
 Use of a Genetic Algorithm in Brill’s
Transformation-Based Part-of-Speech Tagger

Garnett Wilson and Malcolm Heywood
Faculty of Computer Science
Dalhousie University, Halifax

NS, Canada B3H 1W5
19024010869

gwilson@cs.dal.ca, mheywood@cs.dal.ca

ABSTRACT
The tagging problem in natural language processing is to find a
way to label every word in a text as a particular part of speech,
e.g., proper noun. An effective way of solving this problem with
high accuracy is the transformation-based or “Brill” tagger. In
Brill’s system, a number of transformation templates are specified
a priori that are instantiated and ranked during a greedy search-
based algorithm. This paper describes a variant of Brill’s
implementation that instead uses a genetic algorithm to generate
the instantiated rules and provide an adaptive ranking. Based on
tagging accuracy, the new system provides a better hybrid
evolutionary computation solution to the part-of-speech (POS)
problem than the previous attempt. Although not able to make up
for the use of a priori knowledge utilized by Brill, the method
appears to point the way for an improved solution to the tagging
problem.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search – Heuristic methods. I.2.7 [Artificial
Intelligence]: Natural Language Processing – Text Analysis.

General Terms
Algorithms, Experimentation, Languages.

Keywords
Brill tagger, Genetic Algorithm, Natural Language Processing.

1. INTRODUCTION
The labeling (or tagging) of the words in a corpus as parts of
speech (POS) such as a noun, verb, adjective, and so on has
important applications involving internet security and
intelligence, including document filtering, message
understanding, data extraction, and information retrieval. There
are a number of alternative means of tagging text, with one of the
more sophisticated implementations being the transformation-

based learning (TBL) of tags, or the "Brill Tagger," named for its
designer Eric Brill. The Brill tagger conditions its tagging
decisions on a more complex set of events than the entirely
probabilistic models like Hidden Markov Models, or HMMs, by
examining tags both to the left and the right of a given word [3].
The tagger can also examine not only surrounding tags, but
surrounding words and the morphology in the neighborhood of a
particular location in the corpus. The way these aspects of the
context are examined is through what are called "transformation
rules." The transformation rules look for particular situations of
inter-related tags, words, or morphology and change a particular
target tag if the situation pertains. A learning algorithm takes
these transformation rules, which are devised a priori, and
instantiates and ranks them. The solution is a ranked set of rules
for tagging a corpus. The result of the use of the Brill tagger is
impressive: its performance on the Wall Street Journal (WSJ) data
set (97.0%) is at the high end of accuracy numbers currently
reported for tagging (95% to 97%) [7].
The idea of having a set of instantiated rules that can be applied in
an attempt to tag a corpus can be seen as an optimization
problem: the goal is to minimize the error (or number of different
tags) between the correctly tagged corpus and the corpus that has
been tagged as a result of the transformation rules. What is
desired is the best set of rules, in the right order, to achieve a
minimum error. As an optimization problem it is an ideal
candidate for improvement using evolutionary algorithms such as
a GA, where the GA is used to minimize the cost or error function
between the correct tagging and the rule-generated tag. In this
implementation GA is used to automatically generate the rules
within the Brill tagger and provide an adapted ranking of the rules
through the natural process of re-ordering done by the crossover
operator.
In Section 2, the current literature related to the use of
evolutionary computation for the problem of POS tagging and its
application to the Brill tagger is surveyed. Section 3 outlines the
original tagger as proposed by Brill. The GA Brill Tagger that is
the subject of this work, and the two implementations of it that
were created for its theoretical and experimental analysis, are
described in Section 4. Section 5 includes the results of the
experiments performed using the GA Brill tagger. Conclusions
and future work follow in Section 6.

2. EVOLUTIONARY POS TAGGERS
While transformation-based part-of-speech tagging can be seen as
an optimization problem, few implementations have used
evolutionary methods. There are too many rule-based and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’05, June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006…$5.00.

