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ABSTRACT 
Automatically assessing the value of bioavailability from the 
chemical structure of a molecule is a very important  issue in 
biomedicine and pharmacology. In this paper, we present an 
empirical study of some well known Machine Learning 
techniques, including various versions of Genetic Programming, 
which have been trained to this aim using a dataset of molecules 
with known bioavailability. Genetic Programming has proven the 
most promising technique among the ones that have been 
considered both from the point of view of the accurateness of the 
solutions proposed, of the generalization capabilities and of the 
correlation between predicted data and correct ones. Our work 
represents a first answer to the demand for quantitative 
bioavailability estimation methods proposed in literature, since 
the previous contributions focus on the classification of molecules 
into classes with similar bioavailability. 

Categories and Subject Descriptors 
I.2 [ARTIFICIAL INTELLIGENCE]: Automatic 
Programming; D.2.8. [Software Engineering]: Metrics - 
complexity measures, performance measures. 

General Terms: Algorithms. 

Keywords: Bioinformatics, Bioavailability, Molecular 
Descriptors, Genetic Programming 

1. INTRODUCTION 
In recent years the introduction of high throughput screening 
(HTS) and combinatorial chemistry techniques has deeply 
changed the process of drug discovery. Libraries of millions of 
chemical compounds could now be tested in order to evaluate 
their affinity to a particular pathology-associated protein. Results 
of test could then be used to design modifications to be done on 
the molecules for optimizing their properties. Nevertheless this is 
not enough, in fact compounds with putative pharmacological 
value have not only to show a good target binding, but also have 
to reach the target in vivo.  In other words, it is necessary that 
compounds follow the appropriate way into the human body 

without altering the health of the patient. About half of the 
failures in pharmacological development were made at this stage 
[13] ( see figure 1), with an unacceptable burden on the research 
and development budget of pharmaceutical companies.  
For this reason, the behavior of the molecules must be evaluated 
through the so-called ADMET processes (Adsorption, 
Distribution, Metabolism, Excretion and Toxicity). Some 
parameters directly correlated with ADMET processes are the 
Human Oral Bioavailability (which is the main subject discussed 
in this paper), the Blood Brain Barrier penetration, the plasma 
protein binding level, the dermal and ocular permeation. Various 
medium and high-throughput in vitro screens are therefore now in 
use for predict ADMET parameters and there is an increasing 
need for good tools for predicting these properties. This allows to 
serve two aims: first at the design stage of new compounds and 
compound libraries so as to reduce the risk of late-stage attrition; 
and second, to optimize the screening and testing by looking at 
only the most promising compounds [21].  
 

 
Figure 1-Failures in drug research and development as 
discussed in [13]. The 50% of the failures are correlated with 
bad ADMET parameters. Other reasons are human toxicity, 
poor target binding and commercial problems. 
 
In this paper we show that Genetic Programming (GP), an 
established technique of evolutionary computing, is a promising 
and valuable tool for quantitative predictions of human oral 
bioavailability of drug candidates. 
Human oral bioavailability (indicated with %F from now on) is 
the parameter that measures the percentage of initial drug dose 
that effectively reaches the systemic blood circulation.  This 
parameter is particularly relevant for pharmaceutical industries, 
because the oral assumption is usually  the preferred way for 
supplying drugs to patients and because it is a representative 
measure of the quantity of active principle that effectively can 
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actuate its biological effect. Oral bioavailability is determined by 
two keys ADMET processes: adsorption and metabolism. In fact 
orally submitted drugs, as depicted in figure 2, have to be 
absorbed from the gut wall and to enter into systemic circulation 
in the portal vein; carried by the blood flux, molecules arrive in 
the liver, where there are some biochemical processes that try to 
demolish them. The percentage of molecules initially submitted 
that exit the liver and enter  the blood circulation corresponds to 
the Oral Bioavailability of a particular compound.  

 
Figure 2- Anatomical view of processes affecting 
bioavailability. From the stomach drugs start digestion and 
pass, via gut wall absorption, into the portal vein. Here they 
enter the liver, where metabolism tries to demolish them. The 
fraction of initial dose that exits the liver represents drug 
bioavailability. 

