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ABSTRACT 
Nitrogen is one of the most important chemical intakes to ensure 
the healthy growth of agricultural crops. However, some 
environmental concerns emerge (soil and water pollution) when a 
farmer applies nitrogen in excess. In this study, we propose a new 
method called GP-SVI to search for the best descriptive model of 
nitrogen content in a cornfield (Zea mays), thanks to airborne 
hyperspectral data and ground truth nitrogen measurements. 
Coupling the output of this descriptive model with variable-rate 
technologies (VRT) would allow farmers to practice site-specific 
management ensuring them economical savings and ecological 
benefits. GP-SVI is a parallel search of the best spectral 
vegetation index (SVI) describing a crop biophysical variable, 
derived from Genetic Programming (GP). Compared to statistical 
regression methods on our datasets, GP-SVI improves results 
obtained with classical approaches, in term of explained-variance 
and generalization error. We also show that the spectral bands 
selected by GP-SVI match those selected by Partial Least Square 
regression optimized by Genetic Algorithms (GA-PLS) as 
proposed by Leardi in “Application of genetic algorithm-PLS for 
feature extraction in spectral data sets”, in Journal of 
Chemometrics.  

Categories and Subject Descriptors 

I.2.10  [Computing Methodologies]: Artificial  Intelligence – 
vision and scene understanding – modeling and recovery of 
physical attributes. 

General Terms 
Algorithms, Management. 

Keywords 
Genetic Programming (GP), hyperspectral imagery, remote 
sensing, precision farming, site-specific management, spectral 
vegetation indices (SVI), crop nitrogen content.  

1. INTRODUCTION AND BACKGROUND 
New sensor technologies have been appearing in agriculture over 
the last few years, giving birth to what’s called Precision Farming 
or Site-Specific Management, which is the application area of the 
presented study. The democratization of hyperspectral airborne 
sensor utilization lead to the acquisition of large volumes of data 
[13]. In agriculture, this means of data acquisition offers two main 
advantages namely: it offers a non-destructive approach to data 
acquisition, and it allows rapid data acquisition over large 
geographic areas under investigation; after an appropriate 
analysis, coupling the extracted information with variable-rate 
technologies (VRT) makes it possible for a farmer to adapt his 
fertilizer application to the spatially varying crop needs. These 
two characteristics have given rise to great hopes in agriculture in 
countries like Canada where fields are currently stretched over 
several hundreds of hectares. Indeed, over such large areas, an 
infield sample collection is impossible to obtain while still 
providing a precise and exhaustive evaluation of the variability of 
any biophysical variable, such as, for example, crop nitrogen 
content or leaf area index (LAI). However, more investigations 
are still necessary to improve the reliability of information 
extracted from hyperspectral data in order to justify the elevated 
cost associated with this acquisition. 

 

Figure 1. Hyperspectral data structure composed by 
n spectral bands (i.e. images) bk 
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Hyperspectral sensors currently scatter the light energy reflected 
by a scene, called reflectance, over hundreds of electromagnetic 
spectral portions called spectral bands and noted bi, each one 
represented by an image (see Figure 1); this provides the analyst 
with a large number of descriptors to describe biophysical 
variables. A sampling campaign in an agricultural field provides 
what is called ground truth data. These data are often expensive, 
which does limit their quantity. Coupling this punctual source of 
information with a “binding agent”, such as hyperspectral images, 
offers the opportunity to extend the punctual knowledge to the 
whole area under investigation. An important condition for 
success is to be able to pick up relevant sampling information 
during field campaigns. In fact, overall field variability (regarding 
the variable observed) must be represented by ground truth data 
and this can be accomplished thanks to farmer’s historical 
knowledge of his crop characteristics. Many approaches exist to 
deal with high dimensional hyperspectral datasets and derive 
information from them. Subsequently, we only mention three of 
them that appear to be the most widely spread in precision 
farming applications. 

