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ABSTRACT 
The tagging problem in natural language processing is to find a 
way to label every word in a text as a particular part of speech, 
e.g., proper noun.  An effective way of solving this problem with 
high accuracy is the transformation-based or “Brill” tagger.  In 
Brill’s system, a number of transformation templates are specified 
a priori that are instantiated and ranked during a greedy search-
based algorithm.  This paper describes a variant of Brill’s 
implementation that instead uses a genetic algorithm to generate 
the instantiated rules and provide an adaptive ranking.  Based on 
tagging accuracy, the new system provides a better hybrid 
evolutionary computation solution to the part-of-speech (POS) 
problem than the previous attempt.  Although not able to make up 
for the use of a priori knowledge utilized by Brill, the method 
appears to point the way for an improved solution to the tagging 
problem.  

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control 
Methods, and Search – Heuristic methods.  I.2.7 [Artificial 
Intelligence]: Natural Language Processing – Text Analysis. 

General Terms 
Algorithms, Experimentation, Languages.  

Keywords 
Brill tagger, Genetic Algorithm, Natural Language Processing. 

1. INTRODUCTION 
The labeling (or tagging) of the words in a corpus as parts of 
speech (POS) such as a noun, verb, adjective, and so on has 
important applications involving internet security and 
intelligence, including document filtering, message 
understanding, data extraction, and information retrieval.  There 
are a number of alternative means of tagging text, with one of the 
more sophisticated implementations being the transformation-

based learning (TBL) of tags, or the "Brill Tagger," named for its 
designer Eric Brill.  The Brill tagger conditions its tagging 
decisions on a more complex set of events than the entirely 
probabilistic models like Hidden Markov Models, or HMMs, by 
examining tags both to the left and the right of a given word [3].  
The tagger can also examine not only surrounding tags, but 
surrounding words and the morphology in the neighborhood of a 
particular location in the corpus.  The way these aspects of the 
context are examined is through what are called "transformation 
rules." The transformation rules look for particular situations of 
inter-related tags, words, or morphology and change a particular 
target tag if the situation pertains.  A learning algorithm takes 
these transformation rules, which are devised a priori, and 
instantiates and ranks them.  The solution is a ranked set of rules 
for tagging a corpus.  The result of the use of the Brill tagger is 
impressive: its performance on the Wall Street Journal (WSJ) data 
set (97.0%) is at the high end of accuracy numbers currently 
reported for tagging (95% to 97%) [7]. 
The idea of having a set of instantiated rules that can be applied in 
an attempt to tag a corpus can be seen as an optimization 
problem:  the goal is to minimize the error (or number of different 
tags) between the correctly tagged corpus and the corpus that has 
been tagged as a result of the transformation rules.  What is 
desired is the best set of rules, in the right order, to achieve a 
minimum error. As an optimization problem it is an ideal 
candidate for improvement using evolutionary algorithms such as 
a GA, where the GA is used to minimize the cost or error function 
between the correct tagging and the rule-generated tag. In this 
implementation GA is used to automatically generate the rules 
within the Brill tagger and provide an adapted ranking of the rules 
through the natural process of re-ordering done by the crossover 
operator. 
In Section 2, the current literature related to the use of 
evolutionary computation for the problem of POS tagging and its 
application to the Brill tagger is surveyed.  Section 3 outlines the 
original tagger as proposed by Brill.  The GA Brill Tagger that is 
the subject of this work, and the two implementations of it that 
were created for its theoretical and experimental analysis, are 
described in Section 4.  Section 5 includes the results of the 
experiments performed using the GA Brill tagger.  Conclusions 
and future work follow in Section 6. 