This paper is structured as follows: in section 2 we describe the 
statistical methods mostly employed in relevant literature state for 
bioavailability predictions. In section 3 we describe the protocol 
adopted in our calculation, defining all the parameters needed for 
our results reproduction. Section 4 focuses on the obtained 
experimental results, whereas Section 5 discusses the results and 
delineates the future investigations in this field. 

2. STATE OF THE ART AND RELATED      
WORK 

Predicting Human Oral Bioavailability is not an easy task 
because, as depicted above it depends on a superposition of two 
ADMET processes: absorption and liver first-pass metabolism. 
Absorption in turn depends on the solubility and permeability of 
the compounds, as well as interactions with transporters and 
metabolizing enzymes in the gut wall. Important properties for 
determining permeability seem to be the size of the molecule, as 
well as its capacity to make hydrogen bonds, its overall 
lipophilicity and possibly its shape and flexibility. Molecular 
flexibility, for example, as evaluated by counting the number of 
rotatable bonds, has been identified as a factor influencing 
bioavailability in rats [24-26].  
Some attempts in estimating bioavailability are reported in 
literature and all belong to the category of Quantitative Structure 
Activity Relationship (also called Q.S.A.R.) studies [25]. Models 
developed with Q.S.A.R. approach are quantitative regression 
methods that attempt to relate chemical structure to biological 
activity. Quantitative structure–activity relationship modeling 
generally involves three steps: (a) to collect or, if possible, to 
design a training set of chemicals compounds for which the 
biological parameter to estimate is known; (b) to derive features 

(descriptors) of the molecular structure that can properly relate to 
biological activity; and (c) to apply methods to build a 
mathematical relationship that permits to calculate biological 
activity. Obtaining a good-quality QSAR model with the ability to 
predict the activity of a chemical compound outside the training 
set depends on many factors such as the quality of data, and the 
choice of significant features. 
Molecules could be represented as graphs with labeled nodes 
(atoms) and labeled edges (bonds between atoms). There are two 
main categories of molecular features that can be used for 
Q.S.A.R.: 2D-chemical descriptors, that refer to the bi-
dimensional structure of compounds and 3D-chemical descriptors, 
that are calculated starting from tri-dimensional molecular 
conformations. For an extended discussion about molecular 
descriptors see [22]. 
Yoshida and Topliss [28] trained a QSAR model with the 
presence/absence of typical functional groups most likely to be 
involved in metabolic reactions as the structural input. Their 
approach used ‘fuzzy adaptive least squares’, and drugs could be 
classified into one of four predefined bioavailability ranges. Using 
this approach, a new drug can be assigned to the correct class with 
an accuracy of 60%. A method using adaptive fuzzy partitioning 
(AFP) has been presented in [18]. Genetic Algorithms were used 
to select the best molecular descriptors, and Self Organizing Maps 
(SOMs) were used to collocate the molecule in a bioavailability 
class. Fröhlich and Wegner recently experimented the use of 
Kernel methods (SVM) for assessing the problem of 
bioavailability predictions, basing their approach on the 
estimation of similarity between different molecules with similar 
biological behavior [8]. Various kinds of multivariate and Partial 
Least Square (PLS) regressions, also coupled with recursive 
partition [2], have been used to give an estimation of oral 
bioavailability. 
Artificial Neural Networks (ANN) are widely used for ADMET 
parameters estimation (for a detailed discussion see [29]), and 
there are also some contributions in which a Bayesian 
Regularized Artificial Neural Networks (BRANN) has been 
applied. 
Some software vendors are active in the field of pharmaco-
dynamical predictions, particularly those traditionally involved in 
the field of molecular modeling. For example Accelrys Inc [1], 
and Pharma Algorithms Inc.[17] offer some integrated Q.S.A.R. 
utilities also for bioavailability modeling, whereas Simulation 
Plus Inc. [20] uses bagged Artificial Neural Networks for 
estimating the key ADMET parameters and then uses them to 
perform a simulation of the absorption process.  
GP has been applied for  grouping molecules into 4 classes of 
increasing levels of bioavailability without specifically focusing 
on the quantitative predictions by Langdon and Barrett in [15]. In 
this paper, we take up a different perspective: we try to 
quantitatively asses the value of  bioavailability instead of 
grouping molecules into classes with similar biological activity.  