2067

statistical methods of lesser accuracy than the Brill tagger to
cover in this work, and their performance is well documented
elsewhere. We therefore provide a survey of EC attempts to solve
the POS problem in particular, where four attempts related to the
use of EC for POS tagging have been described in the literature.
Curran and Wong [4] have actually suggested the use of evolved
transformations in the Brill Tagger. In 2000, they published a set-
based formal analysis of tagging as the basis for a generalization
of Brill’s tagger. As a result of this analysis, they claim that an
evolutionary strategy would improve the learning time of the
algorithm without reduction of accuracy. This could be achieved
by changing the size, shape, and number of the templates.
Learning would begin with only short and simple templates, and it
would progress to longer and more complex templates. The
change from simple to more complex templates is what
constitutes evolution of the templates according to Curran and
Wong; they do not actually suggest the use of evolutionary
algorithms or genetic algorithm to automatically produce the
initial transformations to be used in Brill’s tagger or use the
natural action of crossover to provide an adaptive ranking.
Araujo [1, 2] has developed a couple of GA implementations that
yield impressive accuracies of up to approximately 95% [1] and a
mean of up 96.3% [2] on his chosen corpus (Brown corpus). His
first implementation [1] did use a GA for POS tagging, but it
differed from the Brill GA hybrid proposed here in a number of
respects. The structure of the individual was markedly different:
each gene in an individual was simply a tag with probabilities of
different associated contexts attached to it. The fitness function
for the implementation is rather complex, but the fitness function
and individuals’ structure amounts to a tag assignment mechanism
that is not rule-based but statistical. In our implementation, the
structure of a gene amounts to a transformation-based rule. In
addition, Araujo’s implementation does not attempt to apply rules
in a ranked order as in Brill’s tagger, but searches for the most
probable tag for a word expressed as a gene. Araujo’s second
implementation [2] simply improves performance by using a more
flexible representation of individuals in a messy GA.
Losee [6] describes an implementation called LUST (Linguistics
Using Sexual Techniques) that also uses GAs to generate an entire
grammar for a test corpus. The system randomly generates both
syntactic rules and generates its own POS tags. The grammatical
rules of the system are reproduced and mutated. The result is an
empirically based grammar that is optimized for the particular
documents on which it was evolved. Fitness of individual
solutions was measured using an equation and related metrics that
reflected the usefulness of an entire grammar for filtering and
retrieval purposes. The main goal of Losee was to use his system
to improve filtering and retrieval of document components, and
thus he did not explicitly measure POS performance.
The Brill/GA hybrid system described in this paper is quite
different than LUST. The goal of this work is to provide
improved tagging using pre-existing Penn Treebank POS tags,
only allowing the generation of associated rules and their ranking
through the genetic algorithm. Furthermore, the rules are also
transformations in the style of those used in Brill’s tagger, with
the goal being to provide better labeling of words in a corpus. In
contrast, Losee generated his own POS tags and rule forms.
Reiser and Riddle [8] use an evolutionary algorithm (EA) to
accomplish POS tagging. Their attempt is actually the only other

EC hybrid system found in the literature: a set of inductive logic
programs (ILPs) written in Prolog are subjected to evolutionary
processes with a suitable crossover operator and mutation
replaced by an inductive logic algorithm. Thus, the tagging
method is a logic program instead of a ranked set of
transformation rules as in these experiments. Their results do
show an improvement over traditional ILPs, but the actual
accuracy of the hybrid system is approximately 76%, with
traditional ILPs boasting only over 73.8% accuracy using Penn
Treebank’s Wall Street Journal [8]. The traditional Brill tagger
solution reports much better results (97.0%) on the same corpus,
as does the GA Brill tagger implemented in this paper (up to
89.8%, see Sections 5 and 6).