2. EVOLUTIONARY POS TAGGERS 
While transformation-based part-of-speech tagging can be seen as 
an optimization problem, few implementations have used 
evolutionary methods. There are too many rule-based and 
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statistical methods of lesser accuracy than the Brill tagger to 
cover in this work, and their performance is well documented 
elsewhere.  We therefore provide a survey of EC attempts to solve 
the POS problem in particular, where four attempts related to the 
use of EC for POS tagging have been described in the literature.   
Curran and Wong [4] have actually suggested the use of evolved 
transformations in the Brill Tagger.  In 2000, they published a set-
based formal analysis of tagging as the basis for a generalization 
of Brill’s tagger.  As a result of this analysis, they claim that an 
evolutionary strategy would improve the learning time of the 
algorithm without reduction of accuracy.  This could be achieved 
by changing the size, shape, and number of the templates.  
Learning would begin with only short and simple templates, and it 
would progress to longer and more complex templates.  The 
change from simple to more complex templates is what 
constitutes evolution of the templates according to Curran and 
Wong; they do not actually suggest the use of evolutionary 
algorithms or genetic algorithm to automatically produce the 
initial transformations to be used in Brill’s tagger or use the 
natural action of crossover to provide an adaptive ranking.  
Araujo [1, 2] has developed a couple of GA implementations that 
yield impressive accuracies of up to approximately 95% [1] and a 
mean of up 96.3% [2] on his chosen corpus (Brown corpus).  His 
first implementation [1] did use a GA for POS tagging, but it 
differed from the Brill GA hybrid proposed here in a number of 
respects. The structure of the individual was markedly different: 
each gene in an individual was simply a tag with probabilities of 
different associated contexts attached to it.  The fitness function 
for the implementation is rather complex, but the fitness function 
and individuals’ structure amounts to a tag assignment mechanism 
that is not rule-based but statistical.  In our implementation, the 
structure of a gene amounts to a transformation-based rule. In 
addition, Araujo’s implementation does not attempt to apply rules 
in a ranked order as in Brill’s tagger, but searches for the most 
probable tag for a word expressed as a gene. Araujo’s second 
implementation [2] simply improves performance by using a more 
flexible representation of individuals in a messy GA.  
Losee [6] describes an implementation called LUST (Linguistics 
Using Sexual Techniques) that also uses GAs to generate an entire 
grammar for a test corpus.  The system randomly generates both 
syntactic rules and generates its own POS tags.  The grammatical 
rules of the system are reproduced and mutated.  The result is an 
empirically based grammar that is optimized for the particular 
documents on which it was evolved.  Fitness of individual 
solutions was measured using an equation and related metrics that 
reflected the usefulness of an entire grammar for filtering and 
retrieval purposes.  The main goal of Losee was to use his system 
to improve filtering and retrieval of document components, and 
thus he did not explicitly measure POS performance. 
The Brill/GA hybrid system described in this paper is quite 
different than LUST.  The goal of this work is to provide 
improved tagging using pre-existing Penn Treebank POS tags, 
only allowing the generation of associated rules and their ranking 
through the genetic algorithm.  Furthermore, the rules are also 
transformations in the style of those used in Brill’s tagger, with 
the goal being to provide better labeling of words in a corpus.  In 
contrast, Losee generated his own POS tags and rule forms. 
Reiser and Riddle [8] use an evolutionary algorithm (EA) to 
accomplish POS tagging.  Their attempt is actually the only other 

EC hybrid system found in the literature: a set of inductive logic 
programs (ILPs) written in Prolog are subjected to evolutionary 
processes with a suitable crossover operator and mutation 
replaced by an inductive logic algorithm.  Thus, the tagging 
method is a logic program instead of a ranked set of 
transformation rules as in these experiments.  Their results do 
show an improvement over traditional ILPs, but the actual 
accuracy of the hybrid system is approximately 76%, with 
traditional ILPs boasting only over 73.8% accuracy using Penn 
Treebank’s Wall Street Journal [8].  The traditional Brill tagger 
solution reports much better results (97.0%) on the same corpus, 
as does the GA Brill tagger implemented in this paper (up to 
89.8%, see Sections 5 and 6). 