3. PROTOCOLS DESCRIPTION 
Many machine learning techniques have been tested to compare 
their ability in quantitatively predicting oral bioavailability. Here 
we present a "canonic" version of GP, three variants of GP in 
which the fitness function and/or the set of terminal symbols have 
been modified and some well known regression methods such as: 
Linear and Least Square Regression, Feed Forward Artificial 
Neural Networks and two different versions of Support Vector 
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Machines (SVM). Before describing these Machine Learning 
methods and the way in which they have been used in our 
experiments and presenting the experimental results, in the 
following sections we describe data collecting and preparation, 
the computation of molecular descriptors and the strategy used for 
dataset partitioning. 

3.1 Dataset Collecting and Preparation 
We collect from the relevant literature [28] and from DrugBank 
public database [7] the chemical structure, expressed as SMILES 

(Simplified Molecular Input Line Entry Specification) string, and 
the human oral bioavailability experimental measurements for 
360 FDA approved drugs and drug-like compounds. SMILES is a 
string codifying the 2D molecular structure of a compound in an 
extremely concise form, introduced by Chemical Information 
Systems Inc. [6]. Chemical strings are transformed into bi-
dimensional formulas and used as input for the ADMET Predictor 
(a software produced by Simulation Plus Inc. [20]) for calculating 
241 bi-dimensional molecular descriptors.  
Now we dispose of a matrix H of m rows and n columns, where m 
represents the number of molecules for which we have the 
experimental bioavailability measurements, and n represents the 
number of molecular descriptors.  The known values of human 
oral bioavailability are placed in the m-dimensional vector %F. 
These data structures and the relative descriptors can be 
downloaded from the webpage: <omitted to keep anonymity>. 

3.1.1 Dataset splitting 
A random splitting of the dataset is performed before model 
construction, by partitioning it into a training and a test set: 70% 
of the molecules are randomly selected with uniform probability 
and inserted into the training set, while the remaining 30% forms 
the test set. In other words, H is spitted into H(TRAIN) and H(TEST). 
The first of these two matrix has  m+ rows (where m+ is the 
number of molecules selected for constructing the training set) 
and n columns, whereas H(TEST) has m-m+ rows and n columns. 
Analogously, also the vector %F is partitioned in %F(TRAIN) and 
%F(TEST), where %F(TRAIN)  of course contains the same indexes of 
%F as the ones in H(TRAIN). 

3.2 Genetic Programming Settings 
Four (slightly) different versions of GP have been used to obtain 
the results presented in this paper. They are described below. 
 
3.2.1  "Canonic" (or standard) GP 
The first GP setting that we have used (called canonic, or 
standard, GP from now on and indicated as stdGP) was a 
deliberately simple version of standard tree-based GP [14]. In 
particular, we have chosen to use a parameter setting and the sets 
of functions and terminal symbols as much similar as possible to 
the ones that have originally been used in [14] for symbolic 
regression problems. Each molecular feature Hij has been 
represented as a floating point number. Potential solutions (GP 
individuals) have been built by means of the set of functions 
F={+, *, -,÷}  (where ÷ is the protected division, i.e. it returns 1 if 
the denominator is zero) and the set of terminals T composed by n 
floating point variables (where n is the number of columns in the 
training set, i.e. the number of molecular features of the 
compounds). The fitness of each individual has been defined as 
the root mean squared error (RMSE) measured on the data used to 
construct the bioavailability model, i.e. only the data contained in 

the training set have been used as fitness cases. In other words, 
given an individual k producing the bioavailability predictions 
%F(PRE) on the training set, we define the fitness of k (RMSEk) as 
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For each individual k, we also evaluate the RMSE measured on 
the test set H(TEST), whose data, of course, are not used at all 
during the evolution. The RMSE on the test set will be used for 
comparing GP results with the ones of the other methods. GP 
parameters used in our experiments are summarized in table 1. 

table 1- Genetic Programming experimental setting used for 
the experiments 

Objective Evolve a quantitative predictive model of 
human bioavailability 

Function set: Multiplication, Addition, Division, 
Subtraction 

Terminal set: 241 molecular descriptors (floating point 
variables) 

