
Evolving Recurrent Models Using Linear GP
Xiao Luo

Dalhousie University
6050 University Avenue

Halifax, NS, Canada
+1 (902) 494-3137

luo@cs.dal.ca

Malcolm I. Heywood
Dalhousie University

6050 University Avenue
Halifax, NS, Canada
+1 (902) 494-2951

mheywood@cs.dal.ca

A. Nur Zincir-Heywood
Dalhousie University

6050 University Avenue
Halifax, NS, Canada
+1 (902) 494-3137

zincir@cs.dal.ca

ABSTRACT
Turing complete Genetic Programming (GP) models introduce the
concept of internal state, and therefore have the capacity for
identifying interesting temporal properties. Surprisingly, there is
little evidence of the application of such models to problems for
prediction. An empirical evaluation is made of a simple recurrent
linear GP model over standard prediction problems.

Categories and Subject Descriptors
I.2.6 [Computing Methodologies]: Learning – Parameter
Learning.

General Terms
Algorithms, Experimentation, Languages.

Keywords
Recurrent Architectures, Linear Genetic Programming.

1. INTRODUCTION
In this work we are interested in problems for which state needs to
be retained across an arbitrary sequence of patterns, hence, pattern
sequence is now important. The credit assignment problem has the
potential to be much more difficult, with both spatial and
temporal dimensions to the learning problem. Leaving a side the
definition of appropriate cost functions (e.g. Q-Learning or
Temporal Difference methods), there are two basic solutions to
building models for solving temporal problems. In the first case
the temporal dependence is encoded by the features of each
pattern using some a priori information, thus reducing the
problem to spatial reasoning alone i.e. a supervised learning
context. Examples of this might involve encoding the temporal
property of the problem using a delay line (shift register) of some
predefined depth and resolution. In the second case, a recurrent
learning model is employed. This means that the model has
capacity to retain state across more than one pattern. Examples of
recurrent models include Hidden Markov Models and recurrent
neural network models. In both cases support for reasoning about
temporal aspects of the problem are provided by feedback paths
internal to the model. This makes the learning problem much
more difficult as the interconnectivity of these paths requires

configuration by the learning algorithm as well as the
parameterization of any internal weights. Indeed, various
evolutionary approaches have been proposed for building such
models [2], [3], [4]. In order to provide an explicitly recurrent
Genetic Programming model we note that all that is required is
that internal states be retained beyond the current input. Teller
previously proposed an indexed memory model within the context
of Tree structured GP [5]. To do so, explicit load-store commands
were added to the function set. In this work a Linearly structured
GP (L-GP) representation is employed. This means that an
individual is defined in terms of a sequence of instructions
operating on a set of registers (variables). Thus, by not resetting
registers until a conclusion state is reached we let GP build the
recurrent relationships necessary to reason about time. The
specific form of L-GP employed by this work utilizes the page-
based L-GP developed in an earlier work [6]. The basic
motivation of this work is to compare such a recurrent model
against those previously benchmarked on predictive problems.
Empirical evidence is provided to demonstrate that recurrent
properties can be learnt efficiently.

2. EVALUATION
Two benchmark problems are considered from a recurrent
modeling context: Generic solution to the Even Parity problem;
and predictor for the Sun Spot series problem. The GP learning
parameters are summarized in Table 1. Moreover, these
parameters appear to be generic for a cross-section of problems
[6].

Table 1. GP Learning Parameters

Dataset Parity, Sun Spot

Pop. Size 125

Max. Instr. 128

Max Tournaments 50 000

Num. Reg. 4

Function Set {+, -, *, %}

Terminal Set {0, .., 255} ∪ {input index}

P(Xover) 0.9

P(Mutation) 0.5

P(Swap) 0.9

Runs 50

Copyright is held by the author/owner(s).
GECCO’05, June 25-29, 2005, Washington, DC, USA.
ACM 1-59593-010-8/05/0006.

1787

2.1 Generic Even Parity
The (even) parity problem is a well-known early benchmark in
which the basic objective was to derive a specific (even) parity
instance using 2 input logical operators that excluded Ex-OR [1].
Here we are interested in deriving 6- and 7-parity from a training
set consisting of 2-, 3-, 4- and 5-parity. This results in 252
training sequences and 188 test sequences. A sequence consists of
the sequential presentation of each bit associated with the parity
case (4-parity having 4 bits etc). On presentation of the last bit in
the sequence the value of register R0 is compared to the label for
that sequence. From the 50 runs, 24 converged on both training
and test set. Computational effort and (un-simplified) instruction
count of these cases are summarized in Table 2 using 1st, 2nd
(median) and 3rd quartiles. The simplest (and most typical)
solution to this problem consisted of two instructions: Ra(t) ←
Ra(t – 1) – X(t); R0(t) ← Ra(t) * Ra(t). By all accounts a very
concise solution.

