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ABSTRACT
Cooperative coevolution has proven to be a promising tech-
nique for solving complex combinatorial optimization prob-
lems. In this paper, we present four different strategies
which involve cooperative coevolution of a genetic program
and of a population of constants evolved by a genetic algo-
rithm. The genetic program evolves expressions that solve a
problem, while the genetic algorithm provides “good” values
for the numeric terminal symbols used by those expressions.
Experiments have been performed on three symbolic regres-
sion problems and on a “real-world” biomedical application.
Results are encouraging and confirm that our coevolutionary
algorithms can be used effectively in different domains.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Automatic Programming

General Terms
Algorithms

Keywords
Coevolution, Genetic Algorithms, Genetic Programming

1. INTRODUCTION
This paper focuses on the study of coevolutionary algo-
rithms which optimize the values of the numeric terminals
of a genetic program being evolved. The simple algorithms
presented here can be considered as a very first step towards
the much longer-term goal of designing complex systems
based on the (self-organized) coevolution of different hetero-
geneous populations, which exchange information that may
not only affect the dynamics of their evolution, but even
their primary goals.
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Previous work in which constants of a genetic program
have been effectively optimized has dealt with memetic algo-
rithms, in which classical local optimization techniques (e.g.,
gradient descent [23], linear scaling [10] or other methods
based on diversity measures [22]) were used find good val-
ues for the constant set of some simple symbolic regression
problems. Symbolic regression problems consist of finding
an algebraic expression which correctly maps a set of input
data into a set of corresponding outputs. These problems
may be solved by means of Genetic Programming (GP)[12],
where expressions are usually represented as tree structures,
which are built using a set of functions F and a set of vari-
ables and constants T = V ∪ K . The elements of the sets
F and T have to be chosen before executing GP and this
choice may considerably affect the success of GP in finding
satisfactory solutions. While the choice of the number of
variables is often naturally induced by the problem specifi-
cations, the choice of functions and, even more, of constants
is usually much harder and less obvious. In many contribu-
tions (see for instance [4, 12, 25]) symbolic regression prob-
lems have been solved using a set of simple arithmetic op-
erators and a set of randomly generated constants, usually
referred to as ephemeral random constants (ERCs). One
of the main weaknesses of those systems resides in the fact
that also the search for the appropriate values of the nu-
meric terminals may involve the navigation of very complex
fitness landscapes. In those cases, local optimization tech-
niques may get stuck in local optima, failing to find “good”
constants. This may be avoided by using a more sophisti-
cated technique to search for numeric terminals than a local
optimization algorithm.

The present work describes a set of algorithms in which
the values of the numeric terminals used by GP are deter-
mined by a coevolving GA. While hybrid systems integrating
Genetic Algorithms (GAs) and Artificial Neural Networks
(ANNs) or in which ANNs were co-evolved as ensembles of
neurons have been described [2, 27, 15, 14, 8], coevolution of
GP and GAs has never been investigated before, except for
a very first attempt in [3], of which this paper can be consid-
ered the natural extension. The idea underlying coevolution
is far from new [11, 18, 17], nevertheless it has only recently
become a very hot research topic in Evolutionary Compu-
tation (EC) for both theory [26] and applications [19, 20].
Differently from the most common cooperative coevolution-
ary systems, in which homogeneous populations (i.e., with
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similar genotypic representations) coevolve, we use two het-
erogeneous populations, one composed by tree expressions
and the other one composed by fixed length strings.

The paper is structured as follows: section 2 provides the
details of the symbolic regression problem. The subsequent
sections present the different coevolutionary strategies we
have studied and compare their performances with standard
GP and with GP using gradient descent (GP+GD) to opti-
mize constants locally; in particular, section 3 presents the
simplest of the algorithms we have considered, called Basic-
GPGA, section 4 presents a first variant of Basic-GPGA
called DELAY, while sections 5 and 6 present two other
variants called CINI and AUTO, respectively. In section
7, experimental results obtained by our coevolutionary al-
gorithms in solving a “real-world” biomedical problem are
presented. Finally, section 8 offers our conclusions and ideas
for future activities.