Fitness: RMSE measured on drugs selected for 
training 

Selection: tournament of size 10 
Algorithm: Generational GP with elitism (i.e. copy of the 

best individual in the next population at each 
generation)  

Pop Size: 500 individuals 
Initialization: ramped half and half with maximum depth 

equal to 6 
Other 

Parameters: 
maximum depth for crossover 17, swap 
mutation probability 0.1, shrink mutation 
probability 0.1, sub-tree mutation probability 
0.1  [14] 

Maximum 
Number of 

generations: 

500 

 
3.2.2 LS2-GP 
The second version of GP that we present uses the same 
parameter setting as stdGP, but a different fitness function. In 
particular, the fitness of a GP individual k is obtained by 
executing two steps. The first step consists in applying linear 
scaling to  RMSEk  as it has been defined in equation (1). The use 
of linear scaling is by no means new to GP: among others, it has 
been successfully applied to many difficult symbolic regression 
problems in [12]. It consists in calculating the slope and intercept 
of the formula coded by the GP individual. Given that 
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PRE HkF  is the output of the GP individual k on the 
input data 

•iH , a linear regression on the target values F%  can be 
performed using the equations: 
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where m+ is the number of cases (i.e. the number of lines in the 
training set) and )(

%
PRE

F  and F%  denote the average output and 
the average target value respectively. These expressions 
respectively calculate the slope and intercept of a set of outputs 

)(% PREF , such that the sum of the squared errors between F%  
and )(% PREFba +  is minimized. After this, any error measure can 
be calculated on the scaled formula )(% PREFba + , for instance the 
RMSE: 
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If a is different from 0 and b is different from 1, the procedure 
outline above is guaranteed to reduce the RMSE for any formula 

)(% )(
•= i

PRE HkF  [12]. The cost of calculating the slope and 
intercept is linear in the size of the training set. By efficiently 
calculating the slope and intercept for each individual, the need to 
search for these two constants is removed from the GP run. GP is 
then free to search for that expression whose shape is most similar 
to that of the target function. The efficacy of linear scaling in GP 
for many symbolic regression problems has been widely 
demonstrated in [12]. 
The second step that has to be performed to calculate the fitness 
value of individual k consists in calculating the following 
function: 

2
)( 21 kk CORNwRMSENwkf +
=     (4) 

where 
kRMSEN  is the normalized value of 

kRMSE as it has been 
defined in equation (3) and CORNk is the normalized value of 
CORRk which is the statistic correlation between the real 
bioavailability values of the molecules belonging to the training 
set and the bioavailability predictions calculated by k on the same 
molecules. Formally, 

kCORR   is defined as follows: 
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is the covariance of the vectors F% and )(% PREF , 
F%σ  and 

)(% PREFσ  are the standard deviations of these two vectors and 

F% , )(
%

PRE
F are their averages respectively. 

  
 Before calculating )(kf , both RMSEk and CORRk have been 
normalized into the range [0, 1], in such a way that they have the 
same "importance" in the calculation of the weighted average. In 
particular,  CORRk  whose values are by definition included into 
the range [-1, 1] have been normalized by applying: 

2
1+−

= k
k
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after this calculation, if CORNk = 0, then there is a perfect 
correlation between the true bioavailability values and the 
calculated ones and if   CORNk,= 1 then these values are not 
correlated at all. 

In our experiments, we have set the weights values as: w1 = 0.4 
and w2 = 0.6, i.e.a slightly higher importance in the fitness 
calculation has been assigned to the correlation coefficient. A 
simple experimentation phase (whose results are not shown here 
for lack of space) has empirically shown that these values are the 
ones for which the GP system has the best generalization ability. 
The idea behind this weighted sum is that optimizing only the 
RMSE on the training set may lead to overfitting and thus to a 
poor generalization power of GP solutions (i.e. bad results on the 
test set). If we optimize more than one criterium, GP probably 
returns an individual which is good on all the criteria even though 
not optimal for all of them. Furthermore, the correlation 
coefficient between outputs and targets is a very important 
measure for results accuracy and thus deserves to be used as an 
optimization criterium. 
This GP version will be called "Linear Scaling with 2 criteria" GP 
or LS2-GP from now on.  

