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ABSTRACT
This paper introduces an evolutionary algorithm which uses
multiple chromosomes to evolve solutions to a symbolic re-
gression problem. Inspiration for this algorithm is provided
by the existence of multiple chromosomes in natural evo-
lution, particularly in plants. A multi-chromosomal sys-
tem usually requires a dominance system and subsequently
dominance in nature and in previous artificial evolutionary
systems has also been considered. An implementation of a
multi-chromosomal system is presented with initial results
which support the use of multi-chromosomal techniques in
evolutionary algorithms.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Global Optimization; I.2.2
[Artificial Intelligence]: Automatic Programming—pro-
gram synthesis; I.2.8 [Artificial Intelligence]: Control meth-
ods and search

General Terms
Algorithms Performance Design

Keywords
Genetic Programming, representations, team evolution

1. INTRODUCTION
Many different representations have previously been pro-

posed and some of these have proven to be very amenable
to fast evolution of solutions to complex problems. How-
ever understanding what makes these representations par-
ticularly evolvable is still not well understood.

Sometimes, successful representations have imitated fea-
tures seen in natural evolvable systems [15, 16, 18]. How-
ever, there are still many features which are seen in natural
system whose value to artificial evolution has not been ex-
plored.
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One such feature which is seen in more complex biolog-
ical systems, is that of multiple chromosomes. This work
explores the effects multiple chromosomes have in artificial
evolution and their potential benefits for evolving more com-
plex and effective programs.

This work considers an evolutionary algorithm which uses
a biologically inspired, multi-chromosomal representation to
evolve solutions to a symbolic regression problem.

2. GENETICS WITH MULTIPLE
CHROMOSOMES

Genetics with multiple chromosomes differs in a number of
respects from the artificial genetics, which is commonly used
in artificial systems. The crossover operator (which takes
multiple chromosomes and combines them in a meaningful
way) and the need for a dominance system (to decide which
of the genes on the multiple chromosomes applies) are two
such major differences. The question we ask here is whether
these mechanisms can help our artificial systems?

The following review of biological representations used in
evolution has been compiled mainly using a variety of com-
monly available biological sources [6, 13, 22].

2.1 Biological Representations
In biology, there are two main categories of creatures

whose genetic makeup differs considerably, the prokaryotes
(mainly bacteria), which rely on a single circular chromo-
some, have different recombination operators due to the dif-
ferent shape of the chromosome and the fact that they re-
produce by splitting a single cell, so no sex is involved.

Eurokaryotes (all creatures which are not prokaryotes),
however all have multiple chromosomes and even multiple
copies of each chromosome. This also means that they need
a dominance system of some kind to ‘decide’ which of the
genes, from these multiple chromosomes applies.

2.2 How many Chromosomes?
There is still an incomplete understanding in biology as

to why some creatures have more chromosomes than others
and why they have varying numbers of copies of each chro-
mosome. Humans have 23 pairs of chromosomes and there-
fore since the chromosomes are paired, humans are termed
diploid (as are all mammals). However, most plants and
some reptiles and amphibians have more than two copies
of each of their chromosomes, which makes them polyploid.
Wheat for example has six copies of each of its seven chromo-
somes. Table 1 shows the differing numbers of chromosomes
in a number of different plant species [1].
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Plant species Number of Copies Total
different chromosomes of each

Potato 12 4 48
Peanut 10 4 40

Sweet Potato 15 6 90
Tobacco 12 4 48
Wheat 7 6 42
Oats 7 6 42

Strawberry 7 8 56
Sugar Cane 10 8 80

Table 1: Plant species and their Chromosomes

The occurrence of multiple copies of chromosomes appears
to have come about through doubling events in the genetic
history of the plants [30]. There are two types of doubling
events and each can occur naturally as well as being artifi-
cially induced. The first type of event is a doubling within
a single species - so a tomato species which previously had
two copies of each chromosome (diploid), doubles its chrom-
osomes and has four copies of each chromosome (tetraploid).
A species which has undergone this type of doubling event
is called autopolyploid.

The other type of doubling is when two different species
combine their chromosomes to form a new species which
has all the chromosomes from both species. This is called
allopolyploidy of which wheat is a natural example [30].

Allopolyploidy is thought to be particularly important in
the creation of new plant species and it is believed that all
plants have undergone these doubling events at some point
in their genetic history, although we can only detect the
most recent events [30].