2. EXPERIMENTAL SETTING
Each coevolutionary algorithm presented in this paper is
based on the alternate evolution of two populations. The
first one is composed by GP expressions built from the sets
F = {+,−, ∗, //} (where // indicates the protected divi-
sion i.e. x//y returns x/y if y �= 0 and 1 otherwise) and
T = V ∪ K = {x0, x1, ..., xm−1} ∪ {c0, c1, ..., cn−1}, where
V is the set of variables involved in the objective function
and K is a set of references to ’external’ numeric terminals.
During fitness calculation, references point to the numeric
values represented by the best individual of a coevolving
population of fixed-length strings, driven by a GA, which
will be called GA population. Fitness of GP individuals will
be calculated as the mean square error (MSE), defined as
follows:

MSE =
1

N

NX

i=1

(di − f(xi, c))
2

where N is the number of fitness cases, i.e. of input-output
pairs (di,xi), x is a vector of input values, and c is a vector
of numeric constants.

In all experiments, evolution parameters for the GP have
been set as follows: population of size 200, grow initial-
ization, standard subtree-swapping crossover [12] with rate
equal to 0.9, standard subtree mutation [12] with rate equal
to 0.1, tournament selection with tournament size equal to
10, maximum depth for the individuals for both initializa-
tion and crossover equal to 8, elitism (i.e., the best individual
is copied unchanged into the next population). The follow-
ing parameters were used for the GA: population size equal
to 100, 13 bits per constant, standard single-point crossover
[7, 9] with rate equal to 0.9, standard point mutation [7,
9] with rate equal to 0.01, tournament selection with tour-
nament size equal to 8, elitism (i.e., the best individual is
copied unchanged into the next population). Furthermore,
in the experiments presented here, the number of numeric
terminals in K has been set to 6 (and thus the string length
of the GA individuals was 6 × 13 = 78 bits). The fitness
of each individual i in the GA population is the best fitness
which can be obtained by GP using the set of constants rep-
resented by i. Experiments using a different size for K and
evaluating fitness of GA individuals averaging fitness over
the a number of GP individuals larger than one have been
performed and presented in [24]. Based on such results,

changing those parameters does not seem to significantly
affect performances.

The variants of the coevolutionary algorithm were tested
on the following functions:

F (x, y, z) = (x + y + z)2 + 1

G(x, y, z) = 1
2
x + 1

3
y + 2

3
z

K(x, y, z, w) = 1
2
x + 1

4
y + 1

6
z + 1

8
w

Fitness has been evaluated using 30 fitness cases randomly
generated in the range [−100, 100] as in [23].

2.1 Computational Effort
In evaluating GP results, basing performance comparisons
among different GPs on the best fitness value obtained in
corresponding generations or, as it is usually done with GAs,
after performing the same number of fitness evaluations is
inadequate. While this is often acceptable in EAs with fixed
length representations, it can be misleading in GP, where in-
dividuals change their size dynamically. Therefore, we ana-
lyzed results, as in [6], against the computational effort (CE),
defined as the total number of nodes that have been evalu-
ated up to that moment. This quantity is strictly increas-
ing with the number of generations. Strictly speaking, one
should take into account the different computation times re-
quired from different operators in F , but this simplification
is still a better first approximation than the ones mentioned
above. Clearly, this measure is also problem-specific, but it
is useful to compare different solutions to the same problem.

In order to compare our coevolutionary algorithms with
standard GP, we have evaluated the CE spent by both GP
and GA. Let NGP be the population size in the GP. To
evaluate the fitness of a GA individual, it is necessary to
calculate the fitness of all GP individuals which use numeric
terminals. Thus, the following formula expresses the com-
putational effort spent by the GA population at each gen-
eration:

CEGA ≤ NGA ∗
NGPX

j=1

lj (1)

where lj is the number of nodes of the jth GP individual
and NGA is the size of the GA population. This CE must
be added to the CE of the GP, to estimate the global CE
spent by the whole coevolutionary system.

