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ABSTRACT 
Overfitting is a fundamental problem of most machine learning 
techniques, including genetic programming (GP).  Canary 
functions have been introduced in the literature as a concept for 
preventing overfitting by automatically recognizing when it starts 
to occur.  This paper presents a simple scheme for implementing 
canary functions using cross-validation.  The effectiveness of this 
technique is demonstrated by applying it to the numeric regression 
problem.  A list of conditions and criteria for applying this 
technique to other problem domains is also identified.  Other 
strategies for dealing with overfitting in GP are discussed. 

Categories and Subject Descriptors 
I.2.2 [Artificial Intelligence]: Automatic Programming – 
program synthesis; I.2.6 [Artificial Intelligence]: Learning – 
induction, parameter learning.  

General Terms: Algorithms, Experimentation, Performance. 

Keywords: Genetic Programming, Overfitting. 

1. CANARY FUNCTIONS 
Ideally, genetic programming (GP) would learn the true 
relationship between the inputs and the outputs over the entire 
problem space.  Instead, GP can have a tendency to find solutions 
that are biased towards the training set.  This can prevent GP from 
scaling to more difficult problems.  In complex and sparse search 
spaces where GP is unlikely to easily find optimal solutions, the 
learning process focuses on minimizing the training error, which, 
in turn, increases the generalization error. 

Several methods have been suggested for limiting the effect of 
overfitting in GP, including Editing [3], Minimum Description 
Length [5] and Dynamic Subset Selection [2]. 
Some researchers have hypothesized that we may be able to 
reduce the effects of overfitting by limiting the amount of time 
spent on training with a particular fitness function and a particular 
set of training data.  That is, if we were somehow able to 
recognize when overfitting has started to occur, then we could 
take action to help produce more generalizable solutions.  With 
that said, finding a reliable way of automatically determining 
when overfitting has begun to occur is critical.  Evett et al [1] 
proposed a concept, called canary functions, for doing just that: 
“The canary function should be distinct from the fitness function, 

 but also related toward meeting the same goal as the fitness 
function.  The hope is that, since the canary function differs from 
the fitness function, its value will begin to degrade significantly 
from the fitness function at about the same time overfitting 
occurs.”  During each generation, the canary function is evaluated 
on some of the best of generation models.  When the performance 
of the canary function on these models begins to consistently 
degrade, then we can have confidence that overfitting has begun.  
The use of canary functions in [1] was peculiar to a particular 
domain.  Our goal is to find a way to generalize the approach.  
This paper presents a simple scheme for implementing canary 
functions based on cross-validation, and applies it to the numeric 
regression problem.  The objectives of this investigation are: 

1. To determine if it is possible to limit the effects of 
overfitting, or at least recognize when it starts to occur, 
by monitoring the performance of the population with 
respect to a secondary validation dataset. 

2. To identify some of the conditions or criteria necessary 
for applying this technique to other domains. 

Cross-validation has been successfully used to overcome the 
problem of overfitting and to help select the best models in other 
machine learning algorithms like neural networks [4] and decision 
trees.  It calls for using a separate set of fitness cases, distinct from 
the training examples, called the validation set.  The algorithm 
monitors the error of the models with respect to the validation set, 
while using the training set to drive the search process.  When the 
algorithm is complete, the model that has the lowest error over the 
validation set is selected because it is most likely to generalize 
upon unseen examples. 

Cross-validation can be incorporated into the GP algorithm as a 
canary function in the following way: 

1) When the performance of the models on the validation 
set begins to significantly diverge from that of the 
training set, take action to prevent overfitting. 

2) After the algorithm is complete, the best of generation 
individuals should be evaluated upon the test set to 
determine the true quality of the predictive models.  

Determination of divergence is the crucial step, and unfortunately 
is also the least well-defined step, because, as of yet, no one has 
implemented an online indicator for GP that signals when the 
performance of the models on the validation set begins to 
significantly diverge from that of the training set in an automated, 
generalizable, and reliable fashion. Prechelt [4] has made some 
progress with this problem in the field of neural networks. 
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Our experiments made use of two of Prechelt’s online indicators: 
The generalization loss at generation g, GL(g), is defined to be 
the relative increase of the validation error over the minimum 
found so far, in percent. The productivity quotient, PQ(g) is 
defined to be the ratio of the generalization loss over the training 
progress (which is a measure of the progress of the training set, 
over a window.)  Details as to the calculations of these values can 
be found in our full paper. 
In addition to Prechelt’s online indicators, another metric that 
may be useful for determining when overfitting starts to occur 
during GP runs is the correlation coefficient.  A correlation 
coefficient of 0.80 means that 80% of the variation in one of the 
variables may be explained by variations in the other variable.   
The correlation coefficient between the fitness of the best of 
generation individual with respect to the training set, and the 
fitness of the best of generation individual with respect to the 
validation set at the end of each generation of the GP run should 
be a strong indicator as to when indicate when they diverge. 

2. THE EXPERIMENT  
Symbolic regression was chosen as the problem domain upon 
which to demonstrate this technique, because it is easy to 
manipulate and it is easy to obtain datasets to serve as fitness 
cases.  We used GP to evolve programs that approximated the 
functions (1) F1(x) = x4 + x3 + x2 + x, and (2) F2(x) = cos(3x), 
respectively, across 20 data points. 
Throughout the experimental trials, four main types of overfitting 
were identified: 1) Dramatic Divergence, 2) Slight Divergence, 3) 
Negative Performance, and 4) Negative Performance with 
Crossover.  We explain just the first in this abbreviated paper. 
Dramatic Divergence is depicted in Figure 1, and is a type of 
overfitting that is characterized by an early, sharp separation in 
the performance of the adjusted fitness of the best of generation 
solution between the validation set and the training set.   
Figure 1a shows the adjusted fitness of the best of generation 
solution (BOGS) using the training and validation sets. The 
divergence of the two curves around generation 10 indicates that 
overfitting starts to occur there.   
The correlation coefficient, in Figure 1b, provides a measure of 
the similarity of the data series plotted in Figure 1a (Adjusted 
Fitness).  While generally high, the correlation coefficient is on a 
downward trend during the interval between generations 10 and 
20, where we deduce that overfitting starts to occur.   
The generalization loss, GL(g), is plotted in Figure 1c.  It provides 
a measure of the rate of the change in generalization error with 
respect to the most accurate solutions found so far on the 
validation set.  The generalization loss reaches a global maximum 
at generation 10, and another high peak is attained just after 
generation 20.   
The progress of the performance of the training set is plotted in 
Figure 1d.  P(g) is being calculated with respect to the previous 
five generations.  As expected, the progress is high at the 
beginning of the GP run, and then tapers off gradually until a 
fitness plateau is reached.   
The productivity quotient, PQ(g), plotted in Figure 1e, measures 
the ratio of the generalization loss over the progress of the 
training set.  This figure has a very similar shape to that of Figure 

1c.  Unlike the curve in Figure 1c, a single global maximum no 
longer stands-out at generation 10.  Rather, there are several high 
peaks that could all be used as stopping points.   
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Figure 1a-e.   Dramatic Divergence 

Analysis of these graphs for each of the four types of overfitting 
we identified leads us to the following rule: 
Rule: IF PQ(g) > α, AND the Correlation Coefficient at 
generation g is on a downward trend, THEN stop training 
because overfitting has occurred. 

3. CONCLUSION 
Our work has demonstrated that canary functions can be used to 
determine overfitting in symbolic regression problems.  Much 
work remains to determine if the technique can be applied to other 
domains.   
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