2 shows the parameter specifications specified for all the
algorithms by preliminary experiments. We applied the genetic
operations with 500 generations in each trial of GNP and GP. In
this problem, the best fitness of a team, 3)15155(120 ××+×= ,
is attained by assigning appropriate roles to five agents to carry
the heavy loads and the other 15 agents to carry light loads. Figs 9
and 10 show the maximum, minimum and average fitness over
100 trials by GNP and GP. From these figures, we can see that
GNP can find the network that enables agents to perform with the
best fitness. On the other hand, GP could not find the best fitness
120 from the 100 trials.

Table 3 shows the statistical result of 100 trials at the final
generation. According to the results, we can see that GP could not
find the tree structure that enables agents to get the highest fitness
value while GNP could obtain the network to attain the maximum
fitness value. Figs 11 and 12 show the tree and the network
structure obtained by GP and GNP, respectively. In these figures,
the nodes that have no effect in the decision making of an agent
are omitted. From Fig. 11, we can see that GP could produce the
tree which enables only five agents to carry heavy loads. This tree
is the optimal tree generated by GP with the five types of nodes
shown in Table 1. On the other hand, GNP could produce the
network if an agent can not carry the heavy load, it will move to
the place with light loads. This result clearly shows the
effectiveness of GNP.

4.2.2 Performance of GNP with ADG
In this section, we compare the performance of GNP with ADG
against that of GNP using the heterogeneous and homogeneous
model. GNP with the homogeneous model is the same algorithm
we have already examined in Subsection 4.2.1. In the
heterogeneous model, every agent has its own network for its
action control rule.

Fig. 13 shows that the average results obtained by these three
models. We can see that GNP with ADG could obtain the best
fitness faster than the other two models. As for GNP with the
heterogeneous model, it could obtain better results than the
homogeneous model at the final generation, but the convergence
speed was slower than the homogeneous model. This deterioration
of the heterogeneous model can be also seen in Table 4. Table 4
shows the statistical result of 100 trials at the final generation by
the three models. We can see in this table that GNP using the
ADG model obtained the highest fitness value in all the trial. On
the other hand, GNP using the heterogeneous model could not
find the highest. Furthermore, the best result obtained by the
heterogeneous model was worse than that obtained by the
homogeneous model while the average of the heterogeneous
model is higher than the homogeneous. These results clearly show

that the difficulty of the heterogeneous model due to its large
solution space.

Fig. 14 shows the number of classes in GNP with ADG. We can
see that the number of classes is converged to two by GNP with
ADG.

0

20

40

60

80

100

120

0 100 200 300 400 500
Generations

Max.

Average

Min.

Fitness

Figure 9. Maximum, minimum and average performance over
100 trials by GNP.

0

20

40

60

80

100

120

0 100 200 300 400 500
Generations

Fitness

Max.

Average

Min.

Figure 10. Maximum, minimum and average performance
over 100 trials by GP.

Yes No

Carry

Move
goal

load
here

Move
heavy

Pick
up

Figure 11. The best tree obtained by GP.

1710

Yes

Single

Carry

load
here Carry

start
node

Move
goal

No

Carry

load
here

Move
heavy

Pick
up

Move
Light

Pick
up

Move
goal

Figure 12. The best network obtained by GNP.

Table 4. Results of the ADG and the heterogeneous model
(Ability-Based Role Assignment Problem).

Fitness ADG Hetero Homo

Average 120.0 110.9 105.8
Standard Deviation 0.00 3.50 7.19
Max 120 118 120
Min 120 99 75

0

20

40

60

80

100

120

0 100 200 300 400 500
Generations

GNP with ADG

Heterogeneous

Homogeneous

Fitness

Figure 13. Average performance over 100 trials by GNP with
ADG, Heterogeneous, and Homogeneous models (Ability-
Based Role Assignment Problem).

0

2

4

6

8

10

0 100 200 300 400 500
Generations

Max.
Average
Min.

Groups

Figure 14. The number of classes in GNP with ADG.

0

10

20

30

40

50

60

0 100 200 300 400 500
Generations

GNP with ADG

Homogeneous

Heterogeneous

Fitness

Figure 15. Average performance over 100 trials by GNP with
ADG, Heterogeneous, and Homogeneous models (General Role
Assignment Problem).

Table 5. Results of the ADG and the heterogeneous model
(General Role Assignment Problem).

Fitness ADG Hetero Homo

Average 59.60 55.03 51.80
Standard Deviation 2.81 1.84 6.23
Max 60 59 60
Min 40 50 40

4.3 General Role Assignment Problem
We also apply the GNP with ADG to a different settings of the
load transportation problem: General Role Assignment Problem.
In this problem settings, we consider only the light loads, and
every agent has the same ability to carry a load. We place 30 light
loads in each of two load positions. Therefore there are 60 light
loads in total, so that the highest fitness value becomes 60 in this
problem. Since each agent can go and return three times within
the limited duration, 20 agents should be divided into two classes
to attain the highest score.