Table 2. Quartile Performance on Parity Problem

Quartile Computational
Effort

Instruction
Count

1st 369 160 18

2nd (median) 1 723 500 29

3rd 2 489 800 38

2.2 Sun Spot Time Series
The Sun Spot time series has been a benchmark prediction
problem in a number of studies [7], [8], [3], [9]. The typical
approach has been to use a shift register to provide a sliding
window over which a predictive model is built for the next time
step i.e. x(t + 1) = f(x(t), …, x(t – n)) where ‘n’ is predefined. In
this case the only input is x(t), leaving the selection of relevant
previous time steps to the recurrent L-GP model. In line with
previous work the dataset is divided into training (221 patterns
representing the years 1700-1920), and two test sets (Test set 1
has 35 patterns (1921-1955), Test set 2 has 24 patterns (1956-
1979)). Fitness function takes the form of a normalized mean
square error,

NMSE(P) = 1
σ 2

1
P

desired(p) −GPout(p)()2

p=1

P∑

Where σ2 = 1 535 and P is the pattern count for the dataset in
question [7]. Table 3 provides a comparison against predictors
identified in previous works on the same dataset. Of the previous
works one other used a (evolved) recurrent model [3] i.e. the other
predictors were based on a delay line of predefined depth. The
most prominent characteristic here appears to be the consistency
of the Recurrent L-GP result over all three partitions. Conversely,
the alternative models provide lower errors on training and the
first test partition, but degrade significantly on the second test
partition representing the period most distant from that used to
train the predictors. Table 3 also summarizes complexity of the
resulting models. Although no attempt is made to simplify
solutions identified by the Recurrent L-GP model it is
significantly simpler than the other non-linear models.

Table 3. Comparative Results on Sun Spot Problem

Model NMSE
(train)

NMSE
(test1)

NMSE
(test2)

Number of
Parameters

Recurrent
L-GP

0.1077 0.1655 0.1708 35

NN [8] 0.082 0.086 0.35 43

TAR [7] 0.097 0.097 0.28 16

Recurrent
NN [3]

0.1006 0.0972 0.4361 22

GP [9] 0.125
±0.006

0.182
±0.037

0.37
±0.06

66.5

3. CONCLUSION
Recurrent Linearly structured GP models have been benchmarked
on a series of prediction problems. Central to the ease with which
recurrent properties are supported are register (variable) based
instruction sets. This is different from providing additional load
store instructions for indexing memory. Future work should
investigate the utility of active learning algorithms with recurrent
L-GP models.

4. REFERENCES
[1] Koza, J.R., Genetic Programming: ON the Programming of

Computers by Means of Natural Selection. MIT Press, MA,
1992.

[2] Angeline, P.J., Saunders, G.M., Pollack, J.B., An
Evolutionary Algorithm that Constructs Recurrent Neural
Networks. IEEE Transactions on Neural Networks. 5(1),
1994, 54-64.

[3] McDonnell, J.R., Waagen, D, Evolving recurrent Perceptrons
for Time-Series Modeling. IEEE Transactions on Neural
Networks. 5(1), 1994, 24-38.

[4] Xin Yao, Evolving artificial neural networks. Proceedings of
the IEEE, 87(9), 1997, 1423-1447

[5] Teller, A., The Evolution of Mental Models. In Advances in
Genetic Programming. Chapter 9. K.E. Kinnear (ed). MIT
Press, MA, 1994, 198-219.

[6] Heywood, M.I., Zincir-Heywood, A.N., Dynamic Page-
Based Linear Genetic Programming, IEEE Transactions on
Systems, Man and Cybernetics – PartB: Cybernetics. 32(3),
2002, 380-388.

[7] Tong, H., Lin, K.S., Threshold autoregression, limit cycles
and cyclical data. Journal of the Royal Statistical Society. B
42, 1980, 245.

[8] Weigend, A.S., Huberman, B.A., Rumelhart, R.E., Predicting
the Future: A Connectionist Approach. International Journal
of Neural Systems. 1(3) 1990, 193-209.

[9] J.C. Principe, L. Wang, Motter M.A., “Local Dynamic
Modelling with Self-Organizing Maps and Applications to
Nonlinear System Identification and Control,” Proceedings
of the IEEE, 86(11), 1998, 2240-2258.

1788