3. BRILL’S TBL (TRANSFORMATION-
BASED LEARNING) TAGGER
The Brill tagging system consists of two main components: a list
of error-correcting transformations and a learning algorithm [3].
Transformations in the Brill tagger are of the form Replace tag T1
by tag T2 when tag T3 is found in a given position. The tag T1 is
located in a rewrite site (the current position where the tag is
potentially to be rewritten). Tag T3 is sought in one or more
positions ahead or behind the rewrite site, a schema which is
called the “triggering environment.” If the conditions of the
triggering environment are met (tag T3 is in an appropriate
position relative to tag T1), then a transformation is triggered and
tag T2 replaces tag T1. The instantiated triggering environment
(when the variables T1, T2, and T3 are instantiated) is known as a
“rewrite rule.” An example of a rewrite rule corresponding to the
triggering environment above (using Penn Treebank tags) is
Replace tag NN by VB if previous tag is TO, where that triggering
environment is actually the first of Brill’s a priori
transformations. What this transformation rule dictates is that a
noun should be changed to a verb if the previous tag is TO.
Transformations are applied left to right to the input, and
transformations have a delayed affect in Brill’s implementation.
This means that applications of the same transformation cannot
influence each other. For instance, given the transformation B
replaces A if the preceding tag is A transforms AAAA into ABBB
rather than ABAB. All experiments in this paper implement
delayed effect transformations like Brill’s original system.
The input data to the original Brill tagging system, and the input
used for the experiments in this work, was the Penn Treebank
Wall Street Journal corpus, a dictionary indicating each word in
the training document(s), and the tag most commonly associated
with each word. Using the dictionary, the system first tags each
word in the training corpus with its most frequent tag. The
learning algorithm then constructs a ranked list of transformations
that changes the initial tagging into one closer to the correct one.
For every rewrite rule, the algorithm keeps track of how many
good and bad transformations it is responsible for. The goodness
of the rewrite rule is the number of good transformations it
performed, minus the number of bad transformations.
Good rules are appended to an ongoing list, resulting in a list of
rewrite rules ranked in descending order of goodness. Every rule
good enough to be appended to the list also gets applied to the
training corpus before it is stored. The ultimate result of executing
this algorithm is a ranked list of rewrite rules that can be applied
to a new corpus. The learning algorithm itself is a brute-force,

2068

greedy search for the optimal rewrite rules in an optimal order:
Every possible instantiation of all transformation templates
(triggering environments) is tried on every possible tag position in
the training corpus. The ranked list of transformations that results
from the learning algorithm can then be used to tag new text.
Brill’s results [3] were impressive, clearly outperforming the
previous standard of the probabilistic Markov model of
Weischedel et al. [9]. Brill’s tagger achieved an accuracy of
97.0% when training on 600,000 words, and it generated 378
rules in total. For a lower accuracy of 96.7%, the Markov model
needed to be trained on a million words and it used 10,000
context probabilities. It is worth noting that when Brill allowed
the use of lexicalized rules (allowing explicit use of keywords as
part of the triggering environment), the accuracy only improved
to 97.2% (an improvement of 0.2%).
Since the interest of this paper is comparing basic
performance/accuracy of the original Brill tagger with one that
evolves lists of transformations using genetic algorithms, only
nonlexicalized transformations are used. Since Brill found the
use of lexicalized rules to only result in a minimum increase in
performance, it appears safe to pass up the additional
complication of lexicalized rules. The implementation to be
described in this work was designed to compete with Brill’s
results in the section of his paper [3] where he uses a closed
vocabulary assumption (no unknown words):

• Evolution of the solution (analogous to training in Brill’s
system) was done using the Penn Treebank Wall Street Journal
Corpus.

• The results for the experiment were based on using only the
tag-based transformations (or nonlexicalized transformations).

• Evolution was performed over a training set of 600,000 words.

4. THE GENETIC ALGORITHM (GA)
BRILL TAGGER
In the problem of POS tagging, one ought not to expect a solution
to be present simply due to random generation of the initial
population of rules. The GA uses a combination of selection and
search operators to incrementally improve the average fitness of
the population. The selection operator employed here takes the
form of a steady state tournament, thus greater selection pressure
is anticipated. In the case of the search operators, the probability
of mutation and crossover occurring in children is set to be
reasonably high (0.5 and 0.9, respectively), in order to ensure
continued introduction of new material into the population (a
steady state tournament is elitist). Fitness of an individual is the
accuracy resulting from the rules that make up the individual in
transforming the initial tagging of the text to match the actual
human tagging of the corpus, and the crossover operator used is
standard two-point crossover.
There are a number of readily apparent advantages to using a
genetic algorithm in the Brill tagging system. The triggering
environments in the original Brill tagger were chosen by Brill a
priori, and the context of the triggering environments is limited
by only looking for one type of tag in three positions prior to and
following the target position. In contrast, the rules generated by
GA are derived randomly (hence not chosen a priori) and are also
formed through evolutionary processes. The way the bits are
interpreted is flexible, and the parsing of the bits into a rewrite
rule can allow for different tags to be sought in the triggering