2.3 Crossover with multiple chromosomes
Crossover with multiple chromosomes can be seen as a

multi-step process. To form the sex cells, which will merge
and develop into a new individual, a crossover operation
must be performed in the current cell. Pairs of identical
chromosomes are chosen and match up so that like parts are
aligned. Crossover points are chosen and the sections of the
chromosome which are between these crossover points are
swapped from one chromosome to the other. In the next
stage, the altered chromosomes are shuffled with respect to
their grandparents and the identical pairs separate to go into
separate sex cells (see figure 1).

When polyploidal species pair off their chromosomes in
preparation for crossover, in some species the pairings al-
ways take place in an identical manner, so that, if repeated,
the same pairs would always be formed, in other species
there is an element of randomness in how the chromosomes
pair, and the same pairings would not be formed, if the
pairing stage were to be repeated.

2.4 Dominance with multiple chromosomes
For diploid individuals, dominance can sometimes work

completely, so there will be two possible genes, one dominant
and one recessive. Any individual which has one or more
dominant genes shows the dominant trait. Only individuals
with both genes recessively set will show the recessive trait
(see table 2).

However, not all genes work like this, even within diploid
individuals. Other common models include; co-dominance
where both genes are equally dominant and individuals with

Sets of chromosomes coming from
grandparents

Chromsomes pair in parents

Crossover occurs in the pairs

The pairs split and enter sex cells

The child recieves one from each 
each parent

Figure 1: A diagram showing how genes are passed
down on the chromosomes from grandparents to
grandchildren.

X Dominant gene x Recessive gene
X XX Xx
Dominant gene Dominant trait Dominant trait
x xX xx
Recessive gene Dominant trait Recessive trait

Table 2: The basic gene dominance system for hu-
mans

one of each show a trait halfway between the two. Examples
of this include white flower and red flower genes, mixing to
give pink flowers, and the human blood group AB which
is caused by individuals having one gene for blood group
A and one for group B. Another common way dominance
can work is through an allele-dosage effect : this is similar
to co-dominance, but the dominant gene causes the trait
to be ‘more’ than the recessive one in some respect and if
the individual has two copies of the dominant gene the trait
will be expressed even ‘more’. Examples of the allele-dosage
effect are often seen in fruit or plant size[30].

The allele-dosage effect can be seen in polyploidal species;
only in these cases the individual with all dominant genes
will have the trait expressed ‘even more’ than the individual
with some dominant genes, which will itself have it expressed
‘more’ than the individual with all recessive genes (see figure
2).

Often the picture gets even more complicated than this.
A gene may have more than two possible settings (more
alleles) or by more than one gene affecting a trait, or even
by one gene affecting more than one trait. Thus the effects
of gene expression in polyploids is still very much under
investigation in biology [30].

2.5 Summary
This section has covered how having multiple chromo-

somes is common in natural systems and we have considered
the way in which crossover works in two stages to mix up the
genes on each chromosome (with the genes from the other
chromosome with which it pairs) and then the chromosomes
get mixed up and combined with another set to create a
child. We have considered dominance can work when the
individual has two copies of each chromosome and how this
can be extended to individuals who have more copies of each
chromosome.
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Figure 2: A diagram of how fruit size might be af-
fected if a variety of tomatoes became polyploid.
Since tomato fruit size follows an allele-dosage af-
fect it is not unreasonable to guess that this might
be the outcome of a doubling in chromosomes.

3. RELATED WORK
Although there has only been a limited amount of research

undertaken into using diploidy and dominance in artificial
evolution, some work on genetic algorithms and genetic pro-
gramming which uses these features is described below.

Other related work considers evolving teams - since a team
when evolved as a single entity can be viewed as a collection
of chromosomes.

3.1 Multi-Chromosomal Evolutionary
Algorithms

There are several examples of genetic algorithms (GAs)
which have described themselves as multi-chromosomal. [10,
21, 11]. Hinterding [10], used a representation which had
different genes translating into different types used different
operators on these different types which were grouped into
three chromosomes. Another approach [21], used multiple
chromosomes to partition the search space and hence, un-
like the other multi-chromosomal representations where the
differing chromosomes represent different things and have
different structures, this approach has identically structured
chromosomes. The parameters of the functions to be solved
were evenly distributed across varying numbers of chromo-
somes. They found that the multiple chromosomes produced
improved results. These multi-chromosomal representations
for GAs have been applied to problems such as pallet loading
and cutting stock [10, 21, 11].

