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ABSTRACT
This study aims to design a new co-evolution algorithm,
Mixture Co-evolution which enables modeling of integra-
tion and composition of direct co-evolution and indirect co-
evolution. This algorithm is applied to investigate proper-
ties of players’ belief and of information incompleteness in
a dynamic game.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Concept learn-
ing, Knowledge acquisition; I.2.8 [Artificial Intelligence]:
Problem Solving, Control Methods, and Search—Heuristic
methods

General Terms
Algorithms, Design, Experimentation

Keywords
Co-evolution, Game theory, Belief, Incomplete Information

1. INTRODUCTION
Many social contacts are indirect. Often people obtain

information from indirect sources. Based on information
obtained, people may have unjustified or incorrect beliefs
which do not correspond to reality. How beliefs change
through interactions and how beliefs influence decision mak-
ing are interesting questions. This paper attempts to under-
stand beliefs from incomplete information in a simple game
which has both direct and indirect interactions.

We choose to study the classic Rubinstein incomplete in-
formation alternating-offer bargaining problem [3]. Its struc-
ture of incomplete information is simple: only one player
is not fully informed; his opponent has two possible types.
Player i’s time preference is determined by his discount fac-
tors δi. Player i knows his own δi. The first player, player 1
is uncertain about which is the player 2’ real discount factor
δ2 and which is the incorrect δ′2 from two possible values: a
smaller one δw of the weak type of player 2, 2w and a larger
δs of the strong 2, 2s, where δ2, δ

′
2 ∈ {δw, δs}, δs > δw, and

δ2 6= δ′2. Before the bargaining starts, player 1 believes that
the possibility of δ2 = δw is ω0. Rubinstein [3] solves this
problem with Perfect Bayesian Equilibrium (PBE).
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Figure 1: Mixture Co-evolution

We [2] started with a two-population co-evolution algo-
rithm for this problem. Experimental results show that δ1

and δ2 almost entirely determine the bargaining outcomes
in terms of their distribution, efficiency and stability. On
the other hand, δ′2 and ω0 in player 1’ initial belief do not
make any strategic difference on the outcomes. Such con-
clusions conflict with the game-theoretic analysis as well as
observations from economics experiments.

In this paper, we will refine the co-evolution system to
explicitly model and emphasize the three special features of
this problem: (1) Two types of 2 are supposed to simultane-
ously affect player 1’ decisions from theoretical and practical
perspectives. The co-evolution system needs to train player
1 to learn how to bargaining with both types of player 2. (2)
both 2s and 2w indirectly connect with each other through
their common opponent player 1. (3) The game itself is de-
fined as a one-off (or called ‘single’, ‘one-slot’) game. The
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system should separate the training and testing and evaluate
the outcomes from playing the game once.

2. MIXTURE CO-EVOLUTION - TRAINING
The mixture co-evolution algorithm composes three in-

teracting populations as illustrated in Figure 1. Note that
this algorithm is not a simple three-population paired co-
evolution 1. The type of player 1 is unique, so he has one
population. The other two populations for 2s and 2w, both
co-evolve with player 1. Player 1 has two underlying objec-
tives P2s and P2w .

Definition 1. Populations of Mixture co-evolution. A pop-
ulation P is a set of strategies. P1 is the population of player
1. P2s and P2w are the population of player 2s and of that
of 2w respectively.

Definition 2. Direct Co-evolution. If Pi and Pj interact
in such way that individuals in one population are assessed
by individuals in the other co-evolving population, Pi and
Pj directly co-evolve. We denote Pi − Pj . The relative fit-
ness function for Pi is fi(gi, Pj(n)), where the non-negative
integer n is the evolutionary time.