3. BRILL’S TBL (TRANSFORMATION-
BASED LEARNING) TAGGER 
The Brill tagging system consists of two main components: a list 
of error-correcting transformations and a learning algorithm [3].  
Transformations in the Brill tagger are of the form Replace tag T1 
by tag T2 when tag T3 is found in a given position. The tag T1 is 
located in a rewrite site (the current position where the tag is 
potentially to be rewritten).  Tag T3 is sought in one or more 
positions ahead or behind the rewrite site, a schema which is 
called the “triggering environment.”  If the conditions of the 
triggering environment are met (tag T3 is in an appropriate 
position relative to tag T1), then a transformation is triggered and 
tag T2 replaces tag T1.  The instantiated triggering environment 
(when the variables T1, T2, and T3 are instantiated) is known as a 
“rewrite rule.”  An example of a rewrite rule corresponding to the 
triggering environment above (using Penn Treebank tags) is 
Replace tag NN by VB if previous tag is TO, where that triggering 
environment is actually the first of Brill’s a priori 
transformations. What this transformation rule dictates is that a 
noun should be changed to a verb if the previous tag is TO.   
Transformations are applied left to right to the input, and 
transformations have a delayed affect in Brill’s implementation.  
This means that applications of the same transformation cannot 
influence each other.  For instance, given the transformation B 
replaces A if the preceding tag is A transforms AAAA into ABBB 
rather than ABAB.  All experiments in this paper implement 
delayed effect transformations like Brill’s original system. 
The input data to the original Brill tagging system, and the input 
used for the experiments in this work, was the Penn Treebank 
Wall Street Journal corpus, a dictionary indicating each word in 
the training document(s), and the tag most commonly associated 
with each word. Using the dictionary, the system first tags each 
word in the training corpus with its most frequent tag.  The 
learning algorithm then constructs a ranked list of transformations 
that changes the initial tagging into one closer to the correct one.  
For every rewrite rule, the algorithm keeps track of how many 
good and bad transformations it is responsible for.  The goodness 
of the rewrite rule is the number of good transformations it 
performed, minus the number of bad transformations.  
Good rules are appended to an ongoing list, resulting in a list of 
rewrite rules ranked in descending order of goodness. Every rule 
good enough to be appended to the list also gets applied to the 
training corpus before it is stored. The ultimate result of executing 
this algorithm is a ranked list of rewrite rules that can be applied 
to a new corpus. The learning algorithm itself is a brute-force, 
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greedy search for the optimal rewrite rules in an optimal order: 
Every possible instantiation of all transformation templates 
(triggering environments) is tried on every possible tag position in 
the training corpus. The ranked list of transformations that results 
from the learning algorithm can then be used to tag new text.   
Brill’s results [3] were impressive, clearly outperforming the 
previous standard of the probabilistic Markov model of 
Weischedel et al. [9].  Brill’s tagger achieved an accuracy of 
97.0% when training on 600,000 words, and it generated 378 
rules in total.  For a lower accuracy of 96.7%, the Markov model 
needed to be trained on a million words and it used 10,000 
context probabilities.  It is worth noting that when Brill allowed 
the use of lexicalized rules (allowing explicit use of keywords as 
part of the triggering environment), the accuracy only improved 
to 97.2% (an improvement of 0.2%).   
Since the interest of this paper is comparing basic 
performance/accuracy of the original Brill tagger with one that 
evolves lists of transformations using genetic algorithms, only 
nonlexicalized transformations are used.  Since Brill found the 
use of lexicalized rules to only result in a minimum increase in 
performance, it appears safe to pass up the additional 
complication of lexicalized rules.  The implementation to be 
described in this work was designed to compete with Brill’s 
results in the section of his paper [3] where he uses a closed 
vocabulary assumption (no unknown words): 

• Evolution of the solution (analogous to training in Brill’s 
system) was done using the Penn Treebank Wall Street Journal 
Corpus. 

• The results for the experiment were based on using only the 
tag-based transformations (or nonlexicalized transformations). 

• Evolution was performed over a training set of 600,000 words. 

4. THE GENETIC ALGORITHM (GA) 
BRILL TAGGER 
In the problem of POS tagging, one ought not to expect a solution 
to be present simply due to random generation of the initial 
population of rules. The GA uses a combination of selection and 
search operators to incrementally improve the average fitness of 
the population. The selection operator employed here takes the 
form of a steady state tournament, thus greater selection pressure 
is anticipated. In the case of the search operators, the probability 
of mutation and crossover occurring in children is set to be 
reasonably high (0.5 and 0.9, respectively), in order to ensure 
continued introduction of new material into the population (a 
steady state tournament is elitist).  Fitness of an individual is the 
accuracy resulting from the rules that make up the individual in 
transforming the initial tagging of the text to match the actual 
human tagging of the corpus, and the crossover operator used is 
standard two-point crossover. 
There are a number of readily apparent advantages to using a 
genetic algorithm in the Brill tagging system.  The triggering 
environments in the original Brill tagger were chosen by Brill a 
priori, and the context of the triggering environments is limited 
by only looking for one type of tag in three positions prior to and 
following the target position.  In contrast, the rules generated by 
GA are derived randomly (hence not chosen a priori) and are also 
formed through evolutionary processes.  The way the bits are 
interpreted is flexible, and the parsing of the bits into a rewrite 
rule can allow for different tags to be sought in the triggering 

