
Evaluating GP Schema in Context

Hammad Majeed, Conor Ryan and R. Muhammad Atif Azad
Biocomputing and Developmental Systems Group

Computer Science and Information Systems Department
University of Limerick, Ireland.

{hammad.majeed, conor.ryan, atif.azad}@ul.ie

ABSTRACT
We propose a new methodology to look at the fitness con-
tributions (semantics) of different schemata in Genetic Pro-
gramming (GP). We hypothesize that the significance of a
schema can be evaluated by calculating its fitness contribu-

tion to the total fitness of the trees that contain it, and use
our methodology to test this hypothesis.

It is shown that this method can also be used to identify
schemata that are important in terms of both individual
runs and individual problems (that is, schema that will be
important across many runs on a particular problem).

The usefulness of this study to existing schema theories
and its effective use in the detection of introns, in the iden-
tification of potentially useful modular functions are also
discussed in this paper.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Problem Solving, Control Meth-
ods, and Search—Genetic Programming

General Terms
Algorithms, Theory

Keywords
Tree Semantics, Module Acquisition, Schema Theory

1. INTRODUCTION
The main difficulty with analysing GP systems is associ-

ated with their use of variable sized tree structures. Unlike
a GA’s simple linear string chromosome, a GP tree is a com-
plex structure with many inherent complexities. Two promi-
nent ones are sub-tree context and tree fragment evaluation.
That is, each sub-tree within a parent tree has some context
and it is not possible to evaluate the sub-tree independent
of the parent tree. This makes it impossible to look at the
fitness of a fragment of schema involving an incomplete tree.

Copyright is held by the author/owner.
GECCO’05, June 25–29, 2005, Washington, DC, USA.
ACM 1-59593-010-8/05/0006.

This paper presents a new approach to explicitly look at
the fitness contributions of the schemata within a tree. Cur-
rently, it is a two step offline process. In the first step, a
schema is selected from the final generation and compared
with the entire populations of all the preceding generations.
Every time an individual matches the schema, its fitness is
noted. Then, the subtree instantiating this schema is re-
placed by an intron and the individual is re-evaluated. The
difference between the two fitness values gives an idea of the
schema’s contribution in the original individual.

2. EXAMINING SCHEMA IN CONTEXT
We are concerned with investigating the significance of a

schema with respect to its position (depth) and size (nodes)
within a tree, referred to below as the container-tree. It is
widely accepted by GP community that a node (or sub-tree)
closer to the root node is more significant than the nodes
found below it. This is because it dictates the meaning to
the lower nodes. It can also be argued that the size of the
schema may have effect on its fitness contributions, as in
general the bigger trees contribute more towards the overall
fitness of the container-tree.

For this study, a schema is a subtree selected from the
final generation and has to fulfill the following criteria:

(i) it should be present in at least half of the popula-
tion.

(ii) its own depth should at least be equal to a mini-
mum provided depth. As this was an exhaustive search,
all legal depths for each tree were examined.

Candidate schemata were searched at all depths within
the population, starting from 1 to the maximum allowed
depth within the container-tree. This is an exhaustive search
and ensures selection of all possible schemata. This, how-
ever, can be varied, to search only for schema above or below
a particular depth.

2.1 Generalization of Schema
After the selection of a schema, its nodes are replaced

probabilistically with # (don’t care) nodes with bias to-
wards the lower nodes. To replace a node, a roulette wheel
was constructed. It helps to mark a depth and then a node
for replacement. In the generalization step all the constants
in the selected schema are replaced with #. This avoids
match failures due to different constants (which is a com-
mon observation). Note, replacement of the constants in the
selected schema does not stop its # node from matching a

1773

constant value. This step makes this study more comprehen-
sive by exploring larger space of instances for the selected
schema.

2.2 Contribution of Schema
The contextual analysis in this paper is made possible by

calculating the fitness contribution of any sub-tree within
a tree. This is a three step process. In the first step, an
individual containing the sub-tree is evaluated, before the
sub-tree is replaced with an identity node. The identity
node acts as an intron in the container-tree and cancels the
effect of the sub-tree. After replacement, the individual is
then re-evaluated. The difference of the two fitnesses is the
contribution of the sub-tree in the container-tree

The working principle of an identity node is similar to
the identity function in set theory. In our definition, an
identity node always replaces some node or sub-tree. This
replacement cancels out the effect of the replaced node or
sub-tree.