environment in potentially any number of positions prior to or
after the target position. In this implementation, the
transformation rules are more powerful in that they involve a
search for particular tags in each (rather than any of the select
positions) of the three previous and following positions. The
rules are thus highly adaptive and can structure themselves to
reflect individual corpus language structures. Mutation serves to
generate new rules to be tried in the algorithm.
In the Brill tagger, the rewrite rules that are considered to be
beneficial are applied to the training corpus during the learning
process. The order in which the best rules are applied to the
training corpus can affect the outcome and ranking of the rules.
The order in which the transformation environments are examined
seems arbitrary: why should one schema be sought before
another? There is no need for the arbitrary ordering of the
triggering environments (and thus an arbitrary ordering of the
application of beneficial rules) in the GA Brill tagger. An
individual in the population is a list of instantiated triggering
environments (rewrite rules), and random choice determines the
initial order in which the rules are applied. Following that, the
order of the rules within individuals is altered with the crossover
operator. Since there are a number of individuals in the
population, and a considerable number of them undergo
evolutionary change through crossover, new orderings of the rules
frequently arise and can be tried on the corpus.
The final advantage is that the brute-force, greedy search
embodied by the Brill learning algorithm can be avoided. There
is a tournament with a number of generations, and in each
generation a number of possible solutions to the tagging problem
are tried. The tournament can end after some fitness criterion is
met, e.g., a number of tags are correct, or the tournament can end
after a given number of generations. In either case there is the
possibility of finding a solution with less effort than a greedy
search.

4.1 Interpretation of Bits and Individuals
A fixed length representation is employed with each individual
composed from 378 rules (the number of rules that are presented
in a solution to Brill’s experiment with a result of 97.0%
accuracy). Each rule is a bit sequence of length 48 representing
an instantiated triggering environment (rewrite rule). The
collection of rules represents an entire solution to the POS tagging
problem for the Wall Street Journal Corpus—it is a ranked list of
rules that could potentially solve the tagging problem with a high
level of accuracy. Each bit in the string has an equal chance of
being a 0 or a 1 upon initialization. The way each bit string in the
list is interpreted is shown below in Figure 1.

Figure 1. Interpretation of a bit string of length 48 in an

individual used in the GA Brill Tagger.

2069

The leftmost bit in the string indicates whether the triggering
environment involves examining the 3rd tag back from the target
tag position. The next six bits indicate what tag should be sought
in that position by using the integer equivalent of the binary
representation. The six bits map onto 45 POS tags from the Penn
Treebank, and if the integer equivalent of the six bits exceeds 45,
the tag is considered to be the integer equivalent mod 45. The
next bit indicates whether to examine the 2nd tag back, and what
tag to look for there is indicated by the next 6 bits, similarly for
the position previous to the target position. What tag is to replace
that of the target position is represented by the next six bits. The
tags sought (and whether or not they should be sought) in the 3
positions following the target position are given by the following
21 bits. The interpretation is the same as that described for the
positions previous to the target position.