3.2.3 LS2-C-GP 
The third GP version presented in this paper is similar to LS2-GP 
with the only difference that a set of ephemeral random constants 
(ERCs) is added to the set of terminal symbols to code GP 
expressions. These ERCs are generated uniformly at random from 
the range [m, M], where m and M are the minimum and the 
maximum values of bioavailability of the molecules in the 
training set respectively. In the experiments presented in this 
paper, a number of ERCs equal to the number of variables (i.e. 
equal to 241) has been used. 
This choice has been empirically confirmed to be suitable by a set 
of GP runs in which different numbers of ERCs extracted from 
different ranges have been used. The results of these experiments 
are not shown here for lack of space. 
This version of GP will be called "LS2 with Constants" GP and 
indicated as LS2-C-GP. 

3.2.4 DF-GP 
The fouth version of GP presented in this paper differs form the 
previously presented ones since this time the fitness function used 
by GP dynamically changes during the evolution. In particular, 
the evolution starts with the correlation coefficient used as the 
only optimization criterium. When at least the 10% of the 
individuals in the population reach a value of the correlation 
coefficient which is largest or equal to 0.6, the fitness function 
changes, and it becomes the following one: 

⎩
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in this way, the selection pressure operates as a pruning 
algorithm, giving a chance to survive for mating only to those 
individuals whose correlation is largest or equal to 0.6. 
The idea behind this method is that the search space is too large 
for GP to perform efficiently; furthermore, we hypothesize that 
individuals with a good, although not optimal, correlation 
coefficient between outputs and goals will have a largest 
generalization ability and thus should take part in the evolutionary 
process. Some experiments (whose results are not shown here for 
lack of space) have empirically confirmed that the threshold value 
0.6 for the correlation coefficient is large enough to avoid 

258



underfitting and small enough to reduce overfitting. Of course, 
this value has been tested and has revealed suitable only for the 
dataset used in this paper and can by no means be interpreted as a 
general threshold. Nevertheless, the experiments that we have 
executed to obtain this value are very simple and if we wish to 
evolve new expressions on new data we could easily replicate 
them. This GP version has been called Dynamic Fitness GP and 
will be indicated as DF-GP from now on. 

3.3 Other Methods 
Various non evolutionary regression models were used, in order 
to comparatively evaluate the regression performances of the 
individuals generated by GP. The statistical methods most 
commonly used to perform human oral bioavailability prediction, 
as discussed in section 2, were trained and tested. They are 
described below in a deliberately synthetic way, since they are 
well known and well established machine learning techniques. 
For more details on these methods and their use, the reader is 
referred to the respective references quoted below. 
 

3.3.1 Feature Selection 
In order to improve the performances of the methods described in 
the following part of this section and to make more meaningful 
comparisons with GP results, we performed feature selection on 
the training set. We adopted two attribute selection heuristics: the 
Correlation based Feature Selection (CFS) and the Principal 
Component based Feature Selection implemented by Hall [9].  
The central hypothesis in CFS is that good feature sets contain 
features highly correlated with the class, yet uncorrelated with 
each other. A feature evaluation formula, based on ideas from test 
theory, provides an operational definition of this hypothesis. The 
algorithm couples the evaluation formula with an appropriate 
correlation measure and a search strategy.  
Principal Component Analysis based Feature Selection reduces 
the dimensionality of attribute space transforming the original 
features in a new set of variables called principal components 
(PCs). The latter are uncorrelated and ordered so that the first few 
retain most of the variation present in all of the original variables 
[11]. We calculate the PCs for our dataset, and then use all the 
new variables for the methods training. 
 

3.3.2 Linear and Least Square Regression 
We used the Akaike criterion for model selection (AIC) [3], that 
has the objective of estimating the Kullback-Leibler information 
between the densities, corresponding to the fitted model and the 
generating or true model. After eventually applying one of the 
methods described in section 3.3.1, M5 criterion is used for 
further attribute selection [3]. The least square regression model is 
founded on the algorithm  of  Robust regression and outlier 
detection described in [19], searching for the more plausible 
linear relationship between outputs and targets.   