For each pixel in a scene, classification techniques [2, 4, 7, 17] 
consider hyperspectral data as an n-dimensional vector of 
characteristics Pij, whose components are the greyscale values at 
location (i,j), for each one of the n bands bk. The aim is to 
attribute a label (supervised) or a cluster membership 
(unsupervised) to each pixel Pij of the discretized scene (see 
Figure 1); consequently, these approaches fit with qualitative 
problems. In the case of datasets with very large dimensions 
(currently n is about several hundreds), the threat of the curse of 
dimensionality, first described by Bellman [1], forces the analyst 
to reduce the dimension of vector Pij, using techniques of feature 
extraction [11, 20] or feature selection [12]. In the case of 
supervised classification, after a learning step (processed on a 
training subset of pixels, whose labels are known thanks to a 
priori knowledge), a program called a classifier is obtained and, 
after a validation step, it can be used to classify the rest of the 
scene. On the other hand, the case of unsupervised classification 
is used when no ground knowledge is available. In this case, a 
program produces a desired number of clusters of pixels, gathered 
together according to a criterion of resemblance (often statistical). 
Additional a priori information is then necessary to identify and 
aggregate similar clusters and to assign them a label. 

To the same end, statistical methods are also used to create 
descriptive or predictive models of crop biophysical variables. As 
with the classification approach, these methods can be considered 
as “blind” in the sense that no knowledge on plant spectral 
properties is necessary to elaborate a model but only statistical 
characteristics of the data are taken into consideration. For 
example, many regression techniques are used to link quantitative 
crop variables to spectral data. Amongst them, one can mention 
multiple regressions (MR), partial least square regression (PLSR) 
[8, 19], stepwise regression [3] and some other derived ones. The 
goal of these methods is to find a weighted sum of specific 
wavelength reflectances that maximizes the explained variance of 
the variable samples under investigation. While MR methods 
consider the whole range of hyperspectral bands in the model, 
PLSR attempts to retain only a subset of the relevant ones. 

Lastly, and probably the most widespread approach in precision 
farming, is the study of spectral vegetation indices (SVI). SVI are 

defined by arithmetic operations between spectral bands bi 
extending from a simple bands ratio like the simple ratio index SR 
to more complex combinations like MSAVI2 [16]: 

NIRSR
R

=  

and 

2MSAVI 2 ( NIR 1) 0.5 ( 2 NIR 1) 8 ( NIR R )= + − ⋅ + − ⋅ −  

where NIR and R represent the scene reflectance in the near 
infrared and the red portion of the electromagnetic spectrum 
respectively. 

The idea behind SVI is to promote the predominant effects of 
an observed variable by reducing the undesirable influence of 
others. The classical method in this process is to link spectral 
curve singularities (such as peaks or gaps of reflectance 
associated with the presence of a chemical components) to 
variables, thanks to laboratory experiments and theoretical 
knowledge [14, 15]; the next step is to compute an appropriate 
arithmetic combination of the selected bands to isolate the 
observed variable effects. Once the specific SVI is obtained, 
regressions can be performed between it and the biophysical 
variable in order to generate a descriptive model. Unfortunately, 
although this approach is often relevant at the leaf scale, in a 
laboratory context, it is not applicable at the crop scale because 
of many perturbing effects inherent to aerial acquisition of 
spectral data [9] (sensor resolution, sensor measure geometry, 
air humidity, influence of vegetation density, influence of 
correction steps, etc.). All these unstable parameters introduce 
some noise in hyperspectral data, which prevents the possibility 
of detecting the subtle pvariation in spectral variance caused by 
the biophysical variable under study. This partly explains why 
the development of universal SVI that would precisely quantify 
a specific biophysical variable in any configurations is still 
unrealistic. 