1711

Single

start
node

Carry
Move
goal

No

Yes
load
here

Move
Place1

Move
goal

Move
Place1

Pick
up

start
node

Carry

load
here

Move
Place2

Move
goal

Pick
up

Move
Place2

0,5,7,8,10,12,13,15,16,181,2,3,4,6,9,11,14,17,19

Figure 16. An individual with the best fitness for General Role
Assignment Problem.

Fig. 15 shows the average results obtained by GNP with ADG
model, the heterogeneous model, and the homogeneous model.
From this figure, we can see that the similar results to Fig. 13.
Table 5 shows the results obtained at the final generation. From
these figure and table, we can see that GNP with ADG could not
find the highest fitness value in all the trials. However, the
performance of GNP with ADG was the best comparing to the
other two models.

Fig. 16 shows an example of the individual with the best fitness
value for the General Role Assignment Problem. In this individual,
we can see that 20 agents are divided into two classes (The head
part of each class indicates the IDs of agents which are assigned to
that class). And agents in one class move to the first load place,
and the other move to the other load place. From this figure, we
can see that the 20 agents could develop their work sharing in
order to attain the best score.

5. CONCLUSION AND FUTURE WORKS
In this paper, we examine the performance of the GNP
architecture with the ADG model. By computer simulations, we
clearly show the better representation ability of GNP than that of
GP. We also showed that GNP with the ADG model could find
appropriate roles of agents according to their ability by the load
transportation problems. Through the computer simulations, we
could see the difficulty of the heterogeneous model. That model
allows to generate complicated systems but it may be time
consuming because the search space of that problem is so huge.

As for further research topics, we need to investigate a way to
reduce the redundant nodes in the networks developed in GNP.
As shown in Fig. 16, the network obtained for each class was not
optimized with respect to the number of nodes. We can continue
to work to refine the structure of obtained networks.

6. ACKNOWLEDGMENTS
This work was supported by Ministry of Education, Culture,
Sports, Science and Technology, “Open Research Center” Project
(2003).

7. REFERENCES
[1] Fogel, L. J., Owens, A. J., and Walsh, M. J. Artificial

Intelligence through Simulated Evolution, Wiley, 1996.
[2] Hara, A., and Nagao, T. ADG: Automatically Defined

Groups for multi-agent cooperation, In Proc. of 2nd Japan-
Australia Joint Workshop on Intelligent and Evolutionary
Systems, 1998, 91-98.

[3] Hara, A., and Nagao, T. Emergence of cooperative behavior
using ADG; Automatically defined groups, In Proc. of 1999
GECCO, 1999, 1039-1046.

[4] Haynes, T., and Sen, S. Crossover operation for evolving a
team, In Proc. of Genetic Programming 1997, 1997, 162-
167.

[5] Hirasawa, K., Okubo, M., Katagiri, H., Hu, J., and Murata, J.
Comparison between genetic network programming and
genetic programming using evolution of ant’s behaviors,
Trans. on Institute of Electrical Engineers of Japan, Vol.
121-C, No. 6, 2001, 1001-1009 (in Japanese).

[6] Iba, H. Multiple agent learning for a robot navigation task by
genetic programming, In Proc. of Genetic Programming
1997, 1997, 195-200.

[7] Katagiri, H., Hirasawa, K., Hu, J., and Murata, J. Network
structure oriented evolutionary model -Genetic Network
Programming- and its comparison with Genetic
Programming, In Proc. of GECCO 2001, 2001, page 219.

[8] Katagiri, H., Hirasawa, K., Hu, J., and Murata, J. Variable
size genetic network programming, Trans. on Institute of
Electrical Engineers of Japan, Vol. 123, No. 1, 2003, 57-66
(in Japanese).

[9] Koza, J. R. Genetic Programming On the Programming of
Computers by means of Natural Selection, MIT Press, 1992.

[10] Luke, S., and Spector, L. Evolving teamwork and
coordination with genetic programming, In Proc. of Genetic
Programming 1996, 1996, 141-149.

[11] Murata, T., and Nakamura, T. Multi-Agent Cooperation
Using Genetic Network Programming with Automatically
Defined Groups, In Proc. of GECCO 2004, Vol. 2, 2004,
712-714.

[12] Murata, T., and Nakamura, T. Developing Cooperation of
Multiple Agents Using Genetic Network Programming with
Automatically Defined Groups, In Proc. of LBP in GECCO
2004, 2004, 12 pages (CD-ROM).

[13] Poli, R. Evolution of graph-like programs with parallel
distributed genetic programming, In Proc. of 7th ICGA, pp.
346-353.

[14] Pollack, M.E., and Ringuette, M. Introducing the tile world:
Experimentally evaluating agent architectures, In Proc. of
8th National Conf. on Artificial Intelligence, 1990, 183-189.

1712

