
Robustness Analysis of Genetic Programming
Controllers for Unmanned Aerial Vehicles

Gregory J. Barlow
∗

The Robotics Institute
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213

gjb@cmu.edu

Choong K. Oh
U.S. Naval Research Laboratory

4555 Overlook Avenue, SW
Washington, DC 20375

choong.oh@nrl.navy.mil

ABSTRACT
While evolving evolutionary robotics controllers for real ve-
hicles is an active area of research, most research robots
do not require any assurance prior to operation that an
evolved controller will not damage the vehicle. For con-
trollers evolved in simulation where testing a poorly per-
forming controller might damage the vehicle, thorough test-
ing in simulation—subject to multiple sources of sensor and
state noise—is required. Evolved controllers must be robust
to noise in the environment in order to operate the vehicle
safely. We have evolved navigation controllers for unmanned
aerial vehicles in simulation using multi-objective genetic
programming, and in order to choose the best evolved con-
troller and to assure that this controller will perform well
under a variety of environmental conditions, we have per-
formed a series of robustness tests. The results show that
our best evolved controller outperforms two hand-designed
controllers and is robust to many sources of noise.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics—Autonomous ve-
hicles; I.2.2 [Artificial Intelligence]: Automatic Program-
ming—Program synthesis; I.2.8 [Artificial Intelligence]:
Problem Solving, Control Methods, and Search

General Terms
Performance, reliability

Keywords
evolutionary robotics, genetic programming, robustness, trans-
ference, unmanned aerial vehicles

∗Gregory J. Barlow is also affiliated with the U.S. Naval
Research Laboratory.

Copyright 2005 Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored by a contractor or
affiliate of the U.S. Government. As such, the Government retains a nonex-
clusive, royalty-free right to publish or reproduce this article, or to allow
others to do so, for Government purposes only.
GECCO’06, July 8–12, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-186-4/06/0007 ...$5.00.

1. INTRODUCTION
Whether evolutionary robotics (ER) controllers evolve in

simulation or on real robots, real-world performance is the
true test of an evolved controller. Controllers must overcome
the noise inherent in real environments to operate robots effi-
ciently and safely. To prevent a poorly performing controller
from damaging a vehicle—susceptible vehicles include stati-
cally unstable walking robots, flying vehicles, and underwa-
ter vehicles—it is necessary to test evolved controllers exten-
sively in simulation before transferring them to real robots.
In this paper, we introduce a series of tests for choosing
the best evolved controller for an unmanned aerial vehicle
(UAV) from a population of controllers generated by multi-
objective genetic programming and assuring the controller
performance prior to real flight tests.

Transference of controllers evolved in simulation to real
vehicles is an important issue in evolutionary robotics. Some
controllers have been evolved in situ on physical robots [14],
but long evaluation time, the need for many evaluations to
achieve good results, and the need for human monitoring
during the evolutionary process all limit this approach. Al-
ternatively, controllers evolved in simulation do not always
transfer well to real vehicles, since the simulation is never
a perfect model of the real environment. Adding noise to
the simulation (in the form of both sensor error and state
error) may help controllers transfer well from simulation to
real robots [2, 5, 7]. This approach is usually evaluated by
evolving a controller in a noisy simulation environment and
then testing the controller on a real vehicle. This works well
for systems where tests can be performed easily, cheaply,
and with little danger of damaging the vehicle, but what of
systems where tests are expensive or dangerous? Controllers
may be evolved with high levels of noise, but this does not
guarantee good performance when that noise is not consis-
tent with the real system. As the experiments in [7] show, if
the noise levels used in simulation are significantly different
from those in the real world, there are no assurances that
the evolved controller will perform as desired. If, however,
a controller performs well when subjected to a wide range
of sensor and state noise conditions in simulation, and the
real environmental noise falls within the testing range, prior
works suggest that the controller should also perform well
on a real vehicle [2, 5, 7].

Unmanned aerial vehicles (UAV) are one type of robot
that require assurance of the off-design performance (the

135

performance under additional sensor and state noise) of an
evolved controller before testing a controller on the robot.
Even when subject to additional sources of noise, controllers
should still be able to efficiently accomplish the desired task.
Assurance of off-design performance is also necessary be-
cause poorly performing controllers could cause crashes, pos-
sibly destroying the UAV.

The UAV has become popular for many applications, par-
ticularly where high risk or accessibility are concerns. Al-
though some ER research has been done on UAVs, this work
has largely ignored the fixed wing UAV—by far the most
common type—until recently. An autopilot for a rotary
wing helicopter was evolved using evolutionary strategies in
[6] and compared to linear robust multi-variable control and
nonlinear tracking control in simulation in [13]. Higher level
controllers were evolved with UAVs as the target platform
in [9], but experiments were done only in simulation, move-
ment was grid-based, and the UAV could move in any direc-
tion at every time step. Because of the unrealistic nature of
the simulation, it would have been difficult to control real
UAVs with the evolved controllers. Related work was done
to evolve a distributed control scheme for multiple micro air
vehicles in [15]. Like the experiments in [9], only simulation
was used, the simulation environment was unrealistic, and
no testing on real UAVs was attempted. Recently, Barlow
et al. [1, 2, 3, 10] and Richards et al. [11] have evolved
genetic programming (GP) controllers for fixed wing UAVs.