Due to the problems with SVI mentioned above, it appears 
clearly that analysts yet can’t extract accurate descriptive 
models from spectral datasets without ground truth data. In this 
study, as an alternative to pure statistical techniques, we 
propose the GP-SVI method for the assessment of crop 
biophysical variables thanks to the combination of hyperspectral 
and ground truth data. Considering the non-repeatability of 
hyperspectral sensor, GP-SVI aims at searching for specific 
SVI, in a case-by-case approach. This means that for each 
particular configuration (weather, nature of the underlying soil, 
acquisition time of day…), we look for new SVI to describe 
crop characteristics. GP-SVI is an evolutionary approach for 
finding SVI, inspired by Genetic Programming (GP). In our 
study, the biophysical variable under investigation is the 
nitrogen content in a cornfield. In other words, we aim at 
finding a descriptive model for nitrogen variability throughout a 
cornfield using airborn- hyperspectral data and nitrogen infield 
measurements. We first present the data of the study. Secondly, 
the GP-SVI method is presented in detail and the associated 
choices are explained and justified. Finally, we show, discuss 
and compare the performances of GP-SVI for the generation of 
descriptive models of cornfield nitrogen content. 
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2. Materials and Methods 
2.1 Data Description 
Data used to test and validate the proposed method was obtained 
from an intensive field campaign (GEOIDE 2000 project). During 
the growing season of a test cornfield (Zea mays) stretching from 
sowing to harvest, several hyperspectral images and ground 
measurements were collected on a field located on the McGill 
University Research Farm at Macdonald Campus, Ste-Anne de 
Bellevue, Quebec, Canada. The experimental field (see Figure 2) 
was randomised as plots with different combinations of weed and 
nitrogen treatments, resulting in a strong spatial heterogeneity. 

During the growing season, three flights were made with a 
Compact Airborne Spectrographic Imager (CASI sensor) to obtain 
hyperspectral images at key stages of plants’ growth. Data 
acquired are composed of 72 spectral bands ranging from 409 to 
947 nm with ∆λ = 7.47nm and a 2-meter pixel resolution. At the 
time of each image acquisition, observations on canopy and soil 
biophysical variables were collected within the field to allow 
analyses of relations between remote spectral data and ground 
truth. For an exhaustive description of experimental plan, readers 
can refer to [6]. For the validation step of the new method 
presented in this paper, only SPAD (chlorophyll meter) data and 
LAI data were available as ground truth reference; these data are 
briefly discussed in the sections thereafter. 

 

 

2.1.1 SPAD: Ground Truth Data 
In this study, focus is made on canopy nitrogen content at the 
beginning of the reproductive stage with data taken early in 
August. During this period, 88 observations of plant nitrogen 
content are exploitable for analysis, taking into account that two 
types of measures were needed. Firstly, chlorophyll meter SPAD 
measurements were transformed into plant nitrogen concentration 
values, thanks to Dwyer’s relation found in [5]. Secondly, these 

data were weighted with Leaf Area Index value (LAI) to obtain a 
final value proportional to total nitrogen content in a pixel [18]. 

2.1.2 CASI hyperspectral data 
Data were pre-processed by John Miller’s research team from the 
Centre for Research in Earth and Space Science (CRESS) of York 
University in Toronto, Ontario, Canada. This pre-processing step 
comprises atmospheric correction, radiometric calibration and 
geometric corrections, which are mandatory operations prior to 
the creation of a geographically referenced database. All these 
geographic data were imported into a Geographic Information 
System (GIS) software, namely PCI GEOMATICA V9.1.6. A 
geographically referenced database was then created to allow 
easier data manipulations. 

Once the pre-processing stage executed, a 3x3 mean filter was 
applied upon images for two reasons. Firstly, SPAD 
measurements were collected in a 1-meter perimeter around a flag, 
which implies a possible influence of neighbour pixels due to 
resolution. Secondly, accuracy of geometric correction is about 
0.5 pixel [6] (about 1 meter because of the 2-meter image 
resolution). If one considers the error coming from a GPS for 
assessment of flags position, the use of the mean filter is then fully 
justified. 