Going a stage further than these works, towards biolog-
ically plausible multi-chromosomality is the work by Hillis
[9]. This early work not only uses multiple chromosomes,
but also a diploid system and a bio-inspired crossover oper-
ator much like the one described here. Each gene in each
chromosome codes for an exchange, a pair of numbers in the
list to be sorted which will be compared and then exchanged
if needed. They use the diploidy inherent in their system to
generate differing numbers of exchanges to alter the size of
the sorting network they are evolving. If a pair of chromo-
somes differs at a particular point then both exchanges are
expressed, otherwise only one exchange is expressed.

3.2 Dominance in Genetic Algorithms
Most of the work done experimenting with dominance in

artificial evolution is in the field of genetic algorithms [5, 14,
25, 23].

The advantages of adding dominance to GAs are disputed,
but evidence seems to show that on non-stationary prob-
lems, particularly those that flip between two solutions, GAs
with some dominance schemes have a particular advantage
[5, 14].

3.3 Dominance in Genetic Programming
Even when using a single chromosome in genetic pro-

gramming, implementing a dominance system has been at-
tempted [31]. In this work crossover is done by combining
two subtrees to make one, then adding this to both par-
ents to make two children. The nodes which get to be ex-
pressed after the combination process are those with the
highest dominance values. Dominance values are increased
on nodes when a child produces a better result than its par-
ents. However, they found there were problems integrating
this type of system with the standard genetic programming
representation.

3.4 Evolving Teams
Perhaps the closest work to this research has been in the

field of evolving teams of agents to do some task. Tradition-
ally the agents would have been evolved to perform some
team oriented task, for instance a predator prey simulation
with multiple predators who have to co-ordinate to catch
the prey [17, 8, 7]. More recently techniques which were
first applied to these type of problems have been adapted so
that they can be used to solve other more types of problems
Soule, who uses team evolution to solve symbolic regression
problems, including the 7-bit parity problem [27, 26].

One problem when evolving a team is whether to evolve
the team as a whole (ie. have a population of teams which
are evolving), or you evolve the members of the team in
the population and then split the population up into teams
when testing for fitness. Clearly the first of these options
is much more strongly related to the work presented in this
paper, because it is only when you evolve a team as a whole
that you will get something which can be viewed as having
multiple chromosomes evolving.

When evolving a team as a whole, you have a second
choice regarding the crossover operator. You could allow
crossover between any parts of the team with any parts of
any other team, this would encourage homogeneous teams
to evolve. However, if you restrict crossover so that it only
crosses the first member of a team with the first member of
other teams, and the order of team members is preserved
throughout the run, then heterogenous teams can easily
emerge. This allows specialisation and the work becomes
even more closely related to what is presented here.

Despite the similarities between this research and team
evolution research there are still some differences. The sys-
tem presented here has multiple copies of each of a set of
chromosomes. (eg. 4 copies of 4 chromosomes totalling 16
chromosomes). This bio-inspired approach will therefore en-
compass the benefits of evolving teams, in a broader setting.

Research with evolving teams has produced good results
with researchers finding that bloat in the individual team
members is reduced [27] significantly when compared to a
population of individuals evolved for the same problem.
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Grammar

010001110

00

Grammar has 2 choices so 00 mod 2 = 0 

Chromosome

So choose first option replace <X> by X

Currently decoding The bits from the chromosome are used up in order as choices 
need to be made.

<X> can either be replaced by X or X <X> and so use the 
chromosomes to decide which will happen.

<X>::= X | X <X>

Figure 3: A diagram showing a simple GE transla-
tion process, taking a binary string and using a set
grammar to convert it into a statement which obeys
that grammar.

4. MULTI-CHROMOSOMAL GENETIC
PROGRAMMING

Multi-Chromosomal genetic programming is a new tech-
nique which aims to improve the ability to evolve complex
structures by splitting the representation up into blocks.
Having noted that many complex structures in nature use
multiple chromosomes, the aim of this work is to explore
their usage within genetic programming.

