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ABSTRACT 
Turing complete Genetic Programming (GP) models introduce the 
concept of internal state, and therefore have the capacity for 
identifying interesting temporal properties. Surprisingly, there is 
little evidence of the application of such models to problems for 
prediction. An empirical evaluation is made of a simple recurrent 
linear GP model over standard prediction problems. 

Categories and Subject Descriptors 
I.2.6 [Computing Methodologies]: Learning – Parameter 
Learning.   

General Terms 
Algorithms, Experimentation, Languages. 

Keywords 
Recurrent Architectures, Linear Genetic Programming. 

1. INTRODUCTION 
In this work we are interested in problems for which state needs to 
be retained across an arbitrary sequence of patterns, hence, pattern 
sequence is now important. The credit assignment problem has the 
potential to be much more difficult, with both spatial and 
temporal dimensions to the learning problem. Leaving a side the 
definition of appropriate cost functions (e.g. Q-Learning or 
Temporal Difference methods), there are two basic solutions to 
building models for solving temporal problems. In the first case 
the temporal dependence is encoded by the features of each 
pattern using some a priori information, thus reducing the 
problem to spatial reasoning alone i.e. a supervised learning 
context. Examples of this might involve encoding the temporal 
property of the problem using a delay line (shift register) of some 
predefined depth and resolution. In the second case, a recurrent 
learning model is employed. This means that the model has 
capacity to retain state across more than one pattern. Examples of 
recurrent models include Hidden Markov Models and recurrent 
neural network models. In both cases support for reasoning about 
temporal aspects of the problem are provided by feedback paths 
internal to the model. This makes the learning problem much 
more difficult as the interconnectivity of these paths requires 

configuration by the learning algorithm as well as the 
parameterization of any internal weights. Indeed, various 
evolutionary approaches have been proposed for building such 
models [2], [3], [4]. In order to provide an explicitly recurrent 
Genetic Programming model we note that all that is required is 
that internal states be retained beyond the current input. Teller 
previously proposed an indexed memory model within the context 
of Tree structured GP [5]. To do so, explicit load-store commands 
were added to the function set. In this work a Linearly structured 
GP (L-GP) representation is employed. This means that an 
individual is defined in terms of a sequence of instructions 
operating on a set of registers (variables). Thus, by not resetting 
registers until a conclusion state is reached we let GP build the 
recurrent relationships necessary to reason about time. The 
specific form of L-GP employed by this work utilizes the page-
based L-GP developed in an earlier work [6]. The basic 
motivation of this work is to compare such a recurrent model 
against those previously benchmarked on predictive problems. 
Empirical evidence is provided to demonstrate that recurrent 
properties can be learnt efficiently. 

2. EVALUATION 
Two benchmark problems are considered from a recurrent 
modeling context: Generic solution to the Even Parity problem; 
and predictor for the Sun Spot series problem. The GP learning 
parameters are summarized in Table 1. Moreover, these 
parameters appear to be generic for a cross-section of problems 
[6]. 

Table 1. GP Learning Parameters 

Dataset Parity, Sun Spot 

Pop. Size 125 

Max. Instr. 128 

Max Tournaments 50 000 

Num. Reg. 4 

Function Set {+, -, *, %} 

Terminal Set {0, .., 255} ∪  {input index} 

P(Xover) 0.9 

P(Mutation) 0.5 

P(Swap) 0.9 

Runs 50 
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2.1 Generic Even Parity 
The (even) parity problem is a well-known early benchmark in 
which the basic objective was to derive a specific (even) parity 
instance using 2 input logical operators that excluded Ex-OR [1]. 
Here we are interested in deriving 6- and 7-parity from a training 
set consisting of 2-, 3-, 4- and 5-parity. This results in 252 
training sequences and 188 test sequences. A sequence consists of 
the sequential presentation of each bit associated with the parity 
case (4-parity having 4 bits etc). On presentation of the last bit in 
the sequence the value of register R0 is compared to the label for 
that sequence. From the 50 runs, 24 converged on both training 
and test set. Computational effort and (un-simplified) instruction 
count of these cases are summarized in Table 2 using 1st, 2nd 
(median) and 3rd quartiles. The simplest (and most typical) 
solution to this problem consisted of two instructions: Ra(t) ← 
Ra(t – 1) – X(t); R0(t) ← Ra(t) * Ra(t). By all accounts a very 
concise solution. 

Table 2. Quartile Performance on Parity Problem 

Quartile Computational 
Effort 

Instruction 
Count 

1st 369 160 18 

2nd (median) 1 723 500 29 

3rd 2 489 800 38 

 

2.2 Sun Spot Time Series 
The Sun Spot time series has been a benchmark prediction 
problem in a number of studies [7], [8], [3], [9]. The typical 
approach has been to use a shift register to provide a sliding 
window over which a predictive model is built for the next time 
step i.e. x(t + 1) = f(x(t), …, x(t – n)) where ‘n’ is predefined. In 
this case the only input is x(t), leaving the selection of relevant 
previous time steps to the recurrent L-GP model. In line with 
previous work the dataset is divided into training (221 patterns 
representing the years 1700-1920), and two test sets (Test set 1 
has 35 patterns (1921-1955), Test set 2 has 24 patterns (1956-
1979)). Fitness function takes the form of a normalized mean 
square error, 

NMSE(P) = 1
σ 2

1
P

desired(p) −GPout( p)( )2

p=1

P∑  

Where σ2 = 1 535 and P is the pattern count for the dataset in 
question [7]. Table 3 provides a comparison against predictors 
identified in previous works on the same dataset. Of the previous 
works one other used a (evolved) recurrent model [3] i.e. the other 
predictors were based on a delay line of predefined depth. The 
most prominent characteristic here appears to be the consistency 
of the Recurrent L-GP result over all three partitions. Conversely, 
the alternative models provide lower errors on training and the 
first test partition, but degrade significantly on the second test 
partition representing the period most distant from that used to 
train the predictors. Table 3 also summarizes complexity of the 
resulting models. Although no attempt is made to simplify 
solutions identified by the Recurrent L-GP model it is 
significantly simpler than the other non-linear models. 
 

Table 3. Comparative Results on Sun Spot Problem 

Model NMSE 
(train) 

NMSE 
(test1) 

NMSE 
(test2) 

Number of 
Parameters 

Recurrent 
L-GP 

0.1077 0.1655 0.1708 35 

NN [8] 0.082 0.086 0.35 43 

TAR [7] 0.097 0.097 0.28 16 

Recurrent 
NN [3] 

0.1006 0.0972 0.4361 22 

GP [9] 0.125 
±0.006 

0.182 
±0.037 

0.37 
±0.06 

66.5 

3. CONCLUSION 
Recurrent Linearly structured GP models have been benchmarked 
on a series of prediction problems. Central to the ease with which 
recurrent properties are supported are register (variable) based 
instruction sets. This is different from providing additional load 
store instructions for indexing memory. Future work should 
investigate the utility of active learning algorithms with recurrent 
L-GP models. 
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