 

Once the initial processing steps performed, relevant data were 
extracted from the GIS environment to be treated by the GP-SVI 
algorithm developed using the Microsoft Visual C++ V6.0 
environment. The CASI spectral curves of the 88 sampling points 
(points where nitrogen canopy is known) are shown in the 
Figure 3; it shows that data variability is mainly located in the 
green and in the near infrared areas of the electromagnetic 
spectrum. The following subsection present with the GP-SVI 
method. The choices and adjustments made are presented and 
justified. 

2.2 GP-SVI Method Description 
2.2.1 General Concept 
 

The GP-SVI method is inspired by the Genetic Programming 
approach as proposed by Koza [10]. This method aims at 

 

Figure 3. Spectral reflectance curves at the SPAD 
sample location 

Figure 2. Experimental field plot layout 
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searching for the best SVI among evolving populations of 
potential solutions, regarding their ability to describe the observed 
crop biophysical variable. To do so, we evaluate the strength of 
the correlation between each individual and the ground truth 
samples; in fact, since an SVI can be considered as an image (an 
arithmetic combination of images is still an image), regression can 
be computed between ground truth data and SVI’s grayscale 
values at sample locations. Four types of regressions were 
investigated: linear, logarithmic, exponential and power. The 
general framework of GP-SVI is described in Figure 4. 

 

In the next subsection, we present the grammar and the 
representation mode of individuals. 

2.2.2 Representation Mode and Grammar 
The representation mode of population individuals is using a 
binary tree structure, which consists of a node holding a value 
which is followed by two nodes or zero; consequently, an 
individual is represented by a network of nodes in a “pyramidal 
structure” (i.e. thin at top and thick at bottom). This structure is 
chosen for its simplicity of implementation and its ability to 
describe the entire solution space; indeed, solutions are in the 
shape of arithmetic combinations of bands which can be 
assembled to build any type of arithmetic sequences. We also 
needed a reading convention to avoid ambiguity under non-
commutative operator nodes (“/” and “-“); we choose to give the 
priority to the left branch of each node to settle this problem. 
Finally, reading is performed from the bottom to the top of the 
tree. 

Now that a convention is chosen for the representation of 
individuals, we must define the grammar to construct these 
potential solutions.  

The solutions that we are seeking have the shape of an SVI, which 
implies that each individual is a more or less complex sequence of 
arithmetic operations between spectral bands. Consequently, 
using Languages Theory formalism, we are able to propose the 
following context free grammar G, defined as a quadruple: 

 

G = (N, T, P, S) 

 

N: set of variables (non terminal); 

T: set of constants (terminal); 

P: set of production rules; 

S: start symbols. 

 

With the following definitions: 

N = {O, B, S}; 

T = {oi, bj}, with 0 < i< 5 and 0 < j < 71; 

P = {S O, O oiOO, O oiBO, O oiOB, O oiBB, B bj}; 

 

Where: 

oi represents the set of arithmetic operators, which means that 
oi = {“+”, “-“, “÷”, “×”}. 

bj represents the set of CASI spectral bands, which means that 
bj = {b1, b2,…, b70}. 

 

Let’s note that a starting symbol S can’t be replaced with B 
because bj is terminal and doing so would imply the presence in 
the initial population of “monoband individuals” (i.e. solution 
described by only one band); this would be a lost of diversity 
from the start. 

These basic rules allow the creation of an initial generation and 
provide the basis for building the children resulting from genetic 

Figure 4. General framework of the GP-SVI 
method. 
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operator applications. With these rules, we see the risk of 
individual’s size bloat which brought us to introduce the 
parameter max_prof to limit individuals’ size at the initialisation 
step; we also introduced a threshold parameter max_node to 
control individuals’ size. Parameter values are given later in this 
section. 

