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1. INTRODUCTION
To solve large and complex problems, scalability is among

the primary concerns of an optimization practitioner. How-
ever, only few studies [6] exist that study scalability in ge-
netic programming (GP) [1]. The same holds for simple ap-
proaches to using probabilistic recombination in GP within
the estimation of distribution algorithm (EDA) [3, 4, 2]
framework, such as the probabilistic incremental program
evolution (PIPE) [5].

The purpose of this poster is to show the scalability of
standard GP and PIPE on two decomposable GP problems:
ORDER and TRAP [6]. The two algorithms perform as ex-
pected and they solve ORDER scalably while failing to scale
up on TRAP. Additionally, the poster studies the effects of
introducing unnecessary and irrelevant primitives.

2. METHODS AND TEST PROBLEMS
Both GP and PIPE work with programs encoded as

labeled-tree structures and both can be applied to the same
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class of problems. While GP [1] generates new candi-
date programs using standard variation operators, such as
crossover and mutation, PIPE [5] builds and samples a prob-
abilistic model in the form of a tree of mutually independent
nodes. Therefore, the difference between GP and PIPE is
in their variation operator.

In order to test scalability, we need a class of problems
where size can be modified while the inherent problem diffi-
culty does not grow prohibitively fast. Two types of decom-
posable problems for fixed-length string GAs are common:
Onemax and concatenated traps. Similar problems were also
created for GP where candidate solutions are represented by
program trees [6].

We consider two classes of problems from [6]: ORDER (a
onemax-like, GP-easy problem) and TRAP (a deceptive-trap-
like, GP-difficult problem). In addition to standard ORDER

and TRAP, we tested GP and PIPE on ORDER with JUNK ter-
minals (unexpressed terminals). Junk-code or JUNK termi-
nals represent unnecessary primitives that are irrelevant for
the particular problem. In biological terms, JUNK terminals
correspond to the junk code in DNA.

3. RESULTS
The scalability of GP and PIPE was tested on three classes

of problems: Basic ORDER (no JUNK), basic TRAP (no JUNK),
and ORDER with JUNK terminals, where the number of unique
JUNK terminals was set to l/5. The scalability experiments
were performed by testing both algorithms on problem in-
stances with an increasing number of primitives.

Binary tournament selection was used in both GP and
PIPE. The probability of crossover in GP was set to 1.0. To
focus on the effects of recombination, no mutation was used.
The initial population in both methods was generated using
the standard half-and-half method. Maximum tree depth
was set to be one more than the depth of the minimum tree
to store the global optimum. The population size was deter-
mined using a bisection method so that it was within 10% of
the minimum population size required to successfully solve
30 independent runs. The runs were terminated when the
algorithms found the global optimum or when the number
of generations was too large for the particular problem.

Figure 1 shows the scalability of GP and PIPE on ORDER

without JUNK terminals. The results indicate that PIPE
is slightly more efficient than GP but both GP and PIPE
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scale up with a low-order polynomial. These results are in
agreement with the behavior observed in binary-string GAs
on the simple onemax problem.

Figure 2 compares the scalability of GP and the PIPE on
TRAP without JUNK terminals. On TRAP, GP performs slightly
better than PIPE. This can be explained by its weaker re-
combination operator because here recombination causes
disruption of important partial solutions [7]. Nonetheless,
both GP and PIPE scale up poorly and they indicate an
exponential growth of the number of function evaluations
with problem size.

Figure 3 compares the scalability of GP and PIPE on
ORDER with l/5 unique JUNK terminals. Both GP and PIPE
seem to be capable of dealing with these irrelevant terminals
and achieve performance comparable to that on basic ORDER.

Figure 1: Scalability of GP and PIPE on ORDER.

Figure 2: Scalability of GP and PIPE on TRAP.

4. CONCLUSIONS
The results presented in this poster indicate that the be-

havior of different variants of GP can be expected to be
similar to that of standard binary-string GAs. There are
two important consequences of this fact. First, as it was
indicated in [6], to solve some classes of problems scalably,
linkage learning may have to be incorporated into GP in
order to identify and exploit interactions between different

Figure 3: Scalability of GP and PIPE on ORDER with

l/5 copies of JUNK terminals.

program components. Second, some lessons learned in the
design and application of binary-string GAs should carry
over to GP.

The results also indicate that if the recombination opera-
tor captures interactions in the problem properly, increasing
the mixing effects of recombination leads to better perfor-
mance. That is why PIPE outperformed standard GP on
problems where program components could be treated in-
dependently. This fact together with the need for linkage
learning should encourage the application of probabilistic
recombination operators of estimation of distribution algo-
rithms (EDAs) [3, 4, 2] to the domain of GP. Some represen-
tatives of EDAs applied to the GP domain are [5, 6]. Finally,
the results show that both GP and PIPE can deal with ir-
relevant terminals relatively well and their performance gets
only slightly worse when adding such primitives.
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