2. CONTROLLER EVOLUTION
In previous work, we have developed autonomous naviga-

tion controllers for fixed wing UAVs using multi-objective
genetic programming [1, 2, 3, 10]. The goal is for a UAV to
autonomously locate, track, and then orbit around a radar
site. There are three main goals for an evolved controller.
First, the UAV should move to the vicinity of the radar
as quickly as possible. The sooner the UAV arrives in the
vicinity of the radar, the sooner it can begin its primary mis-
sion, such as surveillance. Second, once in the vicinity of the
electromagnetic source, the UAV should circle as closely as
possible around the radar. This goal is especially important
when proximity to the source affects the success of the appli-
cation. Third, the flight path should be stable and efficient.
The roll angle should change as infrequently as possible, and
any change in roll angle should be small. Making frequent
changes to the roll angle of the UAV could create dangerous
flight dynamics and could reduce the endurance and range
of the UAV.

Only the navigation portion of the controller is evolved;
the low level flight control is done by an autopilot. The
navigation controller receives radar emissions as input, and
based on this sensory data and past information, the naviga-
tion controller determines a desired roll angle for the UAV.
The autopilot uses this desired roll angle to change the head-
ing of the UAV. This autonomous navigation technique re-
sults in a general controller model that can be applied to a
wide variety of vehicles, since the evolved controllers are not
designed for a specific UAV airframe or autopilot.

The controller is evolved in simulation. The simulation
environment is a square 100 nautical miles (nmi) on each
side. The simulator gives the UAV a random initial position
in the middle half of the southern edge of the environment
with an initial heading of due north and the radar site a ran-
dom position within the environment every time a simula-

tion is run. In our current research, the UAV has a constant
altitude and a constant speed of 80 knots. Each experimen-
tal run simulates four hours of flight time, where the UAV is
allowed to update its desired roll angle once a second. The
interval between these requests to the autopilot can also be
adjusted in the simulation.

Our simulation can model a wide variety of radars. Sta-
tionary radars were modeled as early warning radars, mobile
radars as target acquisition radars [12]. Only the sidelobes
of the radar emissions are modeled. The sidelobes are the
parts of the emitted signal that are not part of the main
beam, so they have a much lower power than the effective
portion of the radar signal. If a controller can track a radar
based only on the sidelobes, the radar can be tracked no
matter the direction in which it is pointed, increasing the
robustness of the system. Additionally, Gaussian noise is
added to the amplitude of the radar signal. The receiving
sensor can perceive only two pieces of information: the am-
plitude and the angle of arrival (AoA) of incoming radar
signals. The AoA measures the angle between the head-
ing of the UAV and the source of incoming electromagnetic
energy. Real AoA sensors do not have perfect accuracy in
detecting radar signals, so the simulation models an inac-
curate sensor. The accuracy of the AoA sensor can be set
in the simulation; in this research, controllers were evolved
with an AoA accuracy of ±10◦.

Transference of these controllers to a real UAV is an im-
portant issue. Flying a physical UAV with an evolved con-
troller is planned as a demonstration of the research, so
transference was taken into consideration from the begin-
ning. Several aspects of the controller evolution were de-
signed specifically to aid in this process. First, rather than
attempting to evolve direct control, only the navigation was
evolved. This allows the same controller to be used for dif-
ferent airframes. Second, the simulation parameters were
designed to be tuned for equivalence to real aircraft. For ex-
ample, the simulated UAV is allowed to update the desired
roll angle once per second, a realistic value for an autopilot.
For autopilots with slower response times, this parameter
could be increased. Third, noise was added to the simu-
lation, both in the radar emissions and in sensor accuracy.
A noisy simulation environment encourages the evolution of
robust controllers that are more applicable to real UAVs [2].

As in previous work, navigation controllers were evolved
using multi-objective GP with non-dominated sorting, crowd-
ing distance assignment to each solution, and elitism. We
evolved UAV controllers using an implementation of NSGA-
II [4] for GP. The function and terminal sets are defined as

F = {Prog2, Prog3, IfThen, IfThenElse, And,
Or, Not, <, ≤, >, ≥, < 0, > 0, =, +, -,
*, ÷, X < 0, Y < 0, X > max, Y > max,
Amp > 0, AmpSlope > 0, AmpSlope < 0,
AoA > Arg, AoA < Arg}

T = {HardLeft, HardRight, ShallowLeft, Shal-
lowRight, WingsLevel, NoChange, rand, 0, 1}

The two available sensor measurements are the amplitude
of the incoming signal and the AoA, or angle between the
heading and the source of incoming electromagnetic energy.
Additionally, the slope of the amplitude with respect to time
is available to GP. When turning, there are six available
actions. Turns are either hard or shallow, with hard turns

136

making a 10◦ change in the roll angle and shallow turns
a 2◦ change. The WingsLevel terminal sets the roll angle
to 0, and the NoChange terminal keeps the roll angle the
same. Multiple turning actions may be executed during one
time step, since the roll angle is changed as a side effect
of each terminal. The final roll angle after the navigation
controller is finished executing is passed to the autopilot.
The maximum roll angle is 45◦. Each of the six terminals
returns the current roll angle.