2.2.3 Fitness Function 
As mentioned above, we computed regressions between each 
population SVI and ground measurements. This lead to the 
determination of a Pearson coefficient Rk associated with each of 
the k SVI. Because of code bloat threat, and because we prefer a 
solution as short as possible (instinctively, we believe that a short 
solution is more likely to offer better generalization), we decided 
to introduce a means in the fitness function for penalizing long 
individuals. Consequently, we proposed the following fitness 
function f(k) as given below: 

 

k

k

min

R
f(k)=

1+ L1+log( )
1+ L

 
 
 

 

 

Incidently, the probability P(k) for an individual k to be selected 
among the n-size population is given by: 

 

n

i 1

f(k)P(k)=
f ( i )

=
∑

 

 

The logarithm is introduced to smooth the effect of only dividing 
the Pearson coefficient by the length. 

In the next subsection, we briefly describe the genetic operators 
chosen. 

2.2.4 Genetic Operators 
Exploration of the various types of genetic operators is beyond the 
scope of the present study. Subsequently, most of the chosen 
operators are classical ones. 

As described in the GP-SVI framework in Figure 4, three genetic 
operators take place during the process. First, a proportion pe of 
the solutions present in generation n is directly transferred into the 
next generation n+1. This transfer uses a strong elitism function, 
which is the simplest and the fastest to implement. Crossover 
operator occurs with probability pc close to 1, considering that it 
is the core of the genetic process. A truncation point is randomly 
selected in each one of two selected solutions’ structures and sub-
trees are exchanged between these solutions to yield two new 
individuals; they systematically take place in the new population 
without consideration of their fitness values. Finally, the mutation 
operator occurs with a low probability pm, on the output of 
crossover operator. This function randomly chooses a truncation 

point in an individual’s structure and replaces the above sub-tree 
with a randomly generated one. 

Strategy for parameter values determination is described in the 
next subsection and the summary of these values is presented. 

2.2.5 Parameters Values 

To perform the simulations, we have set parameter values with the 
help of some sensitivity analysis as well as by trial and error 
approaches.  

Here again, this step could be optimised using Genetic Algorithm 
or other techniques but it is also beyond the scope of this study. 
All chosen parameters are summarized in Table 1 below. 

As regression types are concerned, observations made over 30 
runs have shown a subtle superiority of the logarithmic model 
over 3 other types. A sensitivity analysis was conducted to set pm, 
pe and max_prof values whereas max_node and pc were chosen 
more empirically. Ng and Nind were set according to the 
performance offered by the simulation computer. Likewise, 
plotting generalization error (evaluated on a test data subset), we 
observed that overfitting occurred around the 2800th generation, 
which helped us setting Ng = 3000. 

Now that parameters are chosen, the next section presents the 
preliminary results of GP-SVI and compare these with results 
obtain using other methods applied to the data described in the 
section II. 

 

Table 1. Simulation parameters 
Parameter Description Value 

Regression type Nature of the regression logarithmic 

pm Probability of mutation 
occurrence 10% 

pc 
Probability of crossover 

occurrence 98% 

pe 
Proportion of individuals 

selected by elitism 10% 

Ng Number of generations 3000 

max_prof 
Maximum individual’s 

depth in the first 
population 

3 

max_node Maximum number of 
nodes for an individual 25 

Nind 
Number of population 

individuals 300 
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3. Results and Discussion 

 

Preliminary results are presented and discussed in this section. We 
observed two main trends in our results while searching for a 
model explaining nitrogen concentration through a cornfield. 
Firstly, the GP-SVI method offered superior performances (on our 
dataset) over all other tested methods according to the two 
indicators mentioned above. Models derived using regression 
from all classical SVI and nitrogen measures were tested, and the 
best one (called NDVI2) as proposed by Hansen and al. in [8], is 
presented in Table 2. Multiple regressions have been performed 
but results are not as good as with GA-PLS, which is why they are 
not presented in table 3. Secondly, concerning band selection, the 
results found are quite close to those obtained by GA-PLS and are 
presented in the Table 3. 

