
An Investigation into Using Genetic Programming
as a Means of Inducing Solutions to Novice Procedural

Programming Problems
Nelishia Pillay

School of Computer Science
Pietermaritzburg Campus,

University of KwaZulu-Natal
KwaZulu-Natal, South Africa

Tel: +27 33 2605644
E-mail: pillayn32@ukzn.ac.za

ABSTRACT
 The study presented in this paper forms part of a larger initiative
aimed at creating a generic architecture for the development of
intelligent programming tutors (IPTs) in an attempt to reduce the
costs associated with building IPTs. Thus, instead of requiring
the lecturer to provide solution algorithms to the programming
problems that students will be tested on by the system, the generic
architecture will automatically generate the solutions to these
problems. This paper reports on the results of an investigation
conducted to test the hypothesis that genetic programming (GP)
can be used for this purpose. The paper proposes a genetic
programming system for the induction of solutions to arithmetic,
character and string manipulation, conditional, iterative, nested
iteration, and recursive problems. The paper analyses the results
of applying the proposed system to 45 randomly chosen novice
procedural programming problems. Extensions made to the
proposed system based on this analysis, namely, the
implementation of the iterative structure-based algorithm (ISBA),
are discussed.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming – program
synthesis.

General Terms: Algorithms, Experimentation, Theory.

Keywords
Genetic programming, automatic programming, local optima.

1. INTRODUCTION
One of the functions of an intelligent programming tutor (IPT) is
to assess a learner’s programming skills by comparing solution
algorithms or programs written by a student to the stored solutions
written by the developer of the IPT. In order to cater for more
than one solution algorithm for a programming problem,
alternative solutions to a problem are stored in the
knowledgebase.

Thus, in order to reduce the developmental costs of IPTs, one of
the functions of the Expert Module [3] of the generic architecture
is the automatic induction of the solution algorithms usually
stored in an IPT knowledgebase. The study presented in this
paper evaluates genetic programming as a means of evolving
solution algorithms to novice procedural programming problems.
This study focuses on the following introductory programming
concepts, namely, arithmetic, character and string manipulation,
conditional control structures, iteration, nested iteration and
recursion. Furthermore, the study is delimited to evaluating
genetic programming as a means of finding at least one solution to
each problem. Future extensions of the project will examine
evolving multiple solution algorithms, each taking a different
approach to solving the same problem. It is evident from the
literature that the algorithms generated by GP systems usually
contain redundant code called introns. The removal of introns
will also be investigated at a later stage.

2. PROPOSED GP SYSTEM
An internal representation language was used to express
algorithms. The elements of this language are listed in Table 2.1.
Input to the genetic programming system is a problem
specification describing the problem input and output, the set of
fitness cases containing values for each input and corresponding
output, the application domain, screen output in the case of ASCII
graphics problems and a subset of the internal representation
language that students should have knowledge of to solve the
particular problem.

In order to ensure that the programs generated have a legal
structure and to facilitate the translation of the evolved algorithms
into a particular programming language, the system is strongly-
typed. Each terminal, constant, memory location, function and
function argument is of a specific type. The types catered for by
the system are Integer, Real, Boolean, Char, String, Output, and
Generic (can be any of the types listed).

An individual is evaluated by executing the individual on each set
of input values described in the fitness cases and comparing the
output of the execution with the target output specified in the
fitness cases. If the target output is numerical the error fitness
function defined by Koza [2] is used to calculate the fitness of the
individual.

Copyright is held by the author/owner(s).
GECCO’05, June 25-29, 2005, Washington, DC, USA.
ACM 1-59593-010-8/05/0006.

1781

For all other target output types the fitness measure is the number
of fitness cases for which the individual produces exactly the
same output as the target output. In the case of ASCII graphics
problems the output written to the screen maintained by the
system is compared to that described in the problem specification.
The individual is penalized if a screen location is written to more
than once or an attempt has been made to access a location
beyond the bounds of the screen. The tournament selection
method is used to choose parents of the successive generations.