environment in potentially any number of positions prior to or 
after the target position.  In this implementation, the 
transformation rules are more powerful in that they involve a 
search for particular tags in each (rather than any of the select 
positions) of the three previous and following positions.  The 
rules are thus highly adaptive and can structure themselves to 
reflect individual corpus language structures.  Mutation serves to 
generate new rules to be tried in the algorithm. 
In the Brill tagger, the rewrite rules that are considered to be 
beneficial are applied to the training corpus during the learning 
process.  The order in which the best rules are applied to the 
training corpus can affect the outcome and ranking of the rules.  
The order in which the transformation environments are examined 
seems arbitrary: why should one schema be sought before 
another?  There is no need for the arbitrary ordering of the 
triggering environments (and thus an arbitrary ordering of the 
application of beneficial rules) in the GA Brill tagger.  An 
individual in the population is a list of instantiated triggering 
environments (rewrite rules), and random choice determines the 
initial order in which the rules are applied.  Following that, the 
order of the rules within individuals is altered with the crossover 
operator.  Since there are a number of individuals in the 
population, and a considerable number of them undergo 
evolutionary change through crossover, new orderings of the rules 
frequently arise and can be tried on the corpus. 
The final advantage is that the brute-force, greedy search 
embodied by the Brill learning algorithm can be avoided.  There 
is a tournament with a number of generations, and in each 
generation a number of possible solutions to the tagging problem 
are tried.  The tournament can end after some fitness criterion is 
met, e.g., a number of tags are correct, or the tournament can end 
after a given number of generations.  In either case there is the 
possibility of finding a solution with less effort than a greedy 
search. 

4.1 Interpretation of Bits and Individuals 
A fixed length representation is employed with each individual 
composed from 378 rules (the number of rules that are presented 
in a solution to Brill’s experiment with a result of 97.0% 
accuracy).  Each rule is a bit sequence of length 48 representing 
an instantiated triggering environment (rewrite rule).  The 
collection of rules represents an entire solution to the POS tagging 
problem for the Wall Street Journal Corpus—it is a ranked list of 
rules that could potentially solve the tagging problem with a high 
level of accuracy.  Each bit in the string has an equal chance of 
being a 0 or a 1 upon initialization.  The way each bit string in the 
list is interpreted is shown below in Figure 1. 
 

 
Figure 1. Interpretation of a bit string of length 48 in an 

individual used in the GA Brill Tagger. 
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The leftmost bit in the string indicates whether the triggering 
environment involves examining the 3rd tag back from the target 
tag position.  The next six bits indicate what tag should be sought 
in that position by using the integer equivalent of the binary 
representation.  The six bits map onto 45 POS tags from the Penn 
Treebank, and if the integer equivalent of the six bits exceeds 45, 
the tag is considered to be the integer equivalent mod 45.  The 
next bit indicates whether to examine the 2nd tag back, and what 
tag to look for there is indicated by the next 6 bits, similarly for 
the position previous to the target position.  What tag is to replace 
that of the target position is represented by the next six bits.  The 
tags sought (and whether or not they should be sought) in the 3 
positions following the target position are given by the following 
21 bits.  The interpretation is the same as that described for the 
positions previous to the target position. 