Definition 3. State Transaction Equations of populations
in the training period. V ar is the variation operation in
evolution (mutation and/or crossover). Sel is the selection
operation. Prob is the probability of the presence of P1−P2w

at n. Then the state transaction equation of Mixture Co-
evolution is:

∣∣∣∣∣∣

P1(n + 1)
P2s(n + 1)
P2w (n + 1)

∣∣∣∣∣∣
=





∣∣∣∣∣∣

V ar(Sel(P1(n), f1(P2w (n))))
P2s(n)
V ar(Sel(P2w (n), f2w (P1(n))))

∣∣∣∣∣∣

where Prob = ω0;

∣∣∣∣∣∣

V ar(Sel(P1(n), f1(P2s(n))))
V ar(Sel(P2s(n), f2s(P1(n))))
P2w (n)

∣∣∣∣∣∣

where Prob = 1− ω0.
(1)

Definition 4. Indirect Co-evolution. If Pi−Pj and Pi−Pk,
but Pj−Pk is not true, then Pj and Pk indirectly co-evolve.
We denote Pj ∼ Pk. In the bargaining problem, player 2w

(or 2s) is aware of the existence of 2s (or 2w) and of player 1’s
information structure. She expects that player 1’s strategies
take accounts into both types of 2’s discount factors and the
possibility of their appearance. Consequently, 2s’s strategies
(or 2w’s) are in association with both 1 and 2w (or 2s).

The order of appearance of P1 − P2s and P1 − P2w is
random, with the frequency of P1 − P2s being (1 − ω0) of

training examples and that of P1−P2w being ω0 of training

1Ficici and Pollack [1] study a similar three-population co-
evolving system. It has three critical differences from our
work: (1) one population is solely determined by its own
internal dynamics; in our work, all three populations are
dynamically interacted; (2) The influence of the two predic-
tors’ populations on their common co-evolver, the generator
population is of equal importance; in our work, which one
of player 2’s populations will encounter with the player 1’s
population is determined by the possibility ω0 in player 1’s
belief, so the two populations for player 2 have, probably, im-
balanced impact on the player 1’s population;(3) [1]’s game
is designed as repeated game; the game we attempt to study
is an one-off game.

examples. The emergences of 2s and 2w interweave.

3. MIXTURE CO-EVOLUTION - TESTING
The trained player 1’s population P1 plays once with the

trained player 2w’s population P2w . The same P1 plays once
with trained P2s . These two tests are executed without in-
terference with each other. To separate testing from train-
ing helps ensure correct performance measure for this one-off
game.

4. EXPERIMENTS
The mixture co-evolution system is implemented by Ge-

netic Programming. Strategies are represented by syntax
tree with the terminal set {δ1, δw, δs, ω0, 1,−1} and the func-
tional set {+,−,×,÷}.

Game theory measure solutions on the properties of a
bargaining outcome in terms of its distribution, efficiency
and stationarity [3]. Distribution concerns how the mutual
benefit is divided among participants. Efficiency measures
whether an outcome is Pareto-efficient. Game -theoretic so-
lutions are stationary as players have no desire to withdraw
unilaterally from the equilibrium. We compare our exper-
imental results with those [2] from the two-population co-
evolution algorithm as well as with the game-theoretic solu-
tions Perfect Bayesian Equilibrium. Experimental findings
suggest that the information incompleteness adjust bargain-
ing powers of preferences, partially cause inefficiency and de-
lays, and decrease evolutionary stability. The application of
the mixture co-evolution algorithm provides solutions that
demonstrate the impact of player’s belief and of informa-
tion incompleteness on bargaining outcomes, consistent with
game-theoretic explanations. Such results are considered to
be realistic too. In practice, a player who has the advantage
over his opponent on information about the game exploits
his privilege of knowing the other’s without disclosing his
own information, particularly in one-off encounters.

5. CONCLUSION
In summary, the new algorithm delivers desired solutions

from the viewpoints of game-theoretic analysis and experi-
mental economics. Furthermore, this work infers that the
effective artificial learning is unlikely achieved by merely
adding information. Learning demands training experiences
on how to deal with such information; Secondly, experimen-
tal observations suggest that after proper training, the sim-
ilar impacts of indirect dependence on the outcomes appear
as what game-theoretic solutions predict in Perfect Bayesian
Equilibrium; Finally, especially for one-off games, it is essen-
tially important to separate training and testing.
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