4.2 The GA Brill Tagger Learning Algorithm
This implementation attempts to use the parameters of Brill’s
experiments (described in Section 3) involving nonlexicalized
rules as closely as possible. As described in Section 4.1, each
individual can be composed of a maximum of 378 instructions,
and the tags located 3 positions previous to the target position and
3 positions following the target position are examined. The bit
strings, as seen in Figure 1, only represent nonlexicalized
transformations. Thus, there is considerable similarity between
the original Brill and GA Brill with respect to both the size of the
ranked list and the actual rewrite rules of which the list is
composed.
Within the constraints of using a genetic algorithm solution to the
POS tagging problem, Brill’s other experimental parameters are
matched. Training (more properly called “evolution” in our
experiments) is done on 600,000 word/tag pairs using the Penn
Treebank Wall Street Journal (WSJ) Corpus. In the GA
algorithm, the number of individuals/possible solutions must be
specified, as well as the criteria for stopping the tournament
selection process. This results in two basic approaches.
The first approach requires that at least one individual in the
population of solutions should be evolved on all 600,000 words.
In order to establish when this had occurred, the number of words
that each individual was evolved on was counted. An individual
was identified by a numerical id, and the id was kept regardless of
whether the individual was replaced or the individual underwent
mutation or crossover. For this interpretation, a population of 20
and 100 individuals was created and the tournament was run until
some individual had been evolved on 600,000 words where each
file contains an average of 49 591 words. The algorithm for this
interpretation is shown below in Figure 2.
The second approach required that all individuals be evolved on
the same 600,000 words. Thus, each individual is evolved on
600,000 words from no files that are alike. This actually provides
a more fair comparison to Brill’s results, since his solution
involves the closed vocabulary assumption. The algorithm from
Figure 2 does not adhere closely to the closed vocabulary
assumption: evolution on randomly chosen files up to 600,000
words will always leave never before seen phrase situations to be
tagged in other files. The reason for this is that there are 1 239
781 words in all 25 WSJ files, so no matter what files an
individual is evolved on, they will still encounter a very large
number of unknown words and phrases.

To allow this implementation to better meet the closed vocabulary
assumption, each individual is evolved on the first 13 files in the
WSJ corpus to provide evolution on the same 628 841 words. To
evaluate this algorithm fairly, the accuracy of the resulting list of
rewrite rules ought to be evaluated on the first 13 files of the
corpus. Since each individual is now evolved on 600,000 words
in each generation of the tournament, the tournament cannot be
stopped based on the criteria of number of words the individual
has been evolved on. Thus, it is stipulated that the tournament
must end after a given number of generations. This number was
chosen to be 25 simply to allow a reasonable run time given all
the text processing necessary for fitness evaluation to take place.
The algorithm for this interpretation of evolution is given in
Figure 3.
Initialize corpus words with their most
common tags
Create 20 randomly generated individuals
composed of 378 rules in bit sequences

While (!(some individual has processed >=
600,000 word/tag pairs) or error != 0)

1) randomly select 4 individuals and
rank them on randomly chosen (0 to 25)
WSJ texts
2) replace the chromosomes of the 2
individuals last in the ranking with the
chromosomes of the first 2 individuals
and apply mutation (with probability
0.5) and crossover (with probability
0.9)
3) return all individuals to population

Fitness function: accuracy of the
individual’s 378 rules applied to the WSJ
file chosen in tournament step 1

Figure 2. GA Brill Tagger algorithm where some individual is
to be evolved on 600,000 words.

Initialize corpus words with their most
common tags
Create 20 randomly generated individuals
composed of 378 rules in bit sequences
For (generation = 0; generation <= 25;
generation++)

1) randomly select 4 individuals and
rank them on WSJ texts 0 - 12
2) replace the chromosome of the 2
individuals last in the ranking with the
chromosome of the first 2 individuals
and apply mutation (with probability
0.5) and crossover (with probability
0.9)
3) return all individuals to population

Fitness function: accuracy of the
individuals’ 378 rules applied to WSJ
files 0-12

Figure 3. GA Brill Tagger algorithm where all individuals are
evolved on the same 600,000 words.

