skip to main content
10.1145/1143997.1144040acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
Article

Using genetic programming to classify node positive patients in bladder cancer

Published:08 July 2006Publication History

ABSTRACT

Nodal staging has been identified as an independent indicator of prognosis. Quantitative RT-PCR data was taken for 70 genes associated with bladder cancer and genetic programming was used to develop classification rules associated with nodal stages of bladder cancer. This study suggests involvement of several key genes for discriminating between samples with and without nodal metastasis.

References

  1. American Cancer Society. Cancer Facts and Figures 2005. Atlanta: American Cancer Society; 2005Google ScholarGoogle Scholar
  2. Hermanek P, Hutter R. V. P., Sobin L. H., Wagner G., Wittekind C. H., eds. TNM Atlas, 4th edn. XX. Springer, Berlin, 1997Google ScholarGoogle ScholarCross RefCross Ref
  3. Epstein J. I., Amin M. B., Reuter V. R., Mostofi F. K., The World Health Organization/International Society of Urological Pathology Consensus Classification of urothelial (transitional cell) neoplasms of the urinary bladder. Am J Surg Pathol 22, (1998), 1435--48Google ScholarGoogle ScholarCross RefCross Ref
  4. Esrig D., Elmajian D., Groshen S., et al. Accumulation of nuclear p53 and tumor progression in bladder cancer. N Engl J Med. 331, (1994), 1259--64Google ScholarGoogle ScholarCross RefCross Ref
  5. Lotan Y., A. Gupta, S. F. Shariat, G. S. Palapattu, A. Vazina, P. I. Karakiewicz, P. J. Bastian, C. G. Rogers, G. Amiel, P. Perotte, M. P. Schoenberg, S. P. Lerner, A. I. Sagalowsky. Lymphovascular invasion is independently associated with overall survival, cause-specific survival, and local and distant recurrence in patients with negative lymph nodes at radical cystectomy. J Clin Oncol, 23,27 ( 2005),6533--6539Google ScholarGoogle ScholarCross RefCross Ref
  6. Apostolakos M. J., Schuermann W. H., Frampton M. W., Utell M. J., Willey J. C. Measurement of gene expression by multiplex competitive polymerase chain reaction. Anal Biochem. 213, (1993), 277--84Google ScholarGoogle ScholarCross RefCross Ref
  7. Crawford E. L., Warner K. A., Khuder S. A., Zahorchak R. J., Willey J. C. Multiplex standardized RT-PCR for expression analysis of many genes in small samples. Biochem Biophys Res Commun. 293 , (2002), 509--16Google ScholarGoogle ScholarCross RefCross Ref
  8. R. J. Cote and R. H. Datar, Therapeutic approaches to bladder cancer: identifying targets and mechanisms. Critical Reviews in Oncology-Hematology (Supplemental), 46, (2000), S67--S83.Google ScholarGoogle ScholarCross RefCross Ref
  9. Andre, D. and Koza, J. R., A parallel implementation of genetic programming that achieves super-linear performance. In Hamid R. Arabnia, ed., Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications, volume III, (Sunnyvale, 9-11 August 1996) 1163--1174Google ScholarGoogle Scholar
  10. Koza, J.R., Genetic Programming: On the Programming of Computers by Means of Natural Selection, MIT Press, Cambridge, MA, 1992 Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Brameier M., Haan J., Krings A., MacCallum R., Automatic discovery of cross-family sequence features associated with protein function BMC Bioinformatics (2006), 7:16Google ScholarGoogle Scholar
  12. Driscoll J. A., Worzel W. P., MacLean C. D., Classification of Gene Expression Data with Genetic Programming. In Genetic Programming Theory and Practice. R. Riolo, W. P. Worzel (eds.), Springer Science+Business Media, Inc., NY, pp: 25--42, 2004Google ScholarGoogle Scholar