3. EXPERIMENTS
To test the ability of our method to identify useful schemata,

we conducted experiments using Koza’s quartic polynomial
symbolic regression problem, and a population of size 500
was allowed to evolve for 50 generations. Sub-tree crossover
with probability 0.9 and reproduction with probability 0.1
were used. The initial generation was generated using the
ramped half and half method. The initial tree depth varied
from 2-6 while the maximum depth of the trees was set to
17, and 100 independent runs were conducted to note the
trend of selected schemata across different runs. The same
function set as that employed by Koza was used.

We examined three different measurements for this study.
The first was to note the fitness contribution of the se-
lected schema in a run. This was calculated for each gen-
eration by averaging the contribution of all instances of a
schema in that particular generation. Similarly, the size

contribution of each of the identified schema was noted,
and averaged in the same way, while the third measurement,
schema depth, tracked the average depth of each schema.

3.1 Schema contribution to fitness and size
The first set of experiments look at the correlation be-

tween size and fitness of different schemata. The experi-
mental results show that there are schemata with fitness
contributions directly propotional to their size contributions
towards the container-trees. We mark them as significant for
the run. Over the course of evolution their instances grow in
size and fitness. On the other hand, there are other schemata
which are contributing 90% towards the size of container-
trees but still their fitness contributions are insignificant.
This behavior can be due to the incorrect contexts of the
instances of the schema. Another possible explanation is
that they are acting as introns or are part of an intron sub-
tree(see section 4.2 for details). This shows that the fitness
contribution of a schema is not just a function of its size

contributions but also the correct context of the sub-trees.

3.2 Comparing schemata within runs
Next we looked at comparing the different schemata found

in a run. Most of the schemata found in the runs show a
similar behavior, i.e. their contributions drop with time.
The longer schemata fail to have any instances in the initial

generations but, once found, their fitness contributions ei-
ther remain constant or increase with time. Note the fitness
contributions of schemata can be negative. A schema has a
negative fitness contribution when its removal results in an
increase of fitness of the container-tree.

4. BENEFIT OF THIS STUDY
This section discusses the possible uses and benefits of

the proposed approach along with it’s effect on the existing
schema theories.

4.1 Modules discovery and Use
This method can be applied online to identify semantically

significant schemata from a population, given their current

context. This information can then be used to generate bet-
ter individuals for subsequent generations. It can be done
either by only allowing the individuals containing the sig-
nificant schemata to propagate to the next generation or by
generating new instances of a useful schema and introducing
them to the subsequent generation(s). This could also be of
enormous benefit to module acquisition strategies such as
ARL [3], Iba’s [2] guided recombination and Angeline’s MA
[1], the performance of all of which depend to a large extent
on the successful identification of useful subtrees. Using our
technique, a table of good schemata could be constructed for
each generation, which can then be consulted when selecting
a sub-tree for encapsulation. Sub-trees that are instances of
schemata that appear in this table could then be made more
likely to be selected.

4.2 Identification of dead code
The method described in this paper has been shown to

identify the fitness contribution of a block towards an indi-
vidual. It estimates the value of a subtree in context of a
particular tree. Iba and de Garis [2] also calculate the worth
of the constituent subtrees of an individual by treating each
subtree as an independent program. This evaluation does
not inform us about the worth of a subtree towards the main
tree.

More importantly, code that is neutral towards the fitness
of an individual can be identified with our technique. For
example consider a schema (+ # (* (- X X) #)). The
subtree (* (- X X) #) acts as an intron by virtue of mul-
tiplication of (- X X) with any expression #. The fitness
contribution of the entire right hand side is exactly 0.0.

5. REFERENCES
[1] Peter John Angeline. Genetic programming and

emergent intelligence. In Kenneth E. Kinnear, Jr.,
editor, Advances in Genetic Programming, chapter 4,
pages 75–98. MIT Press, 1994.

[2] Hitoshi Iba and Hugo de Garis. Extending genetic
programming with recombinative guidance. In Peter J.
Angeline and K. E. Kinnear, Jr., editors, Advances in

Genetic Programming 2, chapter 4, pages 69–88. MIT
Press, Cambridge, MA, USA, 1996.

[3] Justinian P. Rosca and Dana H. Ballard. Discovery of
subroutines in genetic programming. In Peter J.
Angeline and K. E. Kinnear, Jr., editors, Advances in

Genetic Programming 2, chapter 9, pages 177–202.
MIT Press, Cambridge, MA, USA, 1996.

1774

