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ABSTRACT 
Nodal staging has been identified as an independent indicator of 
prognosis. Quantitative RT-PCR data was taken for 70 genes 
associated with bladder cancer and genetic programming was 
used to develop classification rules associated with nodal stages 
of bladder cancer. This study suggests involvement of several key 
genes for discriminating between samples with and without nodal 
metastasis. 

Categories and Subject Descriptors 
I.5.3 [Pattern Recognition]: Clustering – Algorithms and 
similarity measures I.5.2 [Pattern Recognition]: Design 
Methology – Classifier design and evaluation, feature design and 
evauation, Pattern Analysis I.2.6 [Artificial Intelligence]: 
Learning – Concept Learning and Induction I.2.2 [Artificial 
Intelligence]: Automatic Programming – Program Synthesis 

General Terms: Algorithms, Design, Experimentation. 

 

Keywords 
Bladder cancer, Nodal staging, Genetic Programming, 
Classification, Feature selection, Machine Learning 

1. INTRODUCTION 
Cancer of the urinary bladder is a major epidemiological problem 
that continues to grow each year. Bladder cancers encompass 
urothelial carcinomas (UCs, or transitional cell carcinomas or 
TCCs), squamous cell carcinomas (SCCs), adenocarcinomas and 
certain other infrequent tumor types. It is the fourth most common 
malignancy in males and the ninth most common malignancy in 
females in the United States. An average of 260,000 new cases of 
urinary bladder cancer are diagnosed worldwide every year with 
an estimated 63,210 cases in 2005 in the United States alone 
(about 47,010 in males and 16,200 in females) and 13,180 deaths 
(about 8,970 in men and 4,210 in women). The incidence of 
bladder cancer between 1997 and 2001 was estimated at 39 per 
100,000 for males and 10 per 100,000 for females [1]. 

2. MOTIVATION 
The current treatment for UC is based on the pathologic staging of 
the tumor. The staging, therefore, is highly important for clinical 
decision-making and exploring the various treatment options and 
the therapy thus chosen can result in significant morbidity and 
financial burden to the patient The traditional TNM classification, 
based on the location, depth and the metastasis of the tumor [2], 
or the World Health Organization (WHO) classification system 
for UC [3] relies on pattern recognition and nomenclature for 
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reporting bladder cancer biopsies, interpretation of which can be 
highly subjective and can have a high frequency of inter- and 
intra-observer variations. One of the major concerns in UCs is a 
large percentage of recurrence after operation.  Interpretations of 
biopsies can also be confounded by sampling problems like 
absence of the muscular layer in the specimen or the exclusion of 
the bladder wall in biopsies of large tumors that are growing 
exophytically that can affect the staging of the slide. Even 
between highly trained pathologists, there are no accepted 
definitions for microinvasion which is an important criterion to 
determine the risk for metastasis. Most significantly, the basic 
tools available to determine tumor behavior, malignant potential 
and chance for recurrence provided by the current pathologic 
staging modalities can be highly subjective. One thus needs to 
realize that while current histopathologic criteria can provide us 
with important morphological information about tumors in patient 
populations, they are unable to specify the risk for progression or 
response to treatment for an individual patient with bladder 
cancer. Previous studies by Esrig et al have shown the wide 
difference in recurrence and survival rates between patients of the 
same pathological stage with differences in their tumor p53 status 
[4]. Nodal involvement is considered to be an independent risk 
factor for recurrence and survival after cystectomy for organ-
confined bladder cancer [5]. It can be safely assumed that 
metastasis is a phenomenon that has its roots in gene expression 
as their expression levels change much before phenotypic changes 
are observed. Hence, if we could identify staging criteria that are 
constituted using gene expression values, they could be used as 
more consistent prediction measures and can also provide 
appropriate biological insights. This study points to the need to 
incorporate objective methods of staging using molecular markers 
specific to bladder cancer to complement the morphologic 
approach and pattern a refined system of staging that focuses on 
the biologic behavior of the tumor and its predicted clinical 
outcome, thereby equipping the clinician with a better insight on 
the appropriate treatment regimen to be instituted. 