Table 2.1: Internal Representation Language

Type Operators

Arithmetic +, -, *, /, sqrt, %, neg, sq, cube, pow,
trunc, round, ceil, floor, abs

String length, concat, concatc , del, delete,
insert, copy, equal, charat, upcase

Logical ==, !=, <=, >=, <, >, , cnoteq, bequal
bneq, not and, or

Memory write, change, aread, alen

Conditional if, switchc, switchi

Iterative for, while, dowhile

Input & Output place, toscreen, newline

Multiple Statements blockn, n=1-5

Lack of genetic diversity, selection variance and destructive
genetic operators have been cited as the main causes of premature
convergence. In order to promote genetic diversity the
reproduction operator is not used and duplicates are not permitted
in the initial population. Furthermore, mutation application rates
will be increased if necessary. In order to deal with selection
variance the system performs multiple iterations per seed, in the
hope that a different area of the search space will be visited on
each iteration. The system provides non-destructive mutation and
crossover operators for use if necessary. These operators produce
offspring that are at least as fit as their parents.
The following genetic programming parameters were varied to
find a solution for each problem: control model, method of initial
population generation, initial tree depth, population size, mutation
tree depth limit, tournament size, bound, error offset, type of
genetic operators (standard or non-destructive). The following
section provides a brief overview of the experimental
methodology employed and the results obtained from applying the
proposed system to 45 procedural programming problems.

3. RESULTS AND DISCUSSION
The “proof by demonstration” methodology [1], with two
iterations and one step of refinement, was employed to test the
hypothesis that genetic programming can induce solutions to
novice procedural programming problems. If the system was
unable to evolve a solution for at least one seed for each problem,
changes were made to the system during the refinement process
and the system was re-tested. The proposed system was
implemented using the Professional version of JBuilder 4 with the
JDK 1.3.

The simulations in this study were run on two different systems,
namely, a Pentium III with Windows XP and a Pentium 4 with
Windows 2000.
The 45 problems used to test the system consisted of 3 sets of ten
problems requiring the use of sequential structures, conditional
structures, and iterative structures respectively, ten ASCII
graphics problems, and five recursion problems. The system was
able to successfully evolve solutions to 33 of the problems. For
24 of the 33 problems multiple runs per seed proved to
successfully escape local optima caused by selection variance.
For 3 of these 33 problems the use of non-destructive operators
was needed in order to evolve solutions. A study of the
evolutionary process for the 12 problems the system was unable to
evolve solutions for revealed that fitness function biases against
certain primitives or combinations of primitives resulted in
premature convergence.
The iterative structure-based algorithm (ISBA) was developed to
escape local optima caused by fitness function biases. The ISBA
performs both a global level and a local level search. During each
of the runs of the global level search a similarity index is used to
ensure that areas of the search space visited on previous runs are
not revisited. For each global level run n local level runs are
performed. On each of the local level runs the structure of each
individual is fixed from the root to some level d to be the same as
the individual converged to on that particular global level run.
The revised GP system implementing the ISBA evolved solutions
to the 12 problems not solved by the proposed system.

4. CONCLUSIONS AND FUTURE WORK
The study presented in this paper evaluated genetic programming
as means of evolving novice procedural solution algorithms. The
genetic programming system implemented was able to evolve
solutions to the 45 randomly chosen procedural programming
problems. The use of multiple runs and non-destructive operators
successfully escaped local optima caused by selection variance
and destructive operators respectively. The ISBA was developed
to escape local optima caused by fitness function biases. Future
extensions of the system include the evolution of efficient
algorithms, algorithms that adhere to good programming practice,
modular programs, object-oriented programs, multiple solutions
to each problem and the removal of redundant code.

5. ACKNOWLEDGMENTS
This material is based upon work supported by the National
Research Foundation. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the
author and the NRF does not accept any liability in regard thereto.

6. REFERENCES
[1] Johnson, C. What is Research in Computing Science?,

Department of Computer Science, Glasgow University,
http://www.dcs.gla.ac.uk/~johnson/teaching/research_skills/b
asics.html.

[2] Koza, J.R. Genetic Programming I: On the Programming of
Computers By Means of Natural Selection, MIT Press, 1992.

[3] Pillay, N. Developing Intelligent Programming Tutors for
Novice Programmers. In inroads-the SIGCSE Bulletin, 35, 2,
ACM Press, June 2003, 78 – 82.

1782