Evolution was generational, with crossover and mutation
similar to those outlined by Koza in [8]. The parameters
used by GP and the four fitness functions used to evolve
controllers are shown in [1, 3, 10]. Tournament selection was
used. Initial trees were randomly generated using ramped
half and half initialization. We performed 50 evolutionary
runs at 500 individuals each, producing 25,000 GP trees. All
computation was done on a Beowulf cluster parallel com-
puter with ninety-two 2.4 GHz Pentium 4 processors.

Controllers were evolved using environmental incremen-
tal evolution [1, 3] to track four radar types: continuously
emitting, stationary radars; continuously emitting, mobile
radars; intermittently emitting, stationary radars; and inter-
mittently emitting, mobile radars. The intermittently emit-
ting radars had periods of 10 minutes and emitting durations
of 5 minutes. The mobile radars were modeled as finite state
machines with setup, deployed, tear down, and move states.
A radar only emits in the deployed state. When a radar
moves, the new location can be anywhere in the simulation
area. These four radar types were used to evolve controllers,
but for testing we also used a fifth radar type, intermittently
emitting, stationary radars with irregular emitting periods.
These radars are identical to intermittently emitting, sta-
tionary radars with regular emitting periods except that the
period and duration of emission are set randomly at the be-
ginning of each period. The mean periods and durations of
the radars with irregular emitting periods are equal to those
with regular emitting periods.

Environmental incremental evolution increases the diffi-
culty of the environment or task faced by evolution in steps,
while leaving the fitness function unchanged. In the first
stage of evolution, randomly initialized populations were
evolved on continuously emitting, stationary radars for 600
generations. In each of the next three stages, the evolved
population from the prior stage was used as a seed popu-
lation and evolved for 400 generations. Controllers evolved
over continuously emitting, mobile radars in the second stage,
intermittently emitting, stationary radars in the third stage,
and intermittently emitting, mobile radars in the fourth
stage. The use of incremental evolution increased the like-
lihood of evolving successful controllers and produced con-
trollers able to handle all radar types [1, 3].

3. METHODS
Over the 50 evolutionary runs with populations of 500

for each run, we produced 25,000 GP trees. In each evo-
lutionary run, all 500 members of the final population fell
along the Pareto front. Many of these controllers, however,
only performed well according to one of the fitness functions
while doing poorly at the others. The evolved controller best
suited for transference to a real UAV would perform well on
all of the fitness and test functions. Rather than test all
of the evolved controllers, including the most poorly per-
forming, we chose to test only a small number of the best

controllers. We established several performance metrics to
evaluate controllers. Through successive performance met-
ric evaluations, we selected the 10 best controllers for testing
and subjected these evolved controllers to a series of robust-
ness tests.

3.1 Test Functions
During controller evolution, four fitness functions deter-

mined the success of individual UAV navigation controllers
[1, 3, 10]. The fitness of a controller was measured over 30
simulation trials, where the UAV and radar positions were
random for every trial. We designed the four fitness func-
tions to measure how well a controller satisfied the goals
of moving toward the radar, circling the radar closely, and
flying in an efficient and stable manner.

These four fitness functions worked well to evolve good
controllers, but because the functions were designed to exert
evolutionary pressure throughout each run, not all the values
each function produces are immediately meaningful. For the
purposes of testing the evolved controllers, we designed four
test functions which measure the same qualities as the four
fitness functions. The values these test functions produce
are more meaningful to the observer.

3.1.1 Flying to the radar
The primary goal of the UAV is to fly from its initial posi-

tion to the radar site as quickly as possible. The first fitness
function, fitness1, measured how well controllers accom-
plish this task by averaging the squared distance between
the UAV and the goal over all time steps. We normalized
this distance using the initial distance between the radar
and the UAV in order to mitigate the effect of varying dis-
tances from the random placement of radar sites. However,
this measure does include a slight bias against longer initial
distances, and produces a value without much meaning for
an observer. We eliminated this bias in test1 by measuring
percent error in flight time to the target. The total simu-
lated time of four hours, or 14400 seconds, is divided into
Tin, the number of seconds the distance between the UAV
and radar is less than 10 nmi, and Tout, when this distance
is greater than or equal to 10 nmi.

Ttotal = Tin + Tout = 14400 seconds (1)

The error in the time it takes to fly to the radar is just the
actual time, Tout, minus the shortest possible time, Texpect,
which is computed from D, the shortest possible distance a
UAV could travel to fly from its starting position to each
radar location.

Texpect =
D

80nmi
hr

∗ 1 hr
3600 s

= 45 ∗ D (2)

This test function is given as

test1 =

»
Tout − Texpect

Texpect

–
(3)

For our tests, a value for test1 near zero indicates a good
flight.

3.1.2 Circling the radar
In early tests, we found that finding the mean squared cir-

cling distance exerted more pressure to evolve good circling
behavior than if we simply used the mean circling distance.

137

The circling distance fitness function used to evolve the con-
trollers used the mean squared distance between the UAV
and the radar when this distance was less than 10 nmi. For
our tests, we were more concerned with the actual mean cir-
cling distance, so the test function, test2, is the mean circling
distance between the UAV and the radar when this distance
is less than 10 nmi. The circling distance test function is

test2 =
1

Tin

TX
i=1

in range ∗ distancei (4)

where in range equals 1 if the distance between the UAV
and the radar is less than 10 nmi and 0 otherwise.