3. MATERIALS AND METHODS 
3.1 Data Generation 
Willey and colleagues have developed a modified quantitative 
method of standardized competitive reverse transcriptase PCR 
that allows simultaneous measurement of many genes using 
nanogram amounts of cDNA [6, 7]. The transcript levels are 
expressed as numerical values per million molecules of β-actin, a 
housekeeping gene chosen as a reference gene, thus affording 
intra- and inter-sample comparisons. 
We have used this technique to obtain transcript profiles of 70 
genes crucial in various cellular pathways that have been 
associated with tumor progression in various studies [8] (see 
Table 1).  

3.2 Dataset & Study Design 
The study involved data from 65 patients with 70 abovementioned 
genes being profiled for each one of them. We have divided the 
samples into a study and a validation set, wherein we learn from 
the data in the study set and test the robustness of our final 
solutions on the validation set. Nodal status for patients with UC 
was determined by histological examination of the lymph nodes 
obtained during bilateral pelvic lymphadenectomy during radical 
cystectomy. 

Table 1: Genes Used In Study 

 
The normal controls were cases that underwent radical 
prostatectomy without any lymph node dissection. For the 
purposes of this study we are classifying the normal samples as 
the node negative cases. The study set was composed of 11 Node 
positive (NP) cases and 23 Node negative (NN) cases, while the 
validation seet consisted of 10 NP cases and 21 NN cases. The 
sets were composed in such a way that the proportion of samples 
of each tumor stage remains the same in both the study and the 
validation set. 
Using genetic programming on the study set, rules were 
developed for characterizing each stage molecularly using 
quantitative RT-PCR data. These rules were combined in a voting 
algorithm that was tested against a validation set. A subsequent 
analysis of the rules thus generated suggested some interesting 
features about tumor progression.  

3.3 Developing Nodal Staging Rules 
Genetic Programming (GP) [9, 10] is a method that lends itself 
naturally to the development of classifiers with the ability to 
automatically construct appropriate structure for the solution as 
well as select the variables. Importantly, the process does not 
require a large amount of the prior knowledge or effort in terms of 
structure selection or dimensionality reduction. There have been 
several initiatives where GP is used for analyzing 
medical/biological data [11,12] and for discrimination of cancers 
[13,14]. 
Overfitting is an important concern in any machine learning task, 
especially classification. Overfitting occurs when a classification 
algorithms draws strong inferences from the training samples and 
loses generality. In many biological or clinical datasets overfitting 
can be attributed to what is called the curse of dimensionality 
[15], i.e. when the number genes being studied are much larger 