2.2 Performance comparison
Comparing performances of EAs is a notoriously difficult is-
sue. For problems in which the solution is not known, such
as hard real-life optimization problems, a useful figure of
merit is the mean best fitness (MBF). This measure is de-
fined as “the average over all runs of the best fitness values
at termination” [5]. The very concept of termination itself
is rather fuzzy. Indeed, in the above situation, one does
not know in advance whether the global optimum has been
reached. Consequently, one common attitude is to measure
performance after a specified amount of CE has been spent.
For problems with known solutions, such as those that are
studied here, MBF-based measures are not entirely adequate
because a sizable part of the runs are unsuccessful within
the prescribed effort limits; using larger effort values would
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help in some cases, but could become prohibitively expen-
sive. This prevents one from knowing whether increasing the
length of the runs would have been useful and in which cases.
Thus, MBF only partially describes the problem-solving ca-
pabilities of the methods under evaluation. Instead, when
the solution is known, the success rate (SR), defined as the
ratio of successful runs with respect to the total number of
runs, which have been terminated after reaching a speci-
fied CE, is a good indicator of algorithmic effectiveness [5,
1]. Some criticisms have been recently raised against SR as
a reliable measure [13], especially in the case of unknown
search spaces. These criticisms are well founded, but, in our
opinion, they do not fully apply to the present case, because
the test problems have known solutions.

In our previous paper [3], we have compared a basic co-
evolutionary algorithm, similar to Basic GPGA presented
here, comparing it with plain GP by evaluating the MBF
against number of generations (therefore neglecting, with
respect to using CE, any computation overhead introduced
by the GA stage) and number of fitness evaluations (neglect-
ing only tree size). Results have shown that, as expected,
adding a constant optimization stage dramatically speeds
up convergence in terms of number of generations. How-
ever, the number of fitness evaluations after which the co-
evolutionary strategy produces better results on an absolute
scale strongly depends on the choice of the parameters that
regulate it, which seem to be problem-dependent.

In this study, a run will be considered successful if an in-
dividual with an error value lower than 30 has been evolved
within the allotted CE; SR and MBF are both reported and
evaluated against CE. In fact, both measures seem to be use-
ful, since they present results from different points of view:
SR allows one to understand the ability of each algorithm
to find optimal solutions, while the mean fitness curves pro-
vide a visual feeling of the performance of the algorithms
over time. Overall, the concurrent evaluation of these two
measures should give a faithful and rather complete picture
of the evolutionary process. The number of runs performed
per experiment described in this paper is unusually high
(100); published experimental work on EAs mostly evaluate
performances by performing 20 to 50 runs per experiment.
Furthermore, a statistical study of data (inspired by the one
presented in [6]) is also presented. From a statistical point
of view, GP runs may be considered as a series of indepen-
dent trials of the same experiment, having only two possible
outcomes: success (if a solution accurate enough is found
before a prefixed amount of CE has been spent) or failure
(otherwise). In this case, the number of successes (or of
failures) is binomially distributed [21]. The maximum like-
lihood estimator p̂ for the mean of a series of independent
equi-probable Bernouilli trials, and hence for the probability
of success, is simply the number of successes divided by the
sample size (the number of runs n). With this information
at hand, one can calculate the sample standard deviation
σ =

p
n p̂ (1− p̂). This measure will also be included in

the tables reporting the number of successful runs.
In this paper, we compare our coevolutionary algorithms

with conventional (or standard) GP and with GP optimized
by gradient descent (GP+GD) as described in [23]. Our
coevolutionary algorithms will be presented in sections 3, 4,
5 and 6, while GP+GD is briefly described in subsection 2.3.

2.3 GP with Gradient Descent
The GP+GD algorithm attempts to minimize the MSE of
the best individual in the GP population running a few it-
erations of a simple gradient descent. At each generation,
the vector of numeric terminals c is updated n times using
the rule:

c← c− α∇MSE(c)

where α is the learing rate. To calculate derivatives effi-
ciently, we have applied the same technique as in [23]. As
in that paper, we have assumed that GP expressions do not
contain any non-differentiable node, which is true for our
function set F . Furthermore, as in [23], we have set α = 0.5
and n = 3 (see [23] for a motivation of these choices). Each
component of ∇MSE(c) is a tree which has to be evaluated
for each iteration. Therefore, the additional computational
effort required by one iteration of gradient descent is equal
to the number of nodes of all the trees in ∇MSE(c).