3.1.3 Efficient flight
The first fitness function used to measure the efficiency

of flight, fitness3, is equal to the number of time steps the
UAV spends with a roll angle of 0◦ while traveling to the
target. When the mean value of this fitness function is taken
over many simulated flights, it provides a good measure of
the amount of time a UAV spends flying in the most efficient
posture. For the ability to look at single flights as well as a
large number of simulations, we created test3, which mea-
sures the percentage of the expected time the UAV spends
flying level.

test3 =

˛̨
˛̨
˛̨
“PT

i=1(1 − in range) ∗ level
”
− Texpect

Texpect

˛̨
˛̨
˛̨ (5)

where level is 1 when the UAV has been level for two con-
secutive time steps and 0 otherwise. For our tests we’d like
test3 to be as small as possible.

3.1.4 Stable flight
The second test function to evaluate the efficiency of flight

is a measure of turn cost. While UAVs are capable of quick,
sharp turns, it is preferable to avoid these in favor of more
gradual turns. The original turn cost fitness function, which
is used as test4, was intended to penalize controllers that
navigate using a large number of sharp, sudden turns be-
cause this behavior may cause unstable flight, even stalling.
The UAV can achieve a small turning radius without penalty
by changing the roll angle gradually; this fitness metric only
accounts for cases where the roll angle has changed by more
than 10◦ since the last time step. The turn cost is given as

test4 =
1

T

TX
i=1

hard turn∗ |roll anglei − roll anglei−1| (6)

where roll angle is the roll angle of the UAV and hard turn
is 1 if the roll angle has changed by more than 10◦ since the
last time step and 0 otherwise. We would like to minimize
test4.

3.2 Performance metrics
Multi-objective optimization produces a Pareto front of

solutions, rather than a single best solution. In order to
rank the controllers, each performance metric should com-
bine the four test functions into a single value. The basis
for all the performance metrics are a set of baseline val-
ues, values for each test function that describe a minimally
successful UAV controller. An acceptable controller would
have fitness or test function values at least as good as the
baseline values. These baseline values were used only for

our analysis, not for the evolutionary process. We defined a
minimally successful UAV controller as able to move quickly
to the target radar site with less than 20% error, circle at
an average distance under 2 nmi, fly with a roll angle of 0◦

for approximately half the distance to the radar, and turn
sharply less than 5% of the total flight time, giving base-
line values of baseline = {0.2, 2.0, 0.5, 0.05}. Controllers are
compared using four performance metrics: 1) failures, 2)
normalized maximum, 3) normalized mean, and 4) average
rank.

The first performance metric, failures, measures the per-
centage of flights with test function values which fail to
meet at least one of the baseline values. A simulation run
is a failure if ∃m such that testm(r, n) > baselinemwhere
test1...4(r, n) are the values of the four test functions for
simulation run n for radar r. The failure percentage for a
controller f and a test t is given as

metric1(f, t) = F/N (7)

where N is the total number of simulations and F is the
number of simulation runs that fail.

The second performance metric, normalized maximum,
measures how poorly a controller does when it fails. While
the failures performance metric measures how often a con-
troller fails, it does not measure how badly it might fail.
Some controllers might perform well most of the time, but do
not fail gracefully. The normalized maximum performance
metric measures the worst failure for a particular controller.
For each test function, the largest of the N values for each R
radars is normalized by the baseline value for that function.
Each value testm(r, n) is described by the test function (m),
the radar type (r), and the simulation number (n). The
maximum value over the M test functions is the normalized
maximum, given as

metric2(f, t) =

maxM

“
maxR,N (testm(r,n))−baselinem

baselinem

”
(8)

The third performance metric, normalized mean, mea-
sures how well a controller performs in relation to the base-
line values. While the two metrics above measure the con-
sistency of the controller and how wildly it can fail, this
metric shows the typical performance of a controller. The
normalized mean is given as

metric3(f, t) =

1
M

PM
m=1

„
baselinem− 1

R

PR
r=1

1
N

PN
n=1 testm(r,n)

baselinem

«
(9)

The test function values for each objective are first aver-
aged over the number of samples N , then over the number
of radars R. For each objective, this average is normal-
ized by the corresponding baseline value. We compute the
normalized mean by taking the average over the M objec-
tives.

The fourth performance metric, average rank, combines
the values from the first three metrics into a single metric.
To measure the relative performance of the controllers and
so each metric has equal weight, the values for all g con-
trollers are normalized to be between 0 and 1.

normk(f, t) =
metrick(f, t) − minG (metrick(g, t))

maxG (metrick(g, t)) − minG (metrick(g, t))
(10)

138

The value of metric4(f, t) is the mean of these normalized
metrics.

metric4(f, t) =
1

3

3X
k=1

normk(f, t) (11)

If we wish to find metric4(f, T) where T is a set of tests, we
find metrick(f, T) values for each of the first three metrics

metrick(f, T) =
1

T

|T |X
t

metrick(f, t) (12)

then normalize using Equation 10 and compute the metric
using Equation 11.