Class Genes 

Angiogenesis FGF5, FGFR4, VEGF, KDR 

Anti-oxidation GSTM3, GSTP1, GSTT1, SOD1 

Apoptosis ANXA5, BAD, BCL2, BCL2L1, CYPIA2, 
DAP, PTGS2, TGFBR2, TGIF, TNF, 
TNFAIP1, TNFSF10, TNFRSF1A, TRAF4 

Apoptosis/Cell 
Cycle 

CDKN1A, CDKN1B, CDKN2A, CDKN2C, 
GAPDH, RB1, RBL2, MXD1, TP53 

Apoptosis/Cell 
Cycle/Gene 
Regulation 

E2F1, E2F2, E2F4, E2F5 

Cell Cycle CCNA2, CCND3, CCNE1, CCNG1, 
CDC25C, CDC2, CDK7, CDK8, PCNA 

Cell Growth 
Regulation 

IGF1, IGF2R, PDGFB, PDGFRL 

Invasion CDH3, ICAM1, MMP16, TIMP2, BMP6 

Signal 
Transduction 

MAP2K6, MAPK12, MAPK9, MAPK8, 
STAT3, LYN, ERBB2 

Gene Regulation FOS, FOSL1, NFKB1, SP1, HSF1, 
MAP3K14, JUN, JUNB, MAX, MYC 
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than the number of samples in the training set. In this case, we 
have only 34 samples on the training set to learn from while there 
are more than 70 variables per sample, hence the danger of 
overfitting is a major concern in this study. 
There are several approaches utilized to counter the overfitting 
problem – using simple rules, increasing the training samples, 
using a subset of test samples and integrating over different 
predictors. We have implemented all these methods in this study 
to prevent the GP system from overfitting the data, specifically 
because GP is considered to be a powerful search algorithm with 
a penchant for overfitting.  
As mentioned earlier we have chosen a validation set from the 
samples in the study in order to identify how the predictors 
perform on the unseen data in order to gauge the amount of 
overfitting that has occurred. We were careful in maintaining the 
same proportion of samples with various attributes in the training 
and the validation sets For example, the proportion of the samples 
belonging to various T-stages for both the NP and NN cases were 
similar in the training and the validation sets.   
Restricting the complexity of the results is a measure that 
guarantees simpler rules in order to force the system to pick only 
those features of the system which contribute the most value to 
the predictor. GP provides several intuitive and simple ways of 
restricting complexity such as only using simple mathematical 
functions as the constituents of the programs created. Thus in this 
problem only simple mathematical operators like +,-,* and /, 
logical operators like ‘and’, ’not’ and ‘or’, comparison operators 
like =,>,<,>=,<= are used. The one exception to the use of simple 
operators in the set of functions listed in Table 2 is ‘exp’ - an 
exponent function where exp(N) is equivalent to eN. This was 
included because of our experience with gene expression data 
where the GP system will in essence normalize the data as needed 
when comparing expression levels that vary exponentially when 
compared to one another. Another way that complexity is 
controlled is by limiting the size and complexity of the programs 
produced. Motivation for this is derived from the Minimum 
Description Length (MDL) Principle [16] of risk minimization 
wherein the least complex solution is called most robust.  
Restricting the number of genes being used in any solution can 
also be used to alleviate the problem of the overfitting. This can 
be shown to relate to the degrees of freedom in the expression that 
is loosely related to the VC dimension [17, 18]. The results have 
therefore been restricted to have no more than 5-6 genes in a 
classifier program. 
In order to select a robust classifier it is imperative to know the 
generalization rate of the classifier, especially in the case of small 
number of samples in the data set, where overfitting to the data 
can be relatively frequent. Cross validation [19] is a simple yet 
effective technique to evaluate how well the classifier generalizes 
to unseen data. By taking multiple subsets (folds) of the training 
data and using some of them to learn on and the remainder to 
internally test the generality of a result, the overall generality of 
the solution can be estimated. This approach allows a more 
complete use of the samples in the data set as it allows the system 
to train on potentially different datasets over several folds. In the 
case of relatively small number of samples leave one out cross 
validation (LOOCV) is often used. In LOOCV the number of 
folds are set equal to the number of samples in the training set and 
is advantageous in the sense that a larger number of training 
samples are available to learn on. LOOCV is approximately 