2070

5. RESULTS
Results were established by considering different types (and thus
degrees) of evolution. Furthermore, the results were done in the
same manner as Brill’s paper: the training (in this case evolution)
and test were done once per parameterization of the algorithm.
Experiments were run using Java 2 on a 1.0 GHz PC.
Before entering into the results of this implementation, it is useful
to consider the accuracy of the initial tagging step. The
initialization is the same for this implementation as it is for the
original Brill tagger. Each word in the WSJ texts is tagged with
the tag that is most commonly associated with all the files of the
WSJ corpus. The accuracy of the initial tagging can give some
idea of the degree of improvement the GA Brill tagger adds to the
POS tagging of this corpus. The tagging accuracy just as a result
of the initial tagging is shown below in Figure 4. The overall
accuracy of the initial tagging on all WSJ files is 0.803.

0.65

0.7

0.75

0.8

0.85

0.9

1 3 5 7 9 11 13 15 17 19 21 23 25

WSJ File Number

Ta
gg

in
g

Ac
cu

ra
cy

Figure 4. Accuracy as a result of initial tagging in the Brill

Tagger.

5.1 Some individual evolved on 600,000 words
The highest fitness individual in each of the tournament
generations for the first interpretation of evolution on 600,000
words (where some individual must be evolved on 600,000
words) given a population of 20 is shown below in Figure 5. Note
that the end criterion of some individual being evolved on
600,000 words was met after 106 generations of the tournament
had taken place.
The highest accuracy reached by an individual was 0.931. The
result of the application of all the rules in this best individual on
each file in Wall Street Journal corpus is shown below in Figure
6. The tagging accuracy of the implementation over all files in
the WSJ test corpus was 0.898, and an additional experiment with
the same evolving algorithm was conducted with a higher initial
population (100) in order to improve that result. The overall
accuracy for that experiment declined to 0.869, reinforcing the
hypothesis that the solution is better generated using a smaller
search space and letting the operators of mutation and crossover
do the exploratory work than spreading the work of the operators
over a larger population and hoping for fruitful initial
chromosomes.

0.8

0.85

0.9

0.95

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

Tournament Round

H
ig

he
st

 fi
tn

es
s

(a
cc

ur
ac

y)
 o

f
in

di
vi

du
al

Figure 5. Highest fitness of an individual per generation in the
implementation where some individual in a population of 20 is

evolved on 600,000 words.

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 3 5 7 9 11 13 15 17 19 21 23 25

WSJ File Number

Ta
gg

in
g

Ac
cu

ra
cy

Figure 6. Tagging accuracy of the rewrite set for the

individual with highest fitness in the implementation where
some individual is evolved on 600,000 words given a

population of 20.

5.2 All individuals evolved on 600,000 words

The final implementation allowed each individual in a population
of 20 to be evolved on 600,000 words of the WSJ test corpus. As
described in Section 5.3.3, this strengthened adherence to Brill’s
closed vocabulary assumption. Files 0 – 12 of the corpus
(amounting to 628 841 words) were used on each individual when
they were chosen to compete in a generation of the tournament.
Due to high I/O demands and cycles per individual evolved, the
tournament was specified to end after 25 generations and the
population consisted of 20 individuals. (After all, no
improvement was seen in accuracy after increasing population
size from 20 as seen in Section 5.1.) The fitness of the best
individual for each tournament generation is given in Figure 7
below.

2071

0.8

0.85

0.9

0.95

1 3 5 7 9 11 13 15 17 19 21 23 25

Tournament Round

H
ig

he
st

 fi
tn

es
s

(a
cc

ur
ac

y)
 o

f
in

di
vi

du
al

Figure 7. Highest fitness of an individual per generation in the
implementation where each individual in a population of 20 is
evolved on 600,000 words in a tournament of 25 generations.

Since each individual was evolved on the same 13 WSJ files, the
best fitness of an individual stays extremely constant across the
tournament generations except for slightly higher fitness in
generation 24. The accuracy as a result of the rules for the best
individual evolved on the first 13 WSJ documents is given below
in Figure 8. Any file beyond 13 would contain unknown words,
and thus is not graphed due to the closed vocabulary assumption.

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10 11 12 13

WSJ File Number

Ta
gg

in
g

Ac
cu

ra
cy

Figure 8. Tagging accuracy of the rewrite set for the

individual with the highest fitness in the implementation
where each individual in a population of 20 is evolved on

600,000 words.
The accuracy of the best individual over the 13 WSJ documents
files on which it was evolved is 0.873, which is not even more
accurate than the implementation where a population of 20 had
some individual evolved on 600,000 words. This method likely
results in over-fitting of the solution, so no tournaments over 25
generations were conducted.