3.3.3 Artificial Neural Networks (ANN) 
The multilayer perceptron [10] implementation included in the 
Weka software distribution [27] was adopted. It uses the 
Backpropagation algorithm [10] with a learning rate equal to 0,3. 
All the neurons have a sigmoid activation function. All the other 
parameters that we have used have been set to the defaults values 
proposed by the Weka implementation [25]. 

3.3.4 Support Vector Machines Regression (SVMR) 
The Alex J. Smola and Bernhard Scholkopf sequential minimal 
optimization algorithm [21] was adopted for training a Support 
Vector regression using polynomial  kernels. In particular we 
have built two models using polynomial kernels of first and 
second degree respectively. 

4. EXPERIMENTAL RESULTS 
Table 2 shows the RMSE and correlation coefficient for all the 
presented non evolutionary machine learning techniques without 
feature selection.  The best RMSE result is returned by SVM 
regression with first degree polynomial kernel, while the best 
correlation coefficient has been found by multi-layer perceptron. 

table 2- Experimental comparison between different machine 
learning techniques for bioavailability predictions without 
feature selection. 

Method RMSE on test 
set 

Correlation 
coefficient 

Linear Regression 48,1049 0,1699 
Least Square Regression 37,2211 0,2022 
Multi layer perceptron 51,280 0,2880 
SVM Regression – first 

degree polynomial kernel 
34,804 0,2666 

SVM Regression – second 
degree polynomial kernel 

44,323 0,2597 

 
In table 3, we report results of the same techniques using the 
Principal Components based feature selection. All the new 
features generated by this method have been used by all the 
machine learning algorithms to generate the models. This table 
shows that the use of feature selection techniques helps to 
generally improve the performances of all the methods. 
Nevertheless, this technique is not suitable for some of the 
presented methods for which the performance improvement 
appears to be only marginal. This time the best RMSE result is 
returned by linear regression, while the best correlation 
coefficient is found by SVM regression with second degree 
polynomial kernel. 

table 3- Experimental comparison between different machine 
learning techniques for bioavailability predictions using 
Principal Components Based feature selection (see section 
3.3.1). 

Method RMSE on test 
set 

Correlation 
coefficient 

Linear Regression 30.5568  0.1911 
Least Square Regression 40.4503 0.1165 
Multi layer perceptron 48.9771 0.1945 
SVM Regression – first 

degree polynomial kernel 
36.1850 0.1306 

SVM Regression – second 
degree polynomial kernel 

42.3377 0.2184 

In table 4, we present the results of the same machine learning 
methods using the Correlation based feature selection. This 
selection strategy eliminates some noisy features while maintains 
the ones that are correlated with bioavailability. As table 4 shows, 
this strategy enhances the performances of all the methods 
emplyed remarkably better than the Principal Components based 
feature selection. With the Correlation based feature selection the 
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best results, both for RMSE and correlation coefficient are 
returned by linear regression. 
 

table 4- Experimental comparison between different machine 
learning techniques for bioavailability predictions using 
Correlation Based feature selection (see section 3.3.1). 

Method RMSE on test 
set 

Correlation 
coefficient 

Linear Regression 27.5212 0.3141 
Least Square Regression 31.7826 0.1296 
Multi layer perceptron 32.5782 0.2308 
SVM Regression – first 

degree polynomial kernel 
28.8875 0.2855 

SVM Regression – second 
degree polynomial kernel 

29.7152 0.2787 

 

In table 5, RMSE and correlation coefficient for all the 
considered GP versions are shown. In particular, we report the 
performance of the individual with the best RMSE value 
contained in the population at termination over 20 independent 
runs.  Comparing the results shown in this table with the 
previously presented ones, we remark that all the GP versions 
outperform the other machine learning methods both for RMSE 
and correlation coefficient, except for stdGP which is 
outperformed by SVM and linear regression with the Correlation 
based feature selection. The technique that has returned the best 
solution is LS2-C-GP. Comparing the results returned by LS2-C-
GP with the ones of the non-evolutionary methods, we can remark 
that LS2-C-GP has found a better RMSE and a remarkably higher 
correlation coefficient value. We hypothesize that this is due to 
two main reasons: first of all, using two criteria to evolve 
solutions on the training set allows us to generate solutions which 
are "good" on both the criteria and that are optimal on none of 
them.  In this way, we prevent the evolutionary process to 
generate too good solutions on the training set for one single 
criterium, which could lead to overfitting. In doing that, we also 
use the correlation coefficient as an optimization criterium, which 
is an important measure for results accuracy. Secondly, the use of 
ERCs may help to asses the relative relevance of the features in 
the proposed solutions. 
 
table 5- Experimental results of the different GP versions. 
These results concern the individuals with the best RMSE 
value in all the populations over 20 independent runs. 