3. THE BASIC GPGA ALGORITHM
Let a turn be the isolated and uninterrupted evolution of
one population for a fixed number of generations. The Ba-
sic GPGA (BGPGA from now on) algorithm consists of the
iterated execution of a turn of NGGP generations of the
GP, followed by a turn of NGGA generations of the GA
population. In the experiment reported in this paper we set
NGGP = 20 and NGGA = 501. Once both turns are com-
pleted, the numeric terminals used by all the individuals in
the GP population are assigned the values represented by
the best GA individual.

In the basic algorithm described in [3] the GA was used to
optimize the values of the constants used by the best individ-
uals in the GP population from scratch. In the algorithms
proposed in this paper, after the first turn, when a new turn
of the GA starts, the GA population is not re-initialized but
is still the same as in the last generation of the previous
turn. Random initializations of the populations take place
only once at the beginning of the run. Even if the algo-
rithms presented here still have a strong sequential nature,
the term coevolution suits this approach much better than
the previous one, besides making search much less local.

3.1 Experimental Results
In Figure 1 the mean best population fitness is plotted against
computational effort for BGPGA, standard GP and GP+GD
over the three test functions.

As the figure clearly shows, BGPGA outperforms standard
GP and GP+GD on function F , while it is outperformed by
both standard GP and GP+GD on function G. Finally, on
function K, BGPGA, standard GP and GP+GD have found
equivalent solutions, in terms of quality, for all values of
computational effort which have been considered.

Table 1 shows results in terms of SR, along with the sam-
ple standard deviations, for the same 100 independent runs
of Figure 1 for BGPGA, standard GP and GP+GD.

BGPGA and standard GP have exactly the same SR on
function F , while the SR of GP+GD is lower. Standard GP
has a higher SR number than BGPGA and approximatively
the same SR as GP+GD on function G. BGPGA has the

1Experiments with different number of generations have also
been performed. They have not been shown here for lack of
space. Results can be found in [24].
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Figure 1: Best average fitness against computational effort over 100 independent runs for standard GP,
GP+GD, and BGPGA. In all algorithms the size of K has been set to 6. (a): results on function F ; (b): results
on function G; (c): results on function K.

Table 1: Number of successes, with corresponding
standard deviations, calculated over 100 indepen-
dent runs for standard GP, GP+GD and BGPGA.
Each row refers to a different test function, whose
name is reported in the first column.

std GP GP + GD BGPGA

F 55 (σ = 4.975) 41 (σ = 4.918) 55 (σ = 4.975)
G 88 (σ = 3.249) 90 (σ = 3.0) 81 (σ = 3.923)
K 72 (σ = 4.489) 66 (σ = 4.737) 71 (σ = 4.537)

same SR as standard GP on function K, while GP+GD has
a lower SR.

In conclusion, the BGPGA algorithm has been effective in
searching function F , in terms of MBF. It has found the
same number of optimal solutions as standard GP, but it
has been able to produce better solutions than standard GP
in the runs which have not been successful. On the other
hand, BGPGA has shown worse (or sometimes equivalent)
performance than standard GP for the other test functions
studied. These preliminary results led us to developing some
variants of the BGPGA algorithm, to improve its perfor-
mances. Such variants and the experimental results which
have been obtained are described in the following sections.

4. THE DELAY ALGORITHM
This algorithm works like BGPGA with the only difference
that, before starting the alternated execution of GP and
GA turns, the GP alone is executed for a certain number
of generations. The idea behind this algorithm is that GP
must develop “good” tree structures before “good” numeric
constants can be generated: the computational effort spent
by GA in attempting to generate constants for individuals
which do not have the right structure yet may be wasted.
The delay D, in terms of generations, with which the evolu-
tion of the GA population begins saves the computational
effort that would be spent to generate the numeric costants
for tree structures which are still far from an optimal struc-
ture.

At the beginning of a run, GP alone is run for D genera-
tions. Some experiments have been performed with different

values of D. Results of these experiments (not shown here
for lack of space, but presented in [24]) have confirmed that
100 may be a reasonable value for D (it corresponds to 5
turns of GP).