3.3 Selecting controllers for testing
The combination of simulated sensor noise and random

positioning of UAVs and radars created an uncertain fitness
landscape for this problem. During evolution, we averaged
the values from 30 simulation trials to help mitigate this un-
certainty, but for these robustness tests, orders of magnitude
more tests would make test function values for individual
controllers statistically meaningful. Rather than running
thousands of simulations for each of the 25,000 controllers
created by evolution—an approach that would have been too
computationally expensive—we chose to perform a series of
robustness tests on 10 of the best controllers. We selected
these controllers over several stages, reducing the number of
controllers by an order of magnitude during each step.

First, we selected all controllers whose mean was lower
than the baseline values for the four fitness functions de-
scribed in [1, 3]. Of the 25,000 evolved controllers, 1,602
controllers had average fitness values better than the base-
line values. This first method of selection was chosen be-
cause these 1,602 controllers had already been shown to per-
form well on the five radar types of interest: continuously
emitting, stationary radars; continuously emitting, mobile
radars; intermittently emitting, stationary radars with reg-
ular emitting periods; intermittently emitting, stationary
radars with irregular emitting periods; and intermittently
emitting, mobile radars with regular emitting periods.

Second, we ran 100 simulation trials on each of the five
radar types for each of the 1,602 controllers and measured
each flight using the test functions outlined in Section 3.1.
For each radar type, we selected the best 35% of controllers
using the failures performance metric described above. Then,
we took the intersection of these five sets of controllers, leav-
ing 298 controllers out of the 1,602. This selection method
was chosen to eliminate controllers that did not perform
consistently well on all five of the radar types. Since some
radar types were more difficult than others, using a single
cutoff number of failures to select controllers wouldn’t have
caught controllers that did not perform as well on the easier
radar types. The choice of 35% was made in order to select
approximately 300 controllers for further tests.

Finally, we cut these 298 controllers down to 10 using
the normalized maximum performance metric. This per-
formance metric was applied to all 298 controllers and the
10 controllers with the lowest normalized maximum were
selected as the best controllers for further testing. While
counting the number of times a controller fails to meet the
baseline values is a good way to compare controllers, this
method gives no indication of the magnitude of failure. Us-
ing the normalized maximum metric helped eliminate con-

trollers that usually performed well, but occasionally per-
formed extremely poorly. Since a consistently sub-optimal
controller is preferable to an unpredictable one, this met-
ric was a good way to cut the set of controllers to a small
number for final testing.

We compared these 10 evolved controllers to two designed
controllers, a hand-written controller specific to this do-
main and a proportional-derivative (PD) controller, a com-
mon feedback controller. We did not use a PID controller
because intermittent and mobile radars made the integral
term detrimental to performance in preliminary tests. Af-
ter examining many successful evolved controllers, we de-
signed the hand-written controller using only the function
set available to GP. We used strategies seen in evolved con-
trollers, but tried to reduce the complexity to an easy to
understand controller that performed well under the same
conditions used in evolution. Given the current AoA, am-
plitude, and roll angle as inputs, if the amplitude is greater
than zero, the hand-written controller will make a turn of
fixed magnitude if necessary. If the AoA is greater than
10◦, the roll angle will be increased. If the AoA is less
than −10◦, the roll angle will be decreased. If the AoA is
between 10◦ and −10◦, and the magnitude of the roll an-
gle is greater than zero, the roll angle will be increased or
decreased to move it closer to zero. Otherwise, the roll an-
gle remains at 0◦. The PD controller takes as input the
current AoA and the AoA at the previous time step. The
derivative of AoA is approximated by using the difference
between the AoA at the previous time step and the current
AoA. We adjusted the proportional and derivative gains to
give good performance under the same conditions used for
evolution.

3.4 Robustness tests
During evolution, controller evaluation simulated an air-

craft with constant speed, noise on the two sensor measure-
ments (angle of arrival (AoA) and amplitude), and no state
noise. The airspeed was 80 knots, AoA noise during evo-
lution was ±10◦, and the amplitude noise was ±6dB. To
test the robustness of the evolved controllers, we increased
the sensor noise and introduced sources of state noise. In
addition to a control case with conditions identical to those
during evolution, robustness tests fell into five categories
by the type of noise: 1) AoA error, 2) amplitude error, 3)
UAV airspeeds different from the speed used in evolution,
4) heading error, 5) and wind effects (position error). For
each robustness test, we tested ten evolved controllers, a
hand-written controller, and a PD controller against all five
radar types. For every combination of controller and radar,
we performed 10,000 simulation runs, for a total of 50,000
simulations for each controller per robustness test.

The sensor used most by evolved controllers was the AoA
sensor. To test the robustness of evolved controllers, we var-
ied the accuracy of the AoA sensor. The apparent AoA is
given as the true angle to the target plus a normally dis-
tributed random number times the AoA accuracy. This ac-
curacy was set to ±10◦ during evolution. For these robust-
ness tests, we used AoA accuracies of ±{15, 20, 25, 30}◦.

While the amplitude sensor was not often used by evolved
controllers, we did one test where we increased the ampli-
tude error. While the controllers were being evolved, the
amplitude error was set to 6 dB; the robustness test used an
error of 12 dB. In both cases, this error was multiplied by a

139

Table 1: Controller rankings for robustness tests
Overall ranking best 2 3 4 5 6 7 8 9 10 11 12

failures G D E F J H A C B pd I hd
normalized maximum pd D I F G hd J E B A H C

normalized mean D E hd G F J H pd A C B I
average rank D G E pd F J H hd A B C I

Initial ranking best 2 3 4 5 6 7 8 9 10 11 12
failures pd A B C D E F G H I J hd

normalized maximum pd G E J F I B A D C H hd
normalized mean pd I J A B C G E D F H hd

average rank pd J G I E B A F C D H hd

AoA ranking best 2 3 4 5 6 7 8 9 10 11 12
failures G D E F I H J B A C pd hd

normalized maximum pd D I E G hd B J H F A C
normalized mean D G E hd F J H I C B A pd

average rank G D E F pd J hd H I B C A

Heading ranking best 2 3 4 5 6 7 8 9 10 11 12
failures D E F G J H pd A C B I hd

normalized maximum pd I D J H F B hd A G E C
normalized mean pd D H J F hd E I C G B A

average rank pd D J F H E G I B C A hd

Wind ranking best 2 3 4 5 6 7 8 9 10 11 12
failures D E G pd F J H C B A hd I

normalized maximum pd G F E D hd I J A B C H
normalized mean pd hd D G E F J H A C B I

average rank pd G D E F J H hd A C B I

normally distributed random number and added to the true
amplitude to compute the apparent amplitude.

During evolution, the speed of the UAV was held constant
at 80 knots, but a UAV can obviously be flown at a variety
of speeds. For instance, the UAV being considered for flight
tests has a stall speed of 40 knots and a top speed of 110
knots. To test the performance of the evolved controllers at
different speeds, we chose to test at 50 and 100 knots, values
near the low and high end of the speed range.

The evolved UAV controllers have a single control vari-
able, roll angle, which is used by the simulation to change
the heading of the UAV at each time step. In the version
of the simulation used to evolve controllers, there was no
noise in this process. It is possible that on a real UAV, the
autopilot might not be able to respond perfectly to turn re-
quests or wind might push the UAV off-course. To test the
robustness of evolved controllers this possibility, we added
noise to the heading state variable. At each time step, a nor-
mally distributed random variable multiplied by a heading
error was added to the heading computed using the desired
roll angle. For our tests, we used heading error values of
±{0.5, 1.0, 1.5, 2.0}◦.

A significant source of state error for UAVs in the real
world is wind. During evolution, the effects of wind on a
UAV were not taken into account. While wind may func-
tion as a source of heading noise, the largest effect examined
here was on position error. For our robustness tests, we
make the simplifying assumption that the wind acts as an
external force vector that can be summed with the propul-
sion force vector to obtain the new position of the UAV. In
reality, this assumption is pessimistic, but for the purposes
of these robustness tests would help to gauge the effects of

wind on evolved controllers. Wind was modeled as having
a constant direction throughout simulation, set randomly
for each simulation. The wind speed was calculated at each
time step as the mean wind speed plus some variance. For
our tests, we used wind speeds of {5, 10, 20, 30} knots with
a variances of {1, 1, 5, 5} knots.

4. RESULTS
For each test, we ranked the 12 controllers (10 evolved

controllers, labeled A to J; the hand-written controller, hd;
and the PD controller, pd) based on each of the four perfor-
mance metrics. In the interest of space, most of the results
presented are rankings over several tests. When ranking over
several tests, we used the averages of the performance metric
values for each test except for the average rank metric; the
technique to compute this metric is described in Section 3.2.

Controller rankings, as shown in Table 1, are divided into
five separate sections. The first section shows the overall
rankings, averaged over all 16 robustness tests. The second
section shows the initial rankings, using the same conditions
under which the controllers were evolved (the control test).
The third section shows the AoA rankings, averaged over
the control test and the four tests with decreased AoA ac-
curacy. The results from the next three tests, increasing
the amplitude noise and changing the UAV speed to 50 and
100 knots, were very similar to those for the control test, so
these results are not shown in the interests of space. The
fourth section shows the heading rankings, averaged over
the control test and the four tests with increased heading
error. The fifth section shows the wind rankings, averaged
over the control test and the four tests with increased wind
speed. Based on these rankings, evolved controller D was

140

Table 2: Failure percentages for the best evolved controller (D) and the PD controller (pd) listed by radar
type (cs: continuous, stationary; cm: continuous, mobile; irs: intermittent, regular period, stationary; iis:
intermittent, irregular period, stationary; irm: intermittent, regular period, mobile; avg: average)