Method RMSE on test 
set 

Correlation 
coefficient 

stdGP 30.1276 0.1661 
LS2-GP 26.5909 0.3735 

LS2-C-GP 26.0126 0.4245 
DF-GP 27.3591 0.3304 

We remark that we have deliberately avoided to use a feature 
selection technique before applying the GP strategies. In fact, we 
have hypothesized that GP automatically performs a feature 
selection by keeping into the population only the individuals 
which use a subset of the features. Our experimental results 
should also demonstrate that this automatic feature selection 
performed by GP is competitive with some of the most known 

feature selection algorithms and it has not to be executed 
separately before running the regression algorithms.  
Finally, we report the average values with their standard 
deviations of the best individuals RMSE on the test set over the 
20 independent runs for the various GP versions (see table 6). 
These results confirm that GP solutions are stable (i.e. results 
presented in table 5 have not been found by fortuitous runs) and 
offer good performances with respect to the other traditional 
machine learning techniques. 
 
table 6- Averages and standard deviations of the best 
individuals for the different GP versions over 20 independent 
runs. 

Method RMSE average 
on test set 

RMSE 
standard 
deviation 

stdGP 34.3480 2.7680 
LS2-GP 28.0836 1.4472 

LS2-C-GP 27.5241 0.6881 
DF-GP 28.1353 1.1592 

 

4.1 GP best individual properties 
The genotype of the best GP individual (obtained using LS2-C-
GP), whose RMSE and correlation coefficient performances have 
been reported in table 5 is shown in figure 3. Starting from 241 
selectable features we obtained that only 17 2D-molecular 
descriptors are used in bioavailability estimation. In other words, 
GP has automatically performed a strong feature selection. This 
phase cannot be done automatically by all the other techniques 
that we have considered. In this application, feature selection 
plays a very important role (bioavalaibility can be expressed as a 
function of some molecular descriptors, not necessarily all). We 
claim that this is one of the reasons why GP may be a suitable  
technique to solve this kind of problems.  
 

(* (- (% c84/x188) (* (- c206 x84) (- x224 c176))) (* (% 
(+ (+ x188 x34)(- c236 x26)) (- c206 x84)) (+ (+ (- (+ (* 
c86 c141) (- (% c22 x110) (* (*(+ c54 x234) (+ (+ c200 
x126) (- (- (+ (+ c175 x240) (% (% c115 x195) c86))(- 
c206 x84)) (* x218 c162)))) (- x224 c176)))) (* (* (+ c54 
x234) (- c206 x84)) (- x224 c176))) (- (- (+ (% c22 x110) 
(- (+ (- (+ (+ (- c206 x84) (*(+ x69 c211) (% c176 
x218))) (% (* x218 c162) (% c84 x188))) (* (- c206 x84)(- 
x224 c176))) (- x206 x150)) (* (* (+ c54 x234) (+ (% c115 
x195) (- (- (+(+ c175 x240) (% (% x5 c24) c86)) (* x218 
c162)) (* x218 c162)))) (- x224c176)))) (* (* (+ c54 
x234) (- c206 x84)) (- x224 c176))) (% (% c115 
x195)c86))) (% (* x218 c162) (% (+ (- (+ c200 x126) (* 
x218 c162)) (- x214 x9))(* (+ c54 x234) (+ (- c206 x84) 
(- (+ (+ (- c206 x84) (% (% c115 x195) c86))(% (% c115 
x195) c86)) (* x218 c162))))))))) 
Figure 3- Genotype of the best GP individual generated in our 
experiments. (+ is addition, - is subtraction, * is 
multiplication, % is protected division, xi is the i-th molecular 
feature   and cj is the j-th ephemeral random constant. 
 