4.1 Experimental Results
Figure 2 plots the values of the mean best population fitness
against computational effort for DELAY, standard GP and
GP+GD in searching the three test functions.

The DELAY algorithm clearly outperforms standard GP
and GP+GD on function F (it also outperforms the BGPGA

algorithm, see Figure 1(a)). Furthermore, it is interesting
to remark that the DELAY curve in Figure 2(a) has a sud-
den improvement, corresponding to a value of the compu-
tational effort approximatively equal to 3. This probably
corresponds to the end of the first turn of the GA. Our in-
terpretation of such a result is that automatically generating
numeric terminals for ’well-evolved’ tree structures has been
very useful. On the other hand, DELAY is outperformed by
standard GP and GP+GD on function G, although much
less than BGPGA (see Figure 1(b), in particular for values
of the computational effort larger than 5). Finally, DELAY
outperforms standard GP on function K.

Table 2 reports the number of successful runs with their
standard deviations for the same 100 independent runs of
Figure 2 for DELAY, standard GP and GP+GD.

Table 2: Number of successes with their standard
deviations calculated over 100 independent runs for
standard GP, GP+GD and DELAY. Each row refers
to a different test function, whose name is reported
in the first column.

std GP GP + GD DELAY
F 55 (σ = 4.975) 41 (σ = 4.918) 50 (σ = 5.0)
G 88 (σ = 3.249) 90 (σ = 3.0) 95 (σ = 2.179)
K 72 (σ = 4.489) 66 (σ = 4.737) 73 (σ = 4.439)

These results can be summarized as follows: standard GP
has a slightly higher SR than DELAY and a much higher
SR than GP+GD on function F . The differences between
DELAY and standard GP on the F function seem to be
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Figure 2: Best average fitness against computational effort over 100 independent runs for standard GP,
GP+GD, and DELAY. In all algorithms the size of K has been set to 6. (a): results on function F ; (b): results
on function G; (c): results on function K.

marginal. Similarly, DELAY has a slightly higher SR than
standard GP and GP+GD on function K, but, once again,
standard deviations show that differences are not relevant.
Finally, DELAY has a higher SR than standard GP and
GP+GD on the G function.

In conclusion, the DELAY algorithm represents an im-
provement compared to BGPGA since it often outperforms
standard GP both from the point of view of the mean best
fitness and of the success rate. In cases where DELAY is
outperformed by standard GP, differences between the two
algorithms appear to be marginal.

5. THE CINI ALGORITHM
The idea behind this variant of the algorithm derives from
the observation that the BGPGA algorithm unconditionally
activates GA optimization also when GP by itself is being
able to improve fitness significantly. The strategy adopted
by this algorithm is to execute a turn of GA only when the
execution of GP does not yield significant fitness improve-
ments for a certain number of turns. For this reason, we
have called this algorithm CINI (Coevolve If No Improve-
ment). The pseudo-code describing the CINI algorithm is
presented in Figure 3.

Strictly speaking, the CINI algorithm coincides with stan-
dard GP when GP alone is able to improve fitness quality
in all turns. In practice, this event never occurred in any of
the experiments.

5.1 Experimental Results
Figure 4 plots the values of the mean best population fit-
ness against computational effort for CINI, standard GP and
GP+GD for the three test functions.

As this figure clearly shows, CINI outperforms standard
GP and GP+GD in searching all three test functions. The
differences between the performances of these three algo-
rithms are remarkable for functions F and G, while they are
marginal for function K.

Table 3 shows the number of successful runs with their
standard deviations for the same 100 independent runs of
Figure 4 for CINI, standard GP and GP+GD.

CINI has a higher SR than standard GP and GP+GD for
functions F and G and a slightly lower SR than standard GP

Randomly initialize both GP and GA

populations;

repeat:

1. repeat:

Execute one turn of GP

until the best fitness of

GP has not improved

or termination condition

2. if not termination condition

then

Execute one turn of GA;

Assign the constants represented

by the best GA individual to the

numeric terminals used by the GP

individuals;

until termination condition.

Figure 3: Pseudo-code of the CINI algorithm.