6. CONCLUSIONS
Table 1 below summarizes the parameters of the different
implementations and the most important end result of the
experiments—the overall tagging accuracy of the resulting list of
rewrite rules. Three implementations of the GA Brill tagger were
tried. In the first, a population of 20 and 100, respectively, were
involved in a tournament until some member of the population
was exposed to 600,000 words. The first implementation was
actually the most successful, providing an accuracy of 0.898 over
all the files in the WSJ corpus test set. The final implementation
had a population of 20 repeatedly evolved on approximately

600,000 words (actually files 0 – 12 in the WSJ test set) when
they were selected to compete in each of 25 generations.
Interestingly, the implementation with the highest accuracy
among the GA Brill taggers involved a low population number
with a comparatively moderate amount of processing (the
tournament ended after one individual was evolved on 600,000
words). Neither the strategy of increasing the pool of possible
solutions (by increasing population size) nor allowing a closer
adherence to the closed vocabulary assumption (by always
evolving each individual on 600,000 words) increased the tagging
performance.
These results indicate factors to take into consideration when
designing future GA Brill tagging systems: The latter could mean
that the algorithm can be over-fitted, and the former likely
indicates that most of the work in achieving a solution is done by
the operators rather than exploiting initial material in the
chromosomes. All implementations were successful in that they
provided definite improvement over the initial tagging that was
simply based on word frequencies (0.803).

Table 1. Overall tagging accuracy of the list of rewrite rules
resulting from each implementation on the Pen Treebank

Wall Street Journal Corpus

Population
Size

Criterion to
end tournament

Files in each
generation
used for
evolution

Average
tagging
accuracy

20 600,000 words
by some
individual

Randomly
chosen
documents

0.898

100 600,000 words
by some
individual

Randomly
chosen
documents

0.869

20 25 generations Documents 0-
12

0.873

Table 2 below contrasts the results of this work with previous
POS tagging solutions. The table indicates that no implementation
has provided the accuracy of Brill’s original tagger (97.0%), but
this is unsurprising since Brill’s tagger guarantees the best
ordering of its rules through the greedy search. However, such a
greedy search may not always be computationally viable if the
corpus is large. Also, the a priori rules may not be well fitted to
the peculiarities of different corpuses, and the GA solution can
tailor rules to the corpus. The GA Brill hybrid solution thus
combines the proven performance of a transformation rule-based
approach with the adaptability and flexibility of an evolutionary
approach. The only known evolutionary computation-based
attempt at POS tagging that would share these benefits was the
inductive logic program evolutionary algorithm (ILP-EA hybrid)
of Reiser and Riddle [8], but it was not competitive with the GA
Brill results (compare rows 2 and 3).

2072

Table 2. Accuracy of POS tagging solutions on the Penn
Treebank Wall Street Journal text