Molecular descriptors used as model input and reported in table 7 
refer to molecular properties that are involved in absorption and 
metabolism (i.e. the two key processes determining human 
bioavailability). In fact, from selected descriptors screening we 
found d195, d214, d215, d224S which are linked to molecular 
polarity, and also features like d126, d110, and d150 that refer to 
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the chemical groups sensible for a liver effected modification. 
Note that d214 is one of the features required by the well known 
Lipinsky rule of five [16] 
 
Table 7- Features selected as terminal leaves of best GP 
individual with their pharmacological meaning. 

Code Meaning 
d5 Number of carbons 
d9 Number of sulfurs 
d26 Number of aliphatic rings 
d34 atom-type E-state index for -CH2 groups 
d69 atom-type E-state index for phospinate 
d84 atom-type  E-state index for Iodine groups 
d110 number of thocarbon groups 
d126 number of nitrites groups 
d150 number of sulfate groups 
d188 Iso-thio-cyanate:1.0; thio-cyanate:0.5 
d195 Compounds with –OH groups attached to an aliphatic 

alchol 
d206 Hydrocarbon compounds with at least one fluorine 

groups 
d214 Number of hydrogen bond acceptors 
d218 Number of nitrogen based hydrogen bond acceptors 
d224 Sum of partial atomic charge on nitrogen based 

hydrogen bond acceptors 
d234 cumulative contribution of purely anionic species to 

fraction ionized at specific pH=7.4 
d240 Lown electron pair on NOSV divided by the number 

factor 

 

5. DISCUSSION AND FUTURE WORKS 
Automatically predicting human oral bioavailability is a very 
important issue, because it helps to prevent industrial failure, human 
toxicity and poor drug activity. 
This paper has presented an experimental study of quantitative 
prediction of the bioavailability of some medical compounds. 
Nine different machine learning techniques, among which four 
different versions of genetic programming, have been  tested using a 
database of molecules with known bioavailabilities. This database 
has been split into a training set and a test set, in order to investigate 
the generalization capabilities of the considered techniques.  
The genetic programming variants mainly differ in the fitness 
function and in the set of terminal symbols used. In particular, a 
fitness function optimizing both the root mean square error and the 
correlation coefficient have been presented; a set of ephemeral 
random constants have been added to the terminal symbols set, 
originally composed by some floating point variables. Furthermore, 
a version with a dynamic fitness function to keep only individuals 
with good correlation coefficient into the population has been 
presented. Finally the well known linear scaling strategy has also 
been applied to the root mean square error.  
Some of the genetic programming versions have shown 
significantly better results than all the other presented techniques, 
both from the point of view of the quality of the solution found and 
of the statistical correlation between predicted and target data. 
Among them, the version which optimizes both the root mean 
square error and the correlation coefficient on the training set has 

shown the best generalization capability, in particular in the case 
where ephemeral random constants have been used.  
While all the non-evolutionary machine learning techniques have 
been able to produce good results only after the explicit application 
of some well-known (and computationally expensive) feature 
selection strategies, GP could potentially use all the features in the 
dataset and has automatically performed a strong and efficient 
feature selection (the best individual found in our experiments uses 
only 17 molecular features over the 241 contained in the dataset). 
These results are encouraging and should pave the way for a deeper 
investigation on the capability and also other ADMET parameters of 
evolutionary algorithms to develop expressions to predict 
bioavailability as a function of its molecular descriptors.  
 
Furthermore, according to the results that have been presented in 
this paper, optimizing more than one criterium on the training set 
should contribute to generate solutions with good generalization 
abilities. This subject should be further investigated in the future. In 
particular, multi-objective GP systems should be studied, in which 
not only root mean square error and correlation coefficient, but also 
many other optimization criteria are used. These systems may be 
based on more sophisticated multi-objective optimization strategies 
than the simple weighted average used in this paper: Pareto fronts 
are surely the most promising methods and they have to be 
investigated. 
Future work also includes the study of techniques to automatically 
generate numeric terminals for the tree expressions in an 
"intelligent" way (for example with some well known techniques of 
local optimization [23] or coevolution [5]), instead of generating 
them at random. 
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