unbiased for true prediction error, but can have high variance 
because all the “training sets” are similar to each other. We are 
using a variation of cross validation that selects an optimum 
number of folds that give a good trade-off between the bias and 
variance in which the number of folds are the same as the number 
of target samples in the training set.  As mentioned earlier there 
are 11 NPs and 23 NNs in the training set, hence instead of 
having 34 folds as would be the case if LOOCV was used, 11 
folds were used which leads to a reduction in variance. This 
guarantees that there will be at least one target sample in each test 
fold. 
Since GP is a stochastic process and often gives more than one 
solution with the same accuracy, the process is run for 20 times, 
so as to develop a reasonable sample of possible classifier sets. 
The set of classifiers belonging to a run with the best cross 
validation performance is selected.  This set is used in a majority 
voting scheme to classify the samples in the validation set. 
Aggregate performance of these “meta-rules” on the test fold was 
taken as the predictor of the classification error, and the selected 
“meta-rule” was the one with the least test error. The majority 
voting scheme is a simple scheme to implement and increases the 
both the performance and consistency of the classifiers. It has 
been shown that for a binary classification scheme, if the 
individual rules are more than 50% accurate the performance of 
the classifier actually increases [20,21] and the resilience can be 
improved much more as estimation errors are reduced. 
Table 2 summarizes the key parameters for this study including 
the mathematical operators used, the number of genes and 
operators allowed in a classifier and size of the population and 
other evolutionary drivers like crossover / mutation rate, etc. 
In a clinical or biological setting, measures of accuracy like 
sensitivity and specificity are straightforward, easily 
comprehensible fitness measures.  
Table 2: Genetic Programming Parameters Summary 

Objective  Find a rule predicting nodal 
metastases in bladder cancer 
patients 

Function Set = , > , < , <= , >= , and, not, 
or, ?, +, -, *, /, exp 

Input StaRT-PCR gene expression 
values for selected genes 

Fitness Area under the curve (AUC) 

Population Size/Deme 15000/16  

Termination Generation 100 or Success 

Demes  16 

Tournament Size 4 

Elitism Yes 

Crossover/Mutation Rate 0.6/0.4 

Initial tree depth/ Final 4 /5 

Node count 7-12 

Migration percentage/ 
frequency  

5% every 5 generations 

Positive predictive value and negative predictive value are similar 
and may be more appropriate fitness measures in clinical studies. 
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There is a problem in selecting just a single measure of accuracy 
out of sensitivity and specificity, in that both of them are 
inherently complementary and one can easily be increased while 
decreasing the other. The overall objective of maximizing both 
sensitivity and specificity is built into the receiver operating 
characteristic (ROC) evaluation of a test [22], and the search of 
the most informative test usually seeks to maximize the area 
under the curve (AUC) [23]. The AUC measure gives a direct 
indication of how distinctly are the samples separated into 
different classes. This fitness measure is also more robust than 
any other mathematical combination of the sensitivity and 
specificity, as there is no concept of boundary or threshold that 
might induce discontinuities into the system leading to strange 
behavior around them. 

One of the other important concerns in the use of GP is the 
penchant for the system to be stuck in a local optima. This 
problem assumes a larger significance in the biological/clinical 
paradigm wherein the data is often very noisy as this can create a 
large number of local optima, while the unknown nature of the 
biological system makes it much more difficult to ascertain 
whether the optima discovered is local or global. This has been 
addressed by adjusting the parameters to perform a more 
explorative search that in GP terms would mean the maintenance 
of diversity. An increased amount of diversity allows for a more 
global search and helps avoid local optima [24,25]. The 
population size is also associated with allowing a better search of 
the space as a larger population can intuitively be thought of as 
performing a higher resolution sampling of the search [32]. The 
mutation rate is also kept significantly higher than is usual in 
order to provide the system with the capability of escaping the 
local optima by increasing the entropy in the evolutionary 
process. The crossover rate is moderate enough to prevent the 
system from spending a larger amount of time in a local 
neighborhood.  

We have implemented a GP system using coarse grained 
distributed GP wherein the subpopulations are separated across 
several demes [islands] which has also been shown to increase the 
performance of the algorithm by protecting against premature 
convergence within a single population. In order to allow for the 
propagation of good quality genetic material across demes we 
allow migration of well performing individuals from one deme to 
another. In the current scheme we are using a ring topology-based 
migration strategy. The settings have been indicated in Table 2. 
The island multi-population model has been shown to improve the 
performance in terms of searching a larger space when there is no 
particular benefit achieved in increasing the population for the 
search space [26]. Tournament size has been fixed so as to allow a 
proper balance between chance and selectivity of the individuals. 