cs cm irs iis irm avg
Test type D pd D pd D pd D pd D pd D pd

control case 0.00 0.04 10.19 0.03 1.18 0.07 10.39 0.04 13.87 0.03 7.13 0.04
AoA=15 0.00 100.0 9.67 100.0 6.55 100.0 16.43 100.0 16.74 100.0 9.88 100.0
AoA=20 0.00 100.0 9.80 100.0 20.10 100.0 26.06 100.0 24.81 100.0 16.15 100.0
AoA=25 0.01 100.0 9.40 100.0 35.39 100.0 37.76 100.0 34.90 100.0 23.49 100.0
AoA=30 99.65 100.0 99.05 100.0 77.15 100.0 90.12 100.0 85.25 100.0 90.24 100.0
Amp=12 0.00 0.04 10.83 0.02 1.41 0.04 10.73 0.04 13.21 0.07 7.24 0.04
Speed=50 0.00 100.0 12.38 100.0 0.56 100.0 3.70 100.0 16.53 100.0 6.63 100.0
Speed=100 0.00 92.92 10.28 92.42 2.63 92.23 17.04 92.79 14.83 93.09 8.96 92.69
Head=0.5 0.00 0.15 9.76 0.20 1.70 0.19 11.70 0.15 14.38 0.18 7.51 0.17
Head=1.0 0.00 2.57 10.84 2.46 4.48 2.50 16.88 2.66 16.08 2.60 9.66 2.56
Head=1.5 0.00 54.97 11.16 55.64 9.29 54.30 25.86 55.36 20.31 55.03 13.32 55.06
Head=2.0 0.00 98.56 11.04 98.57 19.85 98.55 37.63 98.67 29.38 98.64 19.58 98.60
Wind=5 0.02 0.39 11.43 0.00 2.40 0.01 12.52 0.05 15.70 0.14 8.41 0.12
Wind=10 16.33 0.05 25.66 0.00 21.13 1.39 30.97 0.02 30.82 1.11 24.98 0.51
Wind=20 78.96 97.54 72.10 94.76 49.96 95.12 72.05 100.0 60.77 94.83 66.77 96.45
Wind=30 61.05 98.36 71.20 100.0 63.43 96.64 95.42 97.28 86.10 99.67 75.44 98.39

the best candidate to transfer to a real UAV. In all rank-
ings, controller D, the hand-written controller, and the PD
controller are highlighted. The failure percentages for con-
troller D and the PD controller for each of the robustness
tests for each radar type are shown in Table 2.

In the initial ranking, the PD controller performs better
than all the evolved controllers and the hand-written con-
troller on all four metrics. This was not surprising, as we
had tuned the controller parameters for the control test,
giving an average failure rate of 0.04%. The hand-written
controller, which was not optimized, performed the worst
with an average failure rate of 69.82%. Controller D per-
formed well, with an average failure rate of 7.13%, but was
ranked tenth on the average rank metric, ahead of only one
other evolved controller and the hand-written controller.

As we increased AoA noise, the performance of the hand-
designed controllers declined compared to the evolved con-
trollers. When the AoA error was increased from ±10◦ to
±15◦, the PD controller failed in 100% of tests and the hand-
written controller failed in 92.72% of tests. On the other
hand, the failure rate for controller D was only 9.88%. The
average failure rate for controller D only rose above 25% (to
90.24%) once the AoA error was ±30◦. For the five different
settings of AoA accuracy, controller D was the most robust
to AoA sensor noise of the controllers.

As mentioned, we do not show the rankings for the am-
plitude noise and speed tests in the interest of space. An
increase in amplitude error did not significantly change the
performance of any controller. The performances of the
evolved controllers and the hand-written controller on the
two test varying the speed were similar to performances on
the control case. The only controller that had trouble with
different speeds was the PD controller, which had average
failure rates of 100% for a speed of 50 knots and 92.69%
for a speed of 100 knots. In addition to being tuned for a
particular AoA accuracy, these tests suggest that the PD
controller is also tuned for a particular airspeed.

For the robustness tests with heading noise, the PD con-
troller was the best, followed by controller D, which was the
most consistent of the evolved controllers. The hand-written
controller was the worst of the 12 controllers over these four
tests and the control. Controller D actually failed signifi-
cantly less than the PD controller; the average failure rate
for the PD controller was over 50% when the heading error
was ±1.5◦ and was 98.6% when the error was ±2◦, while
the average failure rate for controller D never got above
20%. The PD controller typically did not fail by large mar-
gins, and was ranked first on the normalized maximum and
normalized mean performance metrics.

In the last series of tests, we added a different source of
state error, wind. This series of tests clearly separated the
evolved controllers; some of these controllers were simply
not robust to the effects of wind. Controller D failed the
fewest times, but was third in the average rank metric. The
PD controller was best in this category. Despite the large
number of evaluations, there is still some uncertainty in the
performance metric values—for example, when AoA error
is increased from the control test, the failure rate for con-
troller D on continuous, mobile radars actually decreases
slightly. For most of the robustness tests, this uncertainty
was small—in the previous example this drop was on the
order of 0.5%—but for wind this uncertainty was more ap-
parent, especially for the higher wind speeds. One artifact
of this uncertainty was the change in the failure rate for con-
troller D on continuous, stationary radars from wind speeds
of 10 to 20 to 30 knots. At 10 knots, the failure percent-
age was 16.33%. When the wind speed was increased to
20 knots, the failure percentage increased to 78.96%. How-
ever, when the wind speed was increased again to 30 knots,
the failure percentage dropped to 61.05%. Other evolved
controllers showed similar trends for increased wind speeds.

The PD controller, as one might expect, performed ex-
tremely well under design conditions. When measuring how
badly it failed using the normalized maximum performance

141

metric, it was robust to all sources of noise, outperforming
the other controllers in all tests. This controller was also
robust to state noise, performing well under heading error
and wind. However, the PD controller was susceptible to
sensor noise. As the AoA error increased a small amount,
the PD controller quickly failed. It was also dependent on
the speed of the aircraft for good performance.

On most tests, the hand-written controller performed well,
but was consistently worse than evolved controllers. This
controller typically produced good results on the normalized
mean performance metric, but was not robust to most forms
of noise, though it did perform well on the speed and wind
tests. The hand-written controller was included in these
tests to show the difficulty of using the function and test
sets to design an optimal controller by hand.