Table 3: Number of successes with their standard
deviations calculated over 100 indipendent runs for
standard GP, GP+GD and CINI. Each row refers to
a different test function, whose name is reported in
the first column.

std GP GP + GD CINI
F 55 (σ = 4.975) 41 (σ = 4.918) 56 (σ = 4.964)
G 88 (σ = 3.249) 90 (σ = 3.0) 91 (σ = 2.862)
K 72 (σ = 4.489) 66 (σ = 4.737) 68 (σ = 4.665)

for function K. A further attempt to improve the BGPGA

algorithm performance is presented in the next section.

6. THE AUTO ALGORITHM
The idea underlying this algorithm is that, at the end of each
turn, one should proceed by running the “most promising”
EA. Let Δf be the difference between the best fitness at
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Figure 4: Best average fitness against computational effort over 100 independent runs for standard GP,
GP+GD, and CINI. In all algorithms the size of K has been set to 6. (a): results on function F ; (b): results
on function G; (c): results on function K.

the beginning of a turn and the best fitness at the end of
it. The EA that has had the highest Δf value in its last
turn will be executed next. In order to make GA and GP
performances comparable, GA turns and GP turns are as-
signed the same amount of computational effort. Thus, the
number of generations composing a GA turn, called NgenGA

can be dynamically computed as follows:

NgenGA =
NgenGP

PNGP
j=0 lj

CEGA

where lj is the number of nodes of the jth individual in
the GP population, CEGA is the computational effort of a
GA turn (see equation 1 in section 2.1) and NgenGP is the
number of generations in a turn of GP. The pseudo-code
describing the AUTO algorithm is presented in Figure 5.

6.1 Experimental Results
Figure 6 shows the values of the mean best population fitness
against computational effort for AUTO, standard GP and
GP+GD over the three chosen test functions. AUTO clearly
outperforms both standard GP and GP+GD on function F ,
while the three algorithms have more or less the same perfor-
mance on functions G and K. The number of successful runs
with their standard deviations for the same 100 independent
runs of Figure 6 for AUTO, standard GP and GP+GD are
shown in Table 4 The three algorithms have more or less

Table 4: Number of successes with their standard
deviations calculated over for 100 indipendent runs
for standard GP, GP+GD and AUTO. Each row
refers to a different test function, whose name is
reported in the first column.

std GP GP + GD AUTO
F 55 (σ = 4.975) 41 (σ = 4.918) 50 (σ = 5.0)
G 88 (σ = 3.249) 90 (σ = 3.0) 90 (σ = 3.0)
K 72 (σ = 4.489) 66 (σ = 4.737) 69 (σ = 4.625)

the same SR on all the three test functions studied. In fact,
differences are not remarkable, with the only difference that
GP+GD has a much lower SR on function F .

Randomly initialize both GP and GA

populations;

Evolve the GP population for 20 generations;

Calculate ΔfGP ;

Calculate NgenGA =
NgenGP

PNGP
j=0 lj

CEGA
;

Evolve the GA population for NgenGA

generations;

Assign the constants represented by the best

GA individual to the numeric terminals used by

the GP individuals;

Calculate ΔfGA;

repeat:

if (ΔfGP > ΔfGA)

then

Run GP for 20 generations;

Calculate ΔfGP ;

Calculate NgenGA;

else

Run GA for NgenGA generations;

Assign the constants represented

by the best GA individual to the

numeric terminals used by the GP

individuals;

Calculate ΔfGA;

until termination condition.

Figure 5: Pseudo-code describing the AUTO algo-
rithm.

7. A “REAL-WORLD” BIOMEDICAL AP-
PLICATION

In this section, we present the results obtained by our co-
evolutionary algorithms and standard GP on a “real-world”
problem. This application consists of finding an algebraic
expression matching the data contained in a matrix dataset
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Figure 6: Best average fitness against computational effort over 100 independent runs for standard GP,
GP+GD, and AUTO. In all algorithms the size of K has been set to 6. (a): results on function F ; (b): results
on function G; (c): results on function K.