3.4 Results 
The final “meta-rule” that we generated was constituted of 11 
rules used in a majority voting scheme as mentioned above. Our 
prediction is based on agreement of more than 5 rules out of 11. 
The constituent rules are listed below. 
 
1) exp(exp(HSF1)) - exp(MAD)/(KDR-MAP2k6) > 2.718 
2) (MAP2K6/KDR) * (exp(TGIF) - MAP2K6/ICAM1) > 0.709 
3) (ICAM1 - CDK8) / (exp(JUNB) * (JUNB - exp(TGFBR2))) > 
1.32 

4) ANXA5 * MAP2K6 / (KDR * (ICAM1-CDK8)) > 1.701 
5) (ICAM1 - MAP2K6) * exp(MAP2K6 - KDR) > 3653.813 
6) (ICAM1 - CDK8) * TP53 / (exp(TGFBR2) * PTGS2) > 
21941.453 
7) (CCND3 / MAP2K6) * (exp(BMP6) - (KDR/MAP2K6)) > 
.201 
8) MAP2K6 / (CDKN1A * exp(MAPK12) *(CDC25C – KDR)) > 
7.703 
9) (ANXA5 - exp(PDGFRL)) / (CDKN1A * (KDR  - 
exp(TGFBR2))) > .044 
10) ANXA5 / (CDKN1A * (exp(PTGS2) - (CDK8/ICAM1))) > 
79.002 
11) MAP2K6 / (KDR * (ICAM1 - (TNFAIP1/exp(PDGFB)))) > 
1.182 
 

Table 3: Result Metrics for the “Meta-Rule” performance on 
the validation set 

True Positive (TP) 6 
True Negative (TN) 19 
False Positive (FP) 2 
False Negative (FN) 4 
Accuracy  81% 
Sensitivity 60% 
Specificity 90% 
Positive Predictive Value (PPV) 75% 
Negative Predictive Value (NPV) 83% 

 
Table 3 shows the results of the meta-rule used in a majority 
voting scheme on the validation set. 6 out of 10 node positive 
samples were correctly identified and 19 out of 21 node negative 
samples were identified. Various metrics are also presented that 
are calculated from the results. An accuracy of 81% is calculated 
by summing the True Positive and True Negative results and 
dividing by the total number of samples (i.e., Acc=(TP+TN)/Total 
Samples). Similarly the Sensitivity is 60% as calculated by 
dividing the True Positive value by the sum of the True Positive 
and the False Negative values (i.e., Sens=TP/(TP+FN) or the 
percentage of total targeted samples correctly identified divided 
by the total number of targeted samples). Specificity is the 
complementary measure of the True Negative value divided by 
the sum of the True Negative and the False Positive values (i.e., 
Spec=TN/(TN+FP) or the percentage of samples correctly 
identified as not belonging to the target class. In clinical studies, 
the Positive Predictive Value and Negative Predictive Value are 
also used and so we present these values as well. The Positive 
Predictive Value is calculated by dividing the number of True 
Positive samples by the sum of the True Positive and False 
Positive values (i.e., PPV=TP/(TP+FP) or the percentage of 
samples correctly identified as belonging to the target class 
divided by the number predicted to belong to the target class). 
The Negative Predictive Value is complementary metric 
calculated by dividing the True Negative by the sum of the of the 
True Negative value and the False Negative value (i.e., 
NPV=TN/(TN+FN) or the number of samples correctly identified 
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as not belonging to the target class divided by the number of 
samples predicted to not belong to the target class. 