4.2 The GA Brill Tagger Learning Algorithm 
This implementation attempts to use the parameters of Brill’s 
experiments (described in Section 3) involving nonlexicalized 
rules as closely as possible.  As described in Section 4.1, each 
individual can be composed of a maximum of 378 instructions, 
and the tags located 3 positions previous to the target position and 
3 positions following the target position are examined.  The bit 
strings, as seen in Figure 1, only represent nonlexicalized 
transformations.  Thus, there is considerable similarity between 
the original Brill and GA Brill with respect to both the size of the 
ranked list and the actual rewrite rules of which the list is 
composed. 
Within the constraints of using a genetic algorithm solution to the 
POS tagging problem, Brill’s other experimental parameters are 
matched.  Training (more properly called “evolution” in our 
experiments) is done on 600,000 word/tag pairs using the Penn 
Treebank Wall Street Journal (WSJ) Corpus.  In the GA 
algorithm, the number of individuals/possible solutions must be 
specified, as well as the criteria for stopping the tournament 
selection process.  This results in two basic approaches.   
The first approach requires that at least one individual in the 
population of solutions should be evolved on all 600,000 words.  
In order to establish when this had occurred, the number of words 
that each individual was evolved on was counted.  An individual 
was identified by a numerical id, and the id was kept regardless of 
whether the individual was replaced or the individual underwent 
mutation or crossover.  For this interpretation, a population of 20 
and 100 individuals was created and the tournament was run until 
some individual had been evolved on 600,000 words where each 
file contains an average of 49 591 words.  The algorithm for this 
interpretation is shown below in Figure 2. 
The second approach required that all individuals be evolved on 
the same 600,000 words.  Thus, each individual is evolved on 
600,000 words from no files that are alike.  This actually provides 
a more fair comparison to Brill’s results, since his solution 
involves the closed vocabulary assumption. The algorithm from 
Figure 2 does not adhere closely to the closed vocabulary 
assumption: evolution on randomly chosen files up to 600,000 
words will always leave never before seen phrase situations to be 
tagged in other files.  The reason for this is that there are 1 239 
781 words in all 25 WSJ files, so no matter what files an 
individual is evolved on, they will still encounter a very large 
number of unknown words and phrases. 

To allow this implementation to better meet the closed vocabulary 
assumption, each individual is evolved on the first 13 files in the 
WSJ corpus to provide evolution on the same 628 841 words.  To 
evaluate this algorithm fairly, the accuracy of the resulting list of 
rewrite rules ought to be evaluated on the first 13 files of the 
corpus.  Since each individual is now evolved on 600,000 words 
in each generation of the tournament, the tournament cannot be 
stopped based on the criteria of number of words the individual 
has been evolved on.  Thus, it is stipulated that the tournament 
must end after a given number of generations.  This number was 
chosen to be 25 simply to allow a reasonable run time given all 
the text processing necessary for fitness evaluation to take place.  
The algorithm for this interpretation of evolution is given in 
Figure 3. 
Initialize corpus words with their most 
common tags 
Create 20 randomly generated individuals 
composed of 378 rules in bit sequences 

While (!(some individual has processed >= 
600,000 word/tag pairs) or error != 0) 

1) randomly select 4 individuals and 
rank them on randomly chosen (0 to 25) 
WSJ texts 
2) replace the chromosomes of the 2 
individuals last in the ranking with the 
chromosomes of the first 2 individuals 
and apply mutation (with probability 
0.5) and crossover (with probability 
0.9) 
3) return all individuals to population 

 
Fitness function: accuracy of the 
individual’s 378 rules applied to the WSJ 
file chosen in tournament step 1 

Figure 2. GA Brill Tagger algorithm where some individual is 
to be evolved on 600,000 words. 

Initialize corpus words with their most 
common tags 
Create 20 randomly generated individuals 
composed of 378 rules in bit sequences 
For (generation = 0; generation <= 25; 
generation++) 

1) randomly select 4 individuals and 
rank them on WSJ texts 0 - 12 
2) replace the chromosome of the 2 
individuals last in the ranking with the 
chromosome of the first 2 individuals 
and apply mutation (with probability 
0.5) and crossover (with probability 
0.9) 
3) return all individuals to population 

 
Fitness function: accuracy of the 
individuals’ 378 rules applied to WSJ 
files 0-12 

Figure 3. GA Brill Tagger algorithm where all individuals are 
evolved on the same 600,000 words. 
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5. RESULTS 
Results were established by considering different types (and thus 
degrees) of evolution.  Furthermore, the results were done in the 
same manner as Brill’s paper: the training (in this case evolution) 
and test were done once per parameterization of the algorithm. 
Experiments were run using Java 2 on a 1.0 GHz PC.  
Before entering into the results of this implementation, it is useful 
to consider the accuracy of the initial tagging step.  The 
initialization is the same for this implementation as it is for the 
original Brill tagger.  Each word in the WSJ texts is tagged with 
the tag that is most commonly associated with all the files of the 
WSJ corpus.  The accuracy of the initial tagging can give some 
idea of the degree of improvement the GA Brill tagger adds to the 
POS tagging of this corpus.  The tagging accuracy just as a result 
of the initial tagging is shown below in Figure 4.  The overall 
accuracy of the initial tagging on all WSJ files is 0.803. 
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Figure 4. Accuracy as a result of initial tagging in the Brill 

Tagger. 