  13. J. H. Hong, S. B. Cho. Cancer Prediction Using Diversity-Based Ensemble Genetic Programming. Lecture Notes in Computer Science 3558 (2005) 294--304 Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Langdon W., Buxton B., Genetic Programming for Mining DNA Chip Data from Cancer Patients. Genetic Programming and Evolvable Machines 5(3), (2004), 251--257 Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Hastie T., Tibshirani R., and Friedman J., The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer series in statistics. Springer, Berlin, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  16. Rissanen, J., Modeling by shortest data description, Automatica 14, (1978) 465--471.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Vapnik, V. N. and Chervonenkis, A. Y., On the uniform convergence of relative frequencies of events to their probabilities. Theory Probab. Apl., (1971) 16, 264--280.Google ScholarGoogle ScholarCross RefCross Ref
  18. Vapnik, V. N., The Nature of Statistical Learning Theory, Springer-Verlag, Berlin, 1995. Google ScholarGoogle ScholarCross RefCross Ref
  19. Schaffer, C., Selecting a classification method by cross-validation, Machine Learning 13(1), (1993), 135--143. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Narasimhamurthy A., A framework for the analysis of majority voting. Lectures notes in Computer Science 2749, (2003), 268--274, Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Narasimhamurthy A., Theoretical bounds for majority voting performance for a binary classification problem. PAMI, in press Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Zou K. H., Hall W. J., Shapiro D. E. Smooth non-parametric receiver operating characteristic (ROC) curves for continuous diagnostic tests. Stat Med. 15, 16, (Oct, 1997) 2143--56.Google ScholarGoogle Scholar
  23. Handley J. A. and McNeil B. J., The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143(1), (1982 Apr), 29--36.Google ScholarGoogle ScholarCross RefCross Ref
  24. S. Gustafson., An Analysis of Diversity in Genetic Programming. Ph.D. Dissertation, School of Computer Science and Information Technology, University of Nottingham, Nottingham, U.K, 2004Google ScholarGoogle Scholar
  25. E. Burke, S. Gustafson, and G. Kendall, A survey and analysis of diversity measures in genetic programming. In GECCO 2002: Proceedings of the Genetics and Evolutionary Computation Conference, (New York, 9-13 July 2002). Morgan Kaufmann, 716--723 Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Folino, C. Pizzuti, G. Spezzano, L. Vanneschi, M. Tomassini, Diversity Analysis in Cellular and Multipopulation Genetic Programming in Proceedings of Congress on Evolutionary Computation 2003, (CEC'03) (Canberra 8-12 Dec 2003), IEEE Press, Piscataway, NJ, 305--311Google ScholarGoogle Scholar
  27. Keinosuke Fukunaga, Introduction to Statistical Pattern Recognition, Academic Press, London, 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Moore, J. H., Parker, J. S., Olsen, N. J., and Aune, T., Symbolic discriminant analysis of microarray data in autoimmune disease. Genetic Epidemiology 23, (2002), 57--69.Google ScholarGoogle ScholarCross RefCross Ref
  29. Ritchie, M. D., Hahn, L. W., Roodi, N., Bailey, L. R., Dupont, W. D., Plummer, W. D., Parl, F. F. and Moore, J. H., Multifactor Dimensionality Reduction Reveals High-Order Interactions among Estrogen Metabolism Genes in Sporadic Breast Cancer. American Journal of Human Genetics, 69, (2001), 138--147.Google ScholarGoogle ScholarCross RefCross Ref
  30. MacLean C. D., Wollesen E. A., Worzel W. P., Listening to Data: Tuning a Genetic Programming System. In: Genetic Programming Theory and Practice II. U.-M. O'Reilly, T. Yu, R. Riolo, W. P. Worzel (eds.), Springer Science+Business Media, Inc., NY, (2005), 245--62Google ScholarGoogle ScholarCross RefCross Ref
  31. Daida, J. M., What Makes a Problem GP-Hard? A Look at How Structure Affects Content. Genetic Programming Theory and Practice, eds. Riolo R. L. & Worzel W. P., Kluwer, Boston, MA, 2003, 99--118Google ScholarGoogle Scholar
  32. Bellman, R. Adaptive Control Processes: A Guided Tour, Princeton University Press, NJ, (1961).Google ScholarGoogle ScholarCross RefCross Ref