 
Fig. 1 Gene Frequency across 20 runs (220 rules) 

3.5 Using Genetic Programming for Feature 
Selection 
From a pure mathematical view, feature selection may be 
regarded as a pure combinatorial problem [27]. The difficulty 
with feature selection when there are many features is that it is a 
NP-hard problem and unless some information loss is acceptable, 
we generally have to spend a huge amount of computational effort 
to discover the most significant combination of features. GP can 
leverage its population-based method to serve as a powerful 
feature selection tool with the computational burden alleviated by 
parallelization. Because GP can find structure in large data sets, 
the performance can be improved since we can include genes that 
individually do not show a large amount of correlation but can be 
an important player when used with other genes in a predictor.  
Since it facilitates automatic variable selection as well as structure 
generation of the solution, it could find relationships that in 
general are out of the reach of a classical algorithm [28].  
To select the features using GP we used the statistics that can be 
extracted from the multiple runs with different parameters. For 
dimensionality reduction we calculate ‘gene frequency’ by 
tabulating the frequency of gene usage in the best performing 
rules for each fold across many runs. The motivation is due to 
cross validation consistency [29] wherein genes that are important 
for the classification solution would be repeated more often than 
others. Taking a look at the gene frequency results (Fig. 1) we can 
see that there are 3 genes that show a very high frequency of 
usage compared to the other genes and so can be thought to 
account for most of the variance in the solution.  The p-value for 
the corresponding genes frequencies against a null hypothesis of a 
uniform random sampling are KDR – 9.69E-130, MAP2K6 
1.13E-110 and ICAM1 4.10E-78 which suggests that frequencies 
to be of large statistical significance. These p-values are 

calculated by assuming a uniform distribution of gene selection 
and randomly assembling a rule with the same number of genes 
on average as is discovered in this analysis. Given the number of 
rules produced in the analysis, a binomial distribution is 
calculated to predict the expected number of selections of a gene 
compared with the actual number of selections. 
We then ran the entire GP process using only the above 3 genes 
for the same classification problem. The rules generated (shown 
in Figure 2) showed a marked increase in the robustness of the 
results, along with a slight increase in the prediction accuracy. 
The result can be understood to improve in robustness due to 
previously mentioned reasons for decreasing complexity in order 
to prevent overfiting. The results of these runs are shown in Table 
4.  

Fig. 2 List of 3-Gene Rules 
1) (MAP2K6 / KDR) * (1.0  - (MAP2K6 / ICAM1)) > .71  
2) MAP2K6 * ((ICAM1 – KDR) / (ICAM1 * KDR)) > .705 
3) MAP2K6 * ((ICAM1 – KDR) / (ICAM1 * KDR)) > .705 
4) (MAP2K6 / KDR) – exp(KDR) – (MAP2K6 / ICAM1) > -

.294 
5) (MAP2K6 / KDR) * (1.0  - (MAP2K6 / ICAM1)) > .71  
6) ICAM1 / ( MAP2K6 – KDR * exp(ICAM1)) > .4.092 
7) (MAP2K6 / KDR) * (1.0  - (MAP2K6 / ICAM1)) > .71  
8) (MAP2K6 / KDR) – (MAP2K6 / (ICAM1 + exp(ICAM1))) > 

.705 
9) MAP2K6 * ((ICAM1 – KDR) / (ICAM1 * KDR)) > .69 
10) (MAP2K6 / KDR) – (MAP2K6 / (ICAM1 * exp(KDR))) > 

.705 
11) (MAP2K6 / KDR) – (MAP2K6 / (ICAM1 + exp(ICAM1))) > 

.886 
 
Table 4. Results & Metrics for the GP run using 3 genes  

TP 7 
TN 18 
FP 3 
FN 3 
Accuracy  81% 
Sensitivity 70% 
Specificity 86% 
PPV 70% 
NPV  86% 

 
It is interesting to note that one of the rules has a PPV of 100% 
and most of the rules are similarly constituted in terms of the 
usage of genes. The prediction accuracy is also higher for this 
rule. Performance of that rule on the validation set is shown in 
Table 5.  
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Table 5. Results & Metrics for the performance “(MAP2K6 / 
KDR) * (1.0  - (MAP2K6 / ICAM1)) > .71” rule on the 
Validation set 