 

 

Analysi
GA-PL
and b31
band ap
spectral
largely 
of the b

The bes
between
by the 
model i

 

1IV
b

=

 

The best predictive model shown in Figure 5 is defined by the 
relation 10.843×ln(IV1)-19.987 and is represented as a grayscale 
image. White values stand for high nitrogen content whereas 
black ones represent low nitrogen content. It is important to note 
that for each block of three adjacent NiWj, treatment combinations 
(see Figure 2), it is always possible to identify the N1, N2 and N3 
treatments. 

We note that 3 bands are located in the blue part of the reflectance 
spectrum, 4 are in the near infrared, 2 in the red portion and 
finally 1 in the green. Figure 3 shows that data variance is mainly 
regrouped in the infrared part of the reflectance spectrum so that it 
seems normal to find good models composed of spectral bands in 
this area. Nevertheless, it may appear surprising to find several 
bands in the blue portion where data variance is low. We would 
also expect to find several bands in the green portion where data 
variance was quite important, and IV1 has just one in this part. 
These remarks reveal that nitrogen content variance may be due to 
subtle variation in reflectance curves and this reinforces the fact 
that it is difficult to find SVI only by studying spectral curves. 

 

M

G

G

Method 

GP-SVI 

GA-PLS 
[12] 

NDVI2 [8] 

 

Table 3. 10 most selected bands in the best models 
 by GP-SVI and GA-PLS over 30 runs 

ethod ith CASI spectral band 

P-SVI 3 6 9 10 12 19 31 37 47 63 

A-PLS 
[12] 9 10 11 18 19 20 26 31 43 62 
ng Tabl
S agree 
). Moreo
art. Thi
 bands.
the mos
est indiv

t descri
 the SV
express

s presen

31 37(
b

b×
Table 2. Comparison of methods  
performance on a test data set 

RMSE% (best 
model) 

RMSE% 
(mean on 
30 runs) 

Explained 
variance 

(best model) 

12.6% 13.9% 84.8% 

15.7% 17.2% 73.9% 

18.8% - 70.2% 
e 3, it is interesting to observe that GP-SVI and 
40% of the time on the selected bands (b9, b10, b19 
ver, 20% of the other selected bands are just one 

s result is interesting considering that there are 70 
 We also noticed (not shown here) that b10 is 
t selected CASI band over all runs; more than 50% 
iduals contained b10. 

ptive model is derived from logarithmic regression 
I called IV1 and ground truth. This SVI is defined 
ion given hereafter and the derived descriptive 
ted in the Figure 5. 

3
3 8 10 56

2
70 34 63 47

( )
) ( )

b b b
b b b b

× × ×
× × − +

 

 
Of course, it would be relevant to compare our results to other 
methods on a benchmark in order to assess rigorously GP-SVI 
performance. Nevertheless, preliminary results found are 
encouraging and leave the door open for further investigations 
and improvements. 

 

4. CONCLUSION 
Hyperspectral data contain large volume of information and 
extraction of relevant information for any specific application is a 
great challenge. Evolutionary computation (EC) approaches are 
less friendly than statistical techniques but they sometimes 
improve significantly the obtained results. Statistical methods are 
often chosen, partly because of their strong foundation and 
perhaps because they result in only one solution contrary to EC. 
Moreover, the great number of parameters to optimize and the 
threat of data overfitting or code bloat (for GP) also certainly tend 
to bridle their expansion. In the context of agricultural 

Figure 5. Best descriptive model found by GP-SVI 
over all performed runs. 
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applications, this study suggests that great improvements may be 
obtained by the GP-SVI method when compared to classical 
approaches considering the problem of crop nitrogen description. 
Although only preliminary results are presented here, it is 
important to notice that GP-SVI can be extended to any regression 
problem between a set of descriptive variables and a set of 
observations, and that not only for agricultural problems. On the 
nitrogen assessment problem, it is important to note that the CASI 
spectral range available for this study (409 nm to 947 nm) doesn’t 
give any information about the middle infrared portion; however, 
new sensors like AVIRIS allow the acquisition of reflectance data 
at wavelengths up to 2500 nm, offering greater potential to 
elaborate accurate models. 
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