  33. K. Sastry, U.-M. O'Reilly, D. E. Goldberg, Population Sizing for Genetic Programming Based Upon Decision Making in O'Reilly, U.-M., et al. Genetic Programming Theory and Practice II. Kluwer Academic Publishers, Boston, MA (2004), 49--66Google ScholarGoogle Scholar
  34. Roche Y., Pasquier D. and Rambeaud J. J., Fibrinogen mediates bladder cancer cell migration in an ICAM-1-dependent pathway. Thromb Haemost, 89, (2003), 1089--97.Google ScholarGoogle ScholarCross RefCross Ref
  35. Ozer G., Altinel M., and Kocak B., Potential value of soluble intercellular adhesion molecule-1 in the serum of patients with bladder cancer. Urol Int, 70, (2003), 167--71.Google ScholarGoogle ScholarCross RefCross Ref
  36. Palumbo J. S., Potter J. M., and Kaplan L. S., Spontaneous hematogenous and lymphatic metastasis, but not primary tumor growth or angiogenesis, is diminished in fibrinogen-deficient mice. Cancer Res, 62, (2002), 6966--72.Google ScholarGoogle Scholar
  37. Rosette C., Roth R. B., and Oeth P., Role of ICAM1 in invasion of human breast cancer cells. Carcinogenesis, 26, (2005), 943--50.Google ScholarGoogle ScholarCross RefCross Ref
  38. Jackson A. M., Alexandrov A. B., and Prescott S., Expression of adhesion molecules by bladder cancer cells: modulation by interferon-gamma and tumour necrosis factor-alpha. J Urol, 148, (1992), 1583--6.Google ScholarGoogle ScholarCross RefCross Ref
  39. Miele M. E., Bennett C. F., and Miller B. E., Enhanced metastatic ability of TNF-alpha-treated malignant melanoma cells is reduced by intercellular adhesion molecule-1 (ICAM-1, CD54) antisense oligonucleotides. Exp Cell Res, 214, (1994), 231--41.Google ScholarGoogle ScholarCross RefCross Ref
  40. Koyama S., Ebihara T., and Fukao K., Expression of intercellular adhesion molecule 1 (ICAM-1) during the development of invasion and/or metastasis of gastric carcinoma. J Cancer Res Clin Oncol, 118, (1992), 609--14.Google ScholarGoogle ScholarCross RefCross Ref
  41. Maruo Y., Gochi A., and Kaihara A., ICAM-1 expression and the soluble ICAM-1 level for evaluating the metastatic potential of gastric cancer. Int J Cancer, 100, (2002), 486--90.Google ScholarGoogle ScholarCross RefCross Ref
  42. O'Hanlon D. M., Fitzsimons H., and Lynch J., Soluble adhesion molecules (E-selectin, ICAM-1 and VCAM-1) in breast carcinoma. Eur J Cancer, 38, (2002), 2252--7.Google ScholarGoogle ScholarCross RefCross Ref
  43. Regidor P. A., Callies R., and Regidor M., Expression of the cell adhesion molecules ICAM-1 and VCAM-1 in the cytosol of breast cancer tissue, benign breast tissue and corresponding sera. Eur J Gynaecol Oncol, 19, (1998), 377--83.Google ScholarGoogle Scholar
  44. Santarosa M., Favaro D., Quaia M., et al., Expression and release of intercellular adhesion molecule-1 in renal-cancer patients. Int J Cancer, 62, (1995), 271--5.Google ScholarGoogle ScholarCross RefCross Ref
  45. Sun J. J., Zhou X. D., Liu Y. K., et al, Invasion and metastasis of liver cancer: expression of intercellular adhesion molecule 1. J Cancer Res Clin Oncol, 125, (1999), 28--34.Google ScholarGoogle ScholarCross RefCross Ref
  46. Tempia-Caliera A. A., Horvath L. Z., Zimmermann A., et al., Adhesion molecules in human pancreatic cancer. J Surg Oncol, 79, (2002), 93--100.Google ScholarGoogle ScholarCross RefCross Ref
  47. Yano S., Nokihara H., Yamamoto A., et al., Multifunctional interleukin-1beta promotes metastasis of human lung cancer cells in SCID mice via enhanced expression of adhesion-, invasion- and angiogenesis-related molecules. Cancer Sci, 94, (2003), 244--52.Google ScholarGoogle ScholarCross RefCross Ref
  48. Roux P. P. and Blenis J., ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev, 68, (2004), 320--44.Google ScholarGoogle ScholarCross RefCross Ref