TP 7 
TN 21 
FP 0 
FN 3 
Accuracy  90% 
Sensitivity 70% 
Specificity 100% 
PPV 100% 
NPV  88% 

4. DISCUSSION 
Perusing the various classifiers generated in the study we 
observed several ‘gene motifs’ i.e. recurring mathematical genetic 
constructs in the discriminant solutions generated. These can 
provide us with an insight into gene regulation and the various 
pathways that might be similarly regulated or are correlated in 
terms of the tumor progression. Examples of a few motifs are 
(MAP2K6/KDR), (ICAM1/MAP2K6), (ICAM1-KDR), (ICAM1-
CDK8), etc. It is interesting to observe a few of these in the rules 
presented here. Since all of the above are used in the rules of the 
form ‘if [expression] > constant then target’, we can identify the 
logical relationships between the genes.  These relationships, 
though simplistic, give some insight into how their respective 
pathways are being affected. 
The GP analysis in this study clearly shows an unequivocal 
preference to use ICAM1, MAP2K6 and KDR in a specific 
relationship to define node positive bladder cancer specimens. 
The association of metastatic disease with the expression levels of 
these proteins is not unreasonable considering their function and 
involvement in tumor biology. Several reports, for example, 
indicate that the expression levels of ICAM1 correlate with 
metastatic potential, migration, and infiltration ability [34-38]. In 
addition, expression of ICAM-1 by tumor cells has often been 
associated with tumor progression with highest levels usually 
occurring in metastatic tumors [39-48]. Ligation of ICAM-1 
induces activation of MAP2K6, which in turn activates p38 [49-
51], a protein kinase that has been shown to be closely associated 
with an invasive phenotype for several tumor types including 
bladder, pancreatic and prostate[52-54] as well as poor prognosis 
in node-positive breast cancer [55]. Other studies have shown a 
direct correlation of MAP2K6 activity with metastatic potential 
[56-58]. Finally, the more robust rules in this study also imply 
that the expression level of tumor KDR is consistently lower in 
relation to ICAM-1 and MAP2K6 when there is nodal 
involvement in bladder cancer. Although a precise reason for why 
this relationship should exist is unknown, some studies have 
established a more aggressive phenotype in cancers that have 
lower expression of KDR [59].  
We tried an interesting approach of only using Boolean 
expressions for generating classifiers, in order to explore whether 
Boolean rules would identify the same logical conclusions that we 
drew from the motif analysis. The GP system found almost the 
same motifs in the Boolean search though it was constrained to 

construct rules that only used Boolean operators. A few examples 
that show the constructs are ‘if (ICAM1 > MAP2K6) then Node 
positive’ or ‘if (MAP2K6 > KDR) then Node positive’.  These 
rules have a reasonably good performance on the training set and 
thus lend some credence to our results. 
A burning problem in GP setup is to develop a technique where a 
single rule can be automatically selected, as there is often an 
embarrassment of riches in the form of too many results with the 
same fitness. We believe this can be addressed using the approach 
of dimensionality reduction described above as this reduces the 
search space to a reasonably small area thus increasing the 
probability of finding the correct solution is increased across all 
the runs. The single rule highlighted in Table 5 was discovered in 
the analysis employing the three most frequently used genes from 
our study and it proved to be much more robust in terms of 
predicting the nodal stage in the validation set. 

5. CONCLUSIONS 
Genetic programming can be seen as an appropriate learning and 
hypothesis generation tool in a biological/clinical setting, with the 
additional value of the human readability of the results. This 
allows better insights into the mechanisms of the biological 
processes. The small number of samples in this study limits the 
statistical power of the conclusions. However this study can be 
regarded as a strong hypothesis generating process regarding the 
importance of the three genes identified and their use in 
determining nodal status, and can motivate further similar studies 
with larger sample size to validate these results.  
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