5.1 Some individual evolved on 600,000 words 
The highest fitness individual in each of the tournament 
generations for the first interpretation of evolution on 600,000 
words (where some individual must be evolved on 600,000 
words) given a population of 20 is shown below in Figure 5.  Note 
that the end criterion of some individual being evolved on 
600,000 words was met after 106 generations of the tournament 
had taken place. 
The highest accuracy reached by an individual was 0.931.  The 
result of the application of all the rules in this best individual on 
each file in Wall Street Journal corpus is shown below in Figure 
6.  The tagging accuracy of the implementation over all files in 
the WSJ test corpus was 0.898, and an additional experiment with 
the same evolving algorithm was conducted with a higher initial 
population (100) in order to improve that result.  The overall 
accuracy for that experiment declined to 0.869, reinforcing the 
hypothesis that the solution is better generated using a smaller 
search space and letting the operators of mutation and crossover 
do the exploratory work than spreading the work of the operators 
over a larger population and hoping for fruitful initial 
chromosomes. 
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Figure 5. Highest fitness of an individual per generation in the 
implementation where some individual in a population of 20 is 

evolved on 600,000 words. 
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Figure 6. Tagging accuracy of the rewrite set for the 

individual with highest fitness in the implementation where 
some individual is evolved on 600,000 words given a 

population of 20. 

5.2 All individuals evolved on 600,000 words 
 
The final implementation allowed each individual in a population 
of 20 to be evolved on 600,000 words of the WSJ test corpus.  As 
described in Section 5.3.3, this strengthened adherence to Brill’s 
closed vocabulary assumption.  Files 0 – 12 of the corpus 
(amounting to 628 841 words) were used on each individual when 
they were chosen to compete in a generation of the tournament.  
Due to high I/O demands and cycles per individual evolved, the 
tournament was specified to end after 25 generations and the 
population consisted of 20 individuals.  (After all, no 
improvement was seen in accuracy after increasing population 
size from 20 as seen in Section 5.1.)  The fitness of the best 
individual for each tournament generation is given in Figure 7 
below. 
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Figure 7. Highest fitness of an individual per generation in the 
implementation where each individual in a population of 20 is 
evolved on 600,000 words in a tournament of 25 generations. 

Since each individual was evolved on the same 13 WSJ files, the 
best fitness of an individual stays extremely constant across the 
tournament generations except for slightly higher fitness in 
generation 24.  The accuracy as a result of the rules for the best 
individual evolved on the first 13 WSJ documents is given below 
in Figure 8.  Any file beyond 13 would contain unknown words, 
and thus is not graphed due to the closed vocabulary assumption.  
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Figure 8. Tagging accuracy of the rewrite set for the 

individual with the highest fitness in the implementation 
where each individual in a population of 20 is evolved on 

600,000 words. 
The accuracy of the best individual over the 13 WSJ documents 
files on which it was evolved is 0.873, which is not even more 
accurate than the implementation where a population of 20 had 
some individual evolved on 600,000 words.  This method likely 
results in over-fitting of the solution, so no tournaments over 25 
generations were conducted. 

6. CONCLUSIONS 
Table 1 below summarizes the parameters of the different 
implementations and the most important end result of the 
experiments—the overall tagging accuracy of the resulting list of 
rewrite rules.  Three implementations of the GA Brill tagger were 
tried.  In the first, a population of 20 and 100, respectively, were 
involved in a tournament until some member of the population 
was exposed to 600,000 words.  The first implementation was 
actually the most successful, providing an accuracy of 0.898 over 
all the files in the WSJ corpus test set.  The final implementation 
had a population of 20 repeatedly evolved on approximately 

600,000 words (actually files 0 – 12 in the WSJ test set) when 
they were selected to compete in each of 25 generations.   
Interestingly, the implementation with the highest accuracy 
among the GA Brill taggers involved a low population number 
with a comparatively moderate amount of processing (the 
tournament ended after one individual was evolved on 600,000 
words).  Neither the strategy of increasing the pool of possible 
solutions (by increasing population size) nor allowing a closer 
adherence to the closed vocabulary assumption (by always 
evolving each individual on 600,000 words) increased the tagging 
performance.   
These results indicate factors to take into consideration when 
designing future GA Brill tagging systems: The latter could mean 
that the algorithm can be over-fitted, and the former likely 
indicates that most of the work in achieving a solution is done by 
the operators rather than exploiting initial material in the 
chromosomes. All implementations were successful in that they 
provided definite improvement over the initial tagging that was 
simply based on word frequencies (0.803).   

Table 1. Overall tagging accuracy of the list of rewrite rules 
resulting from each implementation on the Pen Treebank 

Wall Street Journal Corpus 

Population 
Size 

Criterion to 
end tournament 

Files in each 
generation 
used for 
evolution 

Average 
tagging 
accuracy 

20 600,000 words 
by some 
individual 

Randomly 
chosen 
documents 

0.898 

100 600,000 words 
by some 
individual 

Randomly 
chosen 
documents 

0.869 

20 25 generations Documents 0-
12 

0.873 

 
Table 2 below contrasts the results of this work with previous 
POS tagging solutions. The table indicates that no implementation 
has provided the accuracy of Brill’s original tagger (97.0%), but 
this is unsurprising since Brill’s tagger guarantees the best 
ordering of its rules through the greedy search.  However, such a 
greedy search may not always be computationally viable if the 
corpus is large.  Also, the a priori rules may not be well fitted to 
the peculiarities of different corpuses, and the GA solution can 
tailor rules to the corpus.  The GA Brill hybrid solution thus 
combines the proven performance of a transformation rule-based 
approach with the adaptability and flexibility of an evolutionary 
approach.  The only known evolutionary computation-based 
attempt at POS tagging that would share these benefits was the 
inductive logic program evolutionary algorithm (ILP-EA hybrid) 
of Reiser and Riddle [8], but it was not competitive with the GA 
Brill results (compare rows 2 and 3). 
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Table 2. Accuracy of POS tagging solutions on the Penn 
Treebank Wall Street Journal text 

Implementation Evolution Closed 
Vocabulary  

Accuracy 

ILP 6000 per 
tag 

No 73.8% 

ILP-EA 6000 per 
tag 

No 76% 

GA/Brill 600,000 No 89.8% 

Brill Tagger 600,000 Yes 97.0% 

Markov Model 1 million Yes 96.7% 

 

7. FUTURE WORK 
Future work may include a detailed analysis of the accuracy of 
the rewrite rules themselves, and whether certain rules could be 
removed.  In other words, ineffective portions of the individual 
(introns) could be removed to reduce the rule set needed for 
tagging.  This analysis could also be extended to determine, 
among the useful tagging rules, how many of them could be 
removed before a significant loss of accuracy occurred.  Brill 
found that as the end of the ranked list is approached, the tagging 
rules contribute less and less to accuracy [3].  In fact, the use of 
the first 200 rules as opposed to the first 100 only yielded an 
increase in accuracy of 0.2% when lexicalized rules were 
included.  The degree to which this rule is true for solutions where 
the ranking is produced as a phenomenon of evolutionary 
processes needs to be determined. 
While the accuracy of the GA Brill algorithm is encouraging, 
there is also the opportunity to improve significantly upon it in 
future work.  Different cost functions to determine fitness are 
possible as an alternative to raw count of incorrect tags, e.g., sum-
squared error.  There is also the opportunity to make the rules 
generated even more adaptive and better suited to the corpus: The 
bit string that represents each rule can have portions of it function 
so that they determine which word indices the transformation 
template seeks, meaning that the neighborhood of the triggering 
environment can extend either left or right to any degree desired. 
In this preliminary work the parameters of the GA were tailored 
to compare its performance with the original Brill tagger while 
attempting to match Brill’s original constraints.  A number of 
experiments could be conducted to establish the potential of a GA 
on the POS tagging problem without such constraints.  Even using 
these constraints, we do see significant improvement from initial 
accuracy, but the population of solutions is not given enough time 
to fully converge.  A larger population size ought to be tried, with 
a suitable increase in number of generations given for the 
evolution to take place.  Since the population begins at over 80% 
accuracy, it may also be beneficial to use a fair amount of 
crossover initially for global search and proceed to gradually 
decrease crossover rates while increasing mutation rates to 
perform local search once global search optima are found.  
Another interesting possibility is to explore the use of novel 

crossover and mutation operators that may allow similar 
performance with smaller populations and fewer generations. 
Finally, we note that the use of active learning strategies for 
filtering the dataset would have a significant computational 
speedup in the evaluation of fitness. Moreover, they have been 
shown to improve the accuracy of the resulting model [5].  Future 
work will also attempt to use these methods to boost the accuracy 
of the GA Brill hybrid system. 
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