4.1 The Technique
The chromosomes in the multi-chromosomal genetic pro-

gramming system are all binary chromosomes which are
translated into Prolog functions using a grammatical evolu-
tion type translation process. Each chromosome translates
into a Prolog clause and the clauses may call each other and
themselves, allowing for recursion.

Grammatical Evolution (GE) [24] is an evolutionary tech-
nique which uses a binary chromosome to select which path
the definition of the program should take. The possible pro-
grams are defined using a Backus-Naur form grammar and
at every point where a decision has to be made about which
substitution to make in the forming of the program then the
next chromosome is used to decide. (see figure 3 for a simple
example).

GE has proved successful at evolving code in different lan-
guages and at solving a wide variety of problems from busi-
ness problems, such as whether the decisions of managers
affect the prospects of the business [4] to modeling complex
gene interactions [19].

Since the GE translation process has proved to be a suc-
cessful translation process for these many varying applica-
tions, it was chosen for this work.

Prolog [29] was chosen as a language for the programs
to be evolved into because it could easily cope with over
and under specification of ‘functions’. A prolog clause is
designed to cover one case of a problem, and it may take
many clauses each needing the same inputs and outputs to
cover all cases (see figure 4), hence prolog is designed to
try each possible clause in turn (in the order they are listed
in the program code). Multi-chromosomal genetic program-
ming takes advantage of this feature by using a dominance
system, consisting of a real number attached to each chro-
mosome, which may itself be mutated and so will evolve to
order the clauses. This means that multiple definitions of the
same type are encouraged rather than being problematic as
they would be in most other programming languages. Under
specification, too, is not a problem for a program evolved in
Prolog. If a clause tries to call a clause which doesn’t exist
it just returns a fail. This feature is not used in the current
version of the system, since all programs are constrained to
only call clauses which do exist.

XOR(X,Y):−one(X),zero(Y).
XOR(X,Y):−one(Y),zero(X).

AND

OR OR

one zero zero

X Y X Y

one

Figure 4: A diagram of how multiple prolog clauses
fit together using the xor function as an example and
showing the parse tree that they would generate if
they were represented in that fashion.

Parameter Default Value
Population size 100
Mutation bit rate 1/500
Min size of chromosome at start of run 120
Generations 100
Tournament size 4
Number of different chromosomes 4
Number of copies of each chromosome 4
Number of elite 3
Maximum number of crossover points 3

Table 3: Current Parameter Values

4.2 Current settings and the problem
Currently the system uses four copies of each of four chro-

mosomes and then orders the evolved prolog clauses accord-
ing to a dominance figure. This dominance figure is attached
to each chromosome and also evolved. A full crossover in-
cluding crossing over the binary strings (not just shuffling
the chromosomes) is done 50% of the time and a bit muta-
tion rate of 1 in 500 was used throughout. For a full listing
of the default settings see table 3. With these settings a full
run takes around 1 hour on a modern PC.

The problem which is tackled here is one of the earli-
est symbolic regression problems which Koza solved ([12]
chapter 7) to demonstrate the power and scope of his sys-
tem. It was chosen because it was felt that comparing
early versions of one technique to early versions of another
would be the fairest method. The function to be matched
is x

4 +x
3 +x

2 +x. The function set used includes plus, mi-
nus, times, protected division, sine, cosine, exponential and
protected logarithm. There are twenty test points which
are spread out equally over the range [-1,1] and the fitness
function takes the total absolute difference of the evolved
answers and the real answers. Since each program is as-
signed a small amount of time to run (to protect against
any infinite loops which may be evolved) there are addi-
tional penalties added to the fitness of any individual which
does not complete all the calculations in the time. Those
individuals which do nothing are assigned a dead status and
cannot be picked as parents.
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This problem has also been used more recently by re-
searchers using Grammatical Evolution [20, 2]. This is par-
ticularly pertinent, since this work uses a similar translation
process so comparisons with this work should be more mean-
ingful.

5. RESULTS
The results are averaged over 20 runs and the ideal fitness

score is zero, which means that the target function, x
4+x

3+
x

2 + x, has been matched at all points.
The graph in figure 6 shows how throughout the run the

best fitness scores continue to decrease steadily towards the
ideal fitness of zero. The figure 5 also shows the median and
mean and worst fitness scores for the population, as aver-
aged over 20 runs. Although the mean fitness scores of the
population do not appear to be following a trend towards
the ideal fitness score, the median obviously is tending to-
wards this ideal. This is because a few bad individuals can
easily throw the mean off the general trend.

These results show that evolution is taking place in the
system and that both the best individual and the population
as a whole (as shown by the median) are improving as might
be expected.

Figure 7 shows a comparison of the system set to use a sin-
gle chromosome compared with the standard settings used
elsewhere in this paper. It also includes the results for when
a single chromosome was initially set to 16 times the normal
length of a chromosome (so that it has the same amount of
genetic material as the multiple chromosomes) and the re-
sults for when these longer chromosomes are split into 16
equally size parts for fitness evaluations, but are evolved as
a single string. The graph shows that not only is the initial
population of the multi-chromosomal system far superior to
the initial population when only one chromosome is used,
but that evolution throughout the run proceeds much bet-
ter when multiple chromosomes are used, with the gradient
of descent being much steeper for multiple chromosomes and
the gap widening throughout the run. The single chromo-
some which was split up into 16 parts for fitness evaluations
initially performs well, like the multiple chromosomes, but
then is unable to evolve further. Overall these tests show
that it is the multiple chromosomes and the way they are
evolved, not just having more genetic material which is caus-
ing the improvement in performance.

To test whether evolution continued after 100 generations,
or whether it tailed off, a series of longer runs were per-
formed, allowing 1000 generations to pass. this demon-
strated that evolution is still going strong long after the
previous limit of 100 generations had ended.

These results are compared with those obtained by other
methods in section 6.

6. DISCUSSION
With any new system it is always important to compare

the results with those of other equivalent methods to show
whether the system has any added value over current prac-
tice. This comparison of results is slightly hindered by the
fact that other methods have not presented thorough results
for this particular problem in the literature. For example
Koza [12] only reports one run for this problem. In that
run a fully correct individual was found in generation 34.
However, it is interesting to note that the mean scores from
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Koza’s work are considerably worse than those obtained by
the multi-chromosomal system, despite the mean scores in
this system being raised by some high scoring individuals
who were penalized for overrunning the time and the me-
dian scores, providing a much more indicative measure of
the performance of the population as a whole. It is also
of interest that for the multi-chromosomal system, the fit-
ness results steadily decrease throughout the run, whereas
Koza’s results seem to decrease more slowly and then show
a sharp drop from a fitness of around one in generation 33
to a fitness of zero in generation 34.

This problem has also been applied to Grammatical evo-
lution [24] where it was used as an initial proof-of-concept.
However, it is only reported that grammatical evolution can
consistently find perfect answers.

One crucial factor which has been problematic in many
genetic programming systems is the problem of bloat [3,
28], the uncontrollable growth of evolved solutions. There-
fore some initial analysis of how much the representation
suffers from bloat has been done. The number of parts to
the 16 evolved functions of each individual was counted.
The counts were done both for the initial random popula-
tion and for the final evolved population, after 100 gener-
ations. The average per individual at the start of the run
was 37.85 and by the end of the run this had risen slightly to
43.32. However, given the standard deviations in both cases
were around eight, this is a change of less than one stan-
dard deviation and therefore this low level of growth over
100 generations, shows that the representation has a strong
parsimony pressure which serves as some protection against
the phenomenon of bloat.

7. FUTURE WORK
The current work demonstrates that it is possible to evolve

solutions to a symbolic regression problem using a multi-
chromosomal representation. Further investigations are cur-
rently being undertaken into how the system reacts with
different settings and on different problems.

Some further analysis of bloat, measuring the lengths of
the binary chromosomes, and analysing the size of programs
at other stages in the evolutionary run, may be insightful.

There is a need to investigate the parts of the system indi-
vidually to break down the individual effects and determine
which are the most beneficial to artificial evolution. Other
experiments could allow only multiple copies of a single chro-
mosome, or the pairing patterns of chromosomes could be
investigated (does it help to pre-specify which chromosomes
will pair, or is it better to allow any ‘like’ chromosomes to
pair?).

8. SUMMARY
This paper has described a new representation for evo-

lutionary algorithms which uses multiple chromosomes to
evolve and its underlying biological inspiration. It has been
shown that evolution with multiple chromosomes, within
this new representation, is advantageous over a conventional
single chromosome. Initial results therefore suggest that
multiple chromosomes are a promising approach and war-
rant further investigation.
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