D composed by 4107 rows and 346 columns with the values
contained in a one-dimensional target vector V of size 4107.
Each row i of the dataset D describes a different chemical
compound by means of the values {D(i,1), D(i,2), ..., D(i,346)}
of 346 different molecular descriptors. The corresponding
value Vi is the docking energy of that compound. The goal is
to find a function F such that F (D(i,1), D(i,2), ..., D(i,346)) =
Vi, ∀i with 1 ≤ i ≤ 4107. In other words, this problem aims
at finding an algebraic expression to quantify the docking
energy of a compound as a function of its molecular descrip-
tors. The development of such an algebraic expression would
represent a relevant contribution to the field of biotechnolo-
gies. In fact, the docking energy of a large number of drugs
is strictly correlated with their ability to heal. Thus, be-
ing able to measure the docking energy would be extremely
helpful in synthesizing drugs. For a more detailed descrip-
tion of the importance of measuring the docking energy as
a function of the molecular descriptors of a chemical com-
pound, see for instance [16].

7.1 Experimental Settings and Results
Given the particular shape of the training set, the unknown
target function is defined over 346 variables. The fitness
of the GP individuals has to be calculated over 4107 fitness
cases, each one corresponding to a different row of the train-
ing set. All other GP and GA parameters were set to the
same values as in the previous sections.

Table 5 shows the values of the mean best and average
population fitness obtained by all the algorithms considered
in this paper after each of them has spent a computational
effort equal to 107.

These results are averages over 100 independent runs.
They clearly show that CINI has been able to find the best
solutions, since it is the algorithm with the best values of
mean best fitness. DELAY has also yielded good values
of mean best fitness. AUTO has the best values of mean
average population fitness. For all the algorithms we have
studied, the values of the mean best fitness are better than
the ones of standard GP.

8. CONCLUSIONS AND FUTURE WORK
This paper has introduced four variants of a cooperative

Table 5: Averages of the average and best popula-
tion fitnesses reached at a fixed level of the com-
putational effort by standard GP, BGPGA and AUTO
for the Docking Energy Mapping problem described
in the text (each calculated over 100 independent
runs).

Algorithm Avg. Fitness Best Fitness
std GP 1122 1055

GP + GD 1043 951
BGPGA 1258 1051
DELAY 1040 929
CINI 1211 909
AUTO 1016 966

coevolutionary algorithm. All these algorithms are charac-
terized by the alternate evolution of two populations: the
former is driven by a GP that evolves expressions that may
solve the problem at hand, while the latter is driven by a
GA which evolves numeric terminals for the GP. The char-
acterizing feature of each algorithm is represented by the
strategy it uses in alternating between the execution of the
two evolutionary algorithms. The basic algorithm, called
Basic-GPGA, statically alternates a fixed number of gen-
erations of GP with a (possibly different) number of gen-
erations of a GA. This process is iterated until a satisfac-
tory solution to the problem at hand has been found or a
pre-set value of the computational effort has been reached.
The static nature of the Basic-GPGA algorithm is its main
drawback, since the strategy behind alternation is not af-
fected at all by the results obtained by either population in
their most recent turns. To overcome this drawback, some
variants of the Basic-GPGA algorithm have been developed.
The second algorithm presented in this paper (called DE-
LAY) starts working as the Basic-GPGA only after a large
number of generations of GP have been initially executed.
The third algorithm (called CINI) executes a turn of the
GA population only when GP has not been able to improve
fitness. Finally, the AUTO algorithm dynamically chooses
which population to evolve in the next turn by calculating
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which one has produced a higher fitness improvement in its
last turn. Experiments have been performed on three sim-
ple test functions and one “real-world” biomedical data set.
On all these benchmarks, our algorithms have shown inter-
esting performances, improving standard GP performances
in many cases. In particular, the CINI algorithm seems to
be the most effective both on simple test functions and on
the “real-world” application, where it has been able to yield
promising results.

Future work includes deepening the analysis of the results,
to justify the rather different outcomes of our algorithms in
the tests we have reported, as well as extending their ap-
plication to other domains, such as image processing. A
longer-term goal is to evolve our coevolutionary framework
up to defining a cooperative coevolutionary model which
can run on GRID architectures to perform (possibly many
different) optimizations concurrently over a large set of geo-
graphically distributed machines, with a high degree of self-
organization.
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