Overall, the best and most consistent controller was the
best of our evolved controllers, controller D. In the overall
rankings, this controller had the best average rank and fin-
ished in the top two on every performance metric. Unlike
the hand-designed controllers, there was no category of tests
where controller D performed poorly. This controller ranked
highly in all of our tests, and its rank tended to increase as
noise was increased.

5. CONCLUSIONS
In this paper, we developed a series of robustness tests for

evolved navigation controllers for unmanned aerial vehicle
controllers developed in simulation. Before testing evolved
controllers on a real UAV, we needed some assurance that
the off-design performance of these controllers would be suf-
ficient to accomplish the desired task and that controllers
would be able to avoid behaviors that could potentially dam-
age the aircraft. Also, since the controllers were evolved us-
ing multi-objective optimization, we needed to select a single
best controller. When evolving controllers for systems where
tests may be dangerous to the vehicle, robustness tests might
be useful in selecting a controller and seeing how well it per-
forms. The robustness tests described here apply several
sources of sensor and state noise. If the real-world noise
falls within the range where tests in simulation performed
well, we can expect that transference will be successful.

The best evolved controller performed well in all robust-
ness tests, consistently out-performing a hand-written con-
troller and a proportional-derivative controller. When sub-
jected to reasonable noise, this controller continued to per-
form well, even when many other controllers began to fail.
Despite out-performing the hand-designed controllers and
the other evolved controllers, our best controller has limits.
When the AoA sensor was very inaccurate or the wind speed
was high, this controller did not perform very well. Based
on these robustness tests, we feel confident in the ability of
these evolved controllers to safely control a real UAV. In the
next stage of this work, a physical UAV will be controlled
by our best controller.

6. ACKNOWLEDGMENTS
The Swampworks project office of the Office of Naval Re-

search provided financial support for this work. The U.S.
Naval Research Laboratory (Code 5730) provided compu-
tation time on their Beowulf cluster. Gregory J. Barlow is
supported by a National Defense Science and Engineering
Graduate Fellowship.

7. REFERENCES
[1] G. J. Barlow. Design of autonomous navigation

controllers for unmanned aerial vehicles using
multi-objective genetic programming. Master’s thesis,
North Carolina State Univ., Raleigh, NC, March 2004.

[2] G. J. Barlow, L. S. Mattos, C. K. Oh, and E. Grant.
Transference of evolved unmanned aerial vehicle
controllers to a wheeled mobile robot. In Proceedings
of the IEEE International Conference on Robotics and
Automation, Barcelona, Spain, April 2005.

[3] G. J. Barlow, C. K. Oh, and E. Grant. Incremental
evolution of autonomous controllers for unmanned
aerial vehicles using multi-objective genetic
programming. In Proceedings of the 2004 IEEE
Conference on Cybernetics and Intelligent Systems,
Singapore, December 2004.

[4] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A
fast and elitist multiobjective genetic algorithm:
NSGA-II. IEEE Transactions on Evolutionary
Computation, 6(2):182–197, April 2002.

[5] F. J. Gomez and R. Miikkulainen. Transfer of
neuroevolved controllers in unstable domains. In
Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2004), June 2004.

[6] F. Hoffmann, T. J. Koo, and O. Shakernia.
Evolutionary design of a helicopter autopilot. 3rd
On-line World Conference on Soft Computing, 1998.

[7] N. Jakobi, P. Husbands, and I. Harvey. Noise and the
reality gap: The use of simulation in evolutionary
robotics. In Proceedings of the 3rd European
Conference on Artificial Life, pages 704–720, 1995.

[8] J. Koza. Genetic Programming. MIT Press, 1992.

[9] J. A. Marin, R. Radtke, D. Innis, D. R. Barr, and
A. C. Schultz. Using a genetic algorithm to develop
rules to guide unmanned aerial vehicles. In
Proceedings of the IEEE International Conference on
Systems, Man and Cybernetics, Tokyo, Japan, 1999.

[10] C. K. Oh and G. J. Barlow. Autonomous controller
design for unmanned aerial vehicles using
multi-objective genetic programming. In Proceedings
of the Congress on Evolutionary Computation, pages
1538–1545, Portland, OR, June 2004.

[11] M. D. Richards, D. Whitley, J. R. Beveridge,
T. Mytkowicz, D. Nguyen, and D. Rome. Evolving
cooperative strategies for UAV teams. In Proceedings
of the 2005 Genetic and Evolutionary Computation
Conference, Washington, DC, June 2005.

[12] D. C. Schleher. Introduction to Electronic Warfare.
Artech House, 1986.

[13] H. Shim, T. J. Koo, F. Hoffmann, and S. Sastry. A
comprehensive study of control design for an
autonomous helicopter. In IEEE Conference on
Decision and Control, December 1998.

[14] J. Walker, S. Garrett, and M. Wilson. Evolving
controllers for real robots: A survey of the literature.
Adaptive Behavior, 11(3):179–203, 2003.

[15] A. S. Wu, A. C. Schultz, and A. Agah. Evolving
control for distributed micro air vehicles. In IEEE
Conference on Computational Intelligence in Robotics
and Automation, November 1999.

142

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