Implementation Evolution Closed
Vocabulary

Accuracy

ILP 6000 per
tag

No 73.8%

ILP-EA 6000 per
tag

No 76%

GA/Brill 600,000 No 89.8%

Brill Tagger 600,000 Yes 97.0%

Markov Model 1 million Yes 96.7%

7. FUTURE WORK
Future work may include a detailed analysis of the accuracy of
the rewrite rules themselves, and whether certain rules could be
removed. In other words, ineffective portions of the individual
(introns) could be removed to reduce the rule set needed for
tagging. This analysis could also be extended to determine,
among the useful tagging rules, how many of them could be
removed before a significant loss of accuracy occurred. Brill
found that as the end of the ranked list is approached, the tagging
rules contribute less and less to accuracy [3]. In fact, the use of
the first 200 rules as opposed to the first 100 only yielded an
increase in accuracy of 0.2% when lexicalized rules were
included. The degree to which this rule is true for solutions where
the ranking is produced as a phenomenon of evolutionary
processes needs to be determined.
While the accuracy of the GA Brill algorithm is encouraging,
there is also the opportunity to improve significantly upon it in
future work. Different cost functions to determine fitness are
possible as an alternative to raw count of incorrect tags, e.g., sum-
squared error. There is also the opportunity to make the rules
generated even more adaptive and better suited to the corpus: The
bit string that represents each rule can have portions of it function
so that they determine which word indices the transformation
template seeks, meaning that the neighborhood of the triggering
environment can extend either left or right to any degree desired.
In this preliminary work the parameters of the GA were tailored
to compare its performance with the original Brill tagger while
attempting to match Brill’s original constraints. A number of
experiments could be conducted to establish the potential of a GA
on the POS tagging problem without such constraints. Even using
these constraints, we do see significant improvement from initial
accuracy, but the population of solutions is not given enough time
to fully converge. A larger population size ought to be tried, with
a suitable increase in number of generations given for the
evolution to take place. Since the population begins at over 80%
accuracy, it may also be beneficial to use a fair amount of
crossover initially for global search and proceed to gradually
decrease crossover rates while increasing mutation rates to
perform local search once global search optima are found.
Another interesting possibility is to explore the use of novel

crossover and mutation operators that may allow similar
performance with smaller populations and fewer generations.
Finally, we note that the use of active learning strategies for
filtering the dataset would have a significant computational
speedup in the evaluation of fitness. Moreover, they have been
shown to improve the accuracy of the resulting model [5]. Future
work will also attempt to use these methods to boost the accuracy
of the GA Brill hybrid system.

8. ACKNOWLEDGEMENTS
The authors gratefully acknowledge the support of a NSERC
PGS-B and Honorary Izaak Walton Killam Scholarship (Garnett
Wilson), and the CFI New Opportunities and NSERC research
grants (Dr. M. Heywood). We would also like to thank Dr. Valdo
Keselj for his questions and providing the Wall Street Journal
corpus, as well as the referees for their helpful comments.

9. REFERENCES
[1] Araujo, L. Part-of-Speech Tagging with Evolutionary

Algorithms. International Conference on Intelligent Text
Processing and Computational Linguistics (CICLing 2002),
Lecture Notes in Artificial Intelligence 2276 (2002) 230-239.

[2] Araujo, L. Studying the Advantages of a Messy Evolutionary
Algorithm for Natural Language Tagging. Proceedings of the
International Genetic and Evolutionary Computation
Conference (GECCO 2003), Lecture Notes in Computer
Science 2724 (2003) 1951-1962.

[3] Brill, E. Transformation-Based Error-Driven Learning and
Natural Language Processing: A Case Study in Part-of-
Speech Tagging. Computational Linguistics, 21, 4 (1995)
543-565.

[4] Curran, J.R., Wong, R.K. Formalisation of Transformation-
based Learning. Proceedings of the 2000 Australian
Computer Science Conference (ACSC 2000) (Canberra,
Australia, 2000). 51-57.

[5] Gathercole, C., Ross, P., Dynamic Training Subset Selection
for Supervised Learning in Genetic Programming. Parallel
Problem Solving from Nature III (PPSN’94), Lecture Notes
in Computer Science, 866 (1994) 312-321.

[6] Losee, R.M. Learning Syntactic Rules and Tags with Genetic
Algorithms for Information Retrieval and Filtering: An
Empirical Basis for Grammatical Rules. Information
Processing & Management, 32, 2 (1996) 185-197.

[7] Manning, C. D., Schütze, H., Foundations of Statistical
Natural Language Processing. Cambridge, MA: MIT Press
(2002).

[8] Reiser, P.G.K., Riddle, P.J. Evolution of Logic Programs:
Part-of-Speech Tagging. Proceedings of the Congress on
Evolutionary Computation, 2 (1999) 1338-1346.

[9] Weischedel, R., Marie, M., Schwartz, R., Ramshaw, L., and
Palmucci, J. Coping with ambiguity and unknown words
through probabilistic models. Computational Linguistics, 19,
2 (1993) 359-382.

2073