  49. Wang Q. and Doerschuk C. M., The p38 mitogen-activated protein kinase mediates cytoskeletal remodeling in pulmonary microvascular endothelial cells upon intracellular adhesion molecule-1 ligation. J Immunol, 166, (2001), 6877--84.Google ScholarGoogle ScholarCross RefCross Ref
  50. Zarubin THan J., Activation and signaling of the p38 MAP kinase pathway. Cell Res, 15, (2005), 11--8.Google ScholarGoogle ScholarCross RefCross Ref
  51. Huang X., Chen S., Xu L., et al., Genistein inhibits p38 map kinase activation, matrix metalloproteinase type 2, and cell invasion in human prostate epithelial cells. Cancer Res, 65, (2005), 3470--8.Google ScholarGoogle ScholarCross RefCross Ref
  52. Lin M., DiVito M. M., Merajver S. D., et al., Regulation of pancreatic cancer cell migration and invasion by RhoC GTPase and caveolin-1. Mol Cancer, 2004, 4 :21.Google ScholarGoogle ScholarCross RefCross Ref
  53. Ott I., Weigand B., Michl R., et al., Tissue factor cytoplasmic domain stimulates migration by activation of the GTPase Rac1 and the mitogen-activated protein kinase p38. Circulation, 111, (2005), 349--55.Google ScholarGoogle ScholarCross RefCross Ref
  54. Esteva F. J., Sahin A. A., Smith T. L., et al., Prognostic significance of phosphorylated P38 mitogen-activated protein kinase and HER-2 expression in lymph node-positive breast carcinoma. Cancer, 100, (2004), 499--506.Google ScholarGoogle ScholarCross RefCross Ref
  55. Kim M. S., Lee E. J., Kim H. R., et al., p38 kinase is a key signaling molecule for H-Ras-induced cell motility and invasive phenotype in human breast epithelial cells. Cancer Res, 63, (2003), 5454--61.Google ScholarGoogle Scholar
  56. Shin I., Kim S., Song H., et al., H-Ras-specific activation of Rac-MKK3/6-p38 pathway: its critical role in invasion and migration of breast epithelial cells. J Biol Chem, 280, (2005), 14675--83.Google ScholarGoogle ScholarCross RefCross Ref
  57. Behren A., Binder K., Vucelic G., et al., The p38 SAPK pathway is required for Ha-ras induced in vitro invasion of NIH3T3 cells. Exp Cell Res, 303, (2005), 321--30.Google ScholarGoogle ScholarCross RefCross Ref
  58. Gakiopoulou-Givalou H., Nakopoulou L., Panayotopoulou E. G., et al., Non-endothelial KDR/flk-1 expression is associated with increased survival of patients with urothelial bladder carcinomas. Histopathology, 43, (2003), 272--9.Google ScholarGoogle ScholarCross RefCross Ref
  59. Ferrer F. A., Miller L. J., Lindquist R., et al., Expression of vascular endothelial growth factor receptors in human prostate cancer. Urology, 54, (1999), 567--72.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Using genetic programming to classify node positive patients in bladder cancer

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in
            • Published in

              cover image ACM Conferences
              GECCO '06: Proceedings of the 8th annual conference on Genetic and evolutionary computation
              July 2006
              2004 pages
              ISBN:1595931864
              DOI:10.1145/1143997

              Copyright © 2006 ACM

              Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

              Publisher

              Association for Computing Machinery

              New York, NY, United States

              Publication History

              • Published: 8 July 2006

              Permissions

              Request permissions about this article.

              Request Permissions

              Check for updates

              Qualifiers

              • Article

              Acceptance Rates

              GECCO '06 Paper Acceptance Rate205of446submissions,46%Overall Acceptance Rate1,669of4,410submissions,38%

              Upcoming Conference

              GECCO '24
              Genetic and Evolutionary Computation Conference
              July 14 - 18, 2024
              Melbourne , VIC , Australia

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader