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ABSTRACT 
In this paper, we describe a new test problem for genetic 
programming (GP), ORDERTREE. We argue that it is a natural 
analogue of ONEMAX, a popular GA test problem, and that it 
also avoids some of the known weaknesses of other benchmark 
problems for Genetic Programming. Through experiments, we 
show that the difficulty of the problem can be tuned not only by 
increasing the size of the problem, but also by increasing the non-
linearity in the fitness structure. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods, 
and Search – graph and tree search strategies. 

General Terms 
Theory, Performance, Languages 
Keywords 
Genetic Programming, Benchmark Problems, Problem Difficulty. 

1. INTRODUCTION 
Since its introduction [3, 13, 23], Genetic Programming (GP), has 
gradually become a mature field with many applications. As the 
number of different  systems increases, there is a need to design 
benchmark problems providing a common ground for comparing 
their relative robustness. These problems (often simplified 
versions of real-world problems) can also help to understand the 
behavior and theoretical aspects of genetic programming. 

In this paper, we describe a new test problem for GP, 
ORDERTREE. We argue that it is a natural analogue of 
ONEMAX, a popular Genetic Algorithm (GA) test problem, and 
that it avoids some of the known weaknesses of other benchmark 
problems for GP. Through experiments, we show that the problem 
difficulty can be tuned both by increasing the size of the problem, 
and by increasing the non-linearity in the fitness structure. 

The paper is organized as follows. Section 2 briefly discusses the 
related work on designing test problems for GA and GP. In 
section 3, we detail our ORDERTREE problem, and discuss its 
properties relative to those of other test problems in GP. Section 4 
contains some experiments with the proposed problem, and 
discussion of the results. The paper concludes with section 5, 
where we discuss some possibilities for extending this work. 

2. RELATED WORK 
In the field of genetic algorithms (GA), commonly regarded as the 
predecessor of GP, researchers have proposed a number of 
benchmark problems. These problems are intended to illuminate 
how different GA systems work, by comparing their performance. 
The practice was first initiated in Dejong’s thesis with his 
proposed set of test functions [7]. Since then, a range of test 
problems have been proposed by GA researchers. Goldberg [9] 
developed the idea of deceptive functions from the schema 
processing perspective, where the average fitness of ‘deceptive’ 
schemata for these functions (subspaces that actually do not 
contain the optima of the functions) is higher than the fitness of 
schemata that would lead to the actual solutions. In [22], Schaffer 
and Eshelman proposed the ONEMAX problem, using the idea of 
‘unitation’ on binary representation. The value of the unitation 
function on a binary vector x is the number of 1-bits in x (denoted 
by u(x)). The optimal solution of the (maximization) ONEMAX 
problem is the vector with all bits assigned as 1. The primary 
advantage of the unitation function is that it is easy to describe the 
fitness equivalence classes (solutions with the same number of 
bits set to 1), greatly facilitating analysis [20]. In [6], unitation 
was used to design trap functions as test beds for GA. The 
designers specified a mapping v from the unitation function’s 
range [0,l] (l being the length of the vector x) to [0,1]. They chose 
a value z ∈ [0,l] as the trap location, defining v(0) = v(l) = 1, and 
v(z) = 0; thus the composition of u and v defines a trap function, 
with the minimum being the equivalence class of binary vectors x 
with u(x)=z, and maxima at u(x)=0 and u(x) = l. Mitchell et al. 
[16] devised ‘Royal Road’ functions, aiming to test the building 
block hypothesis. The main idea is to construct a function from 
disjoint schemata. A variant of the Royal Road function was the 
‘Hierarchical-IFF’ (HIFF) functions, constructed by Watson et al. 
[24] to model the dependencies between different schemata. 

 
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 

As in GA, several challenging test problems have been proposed 
within the genetic programming literature to develop and test new 
GP systems and/or theories. In the early days, the set of problems 
presented in [13], such as symbolic regression, artificial ants, 
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multiplexers, and n-parity, were usually used when GP 
researchers compared the performance of different GP systems, or 
wanted to investigate theoretical aspects of genetic programming 
(e.g code bloat phenomena). However, as problem test beds, these 
problems are imperfect choices.  

Some lack an important characteristic of good test beds, namely 
tunable difficulty. Tunability is important, since it gives an 
indication of how a GP system scales with problem difficulty  

In others (e.g. n-parity), problem difficulty arises primarily from 
the extremely low density of high-fitness solutions in the search 
space (needle in the haystack) [15]. Such problems are 
intrinsically difficult for all search methods (recognizing that 
change of representation may ameliorate the difficulty - e.g for the 
n-parity problem,  Automatically Defined Functions (ADFs) could 
help to acquire new boolean functions, such as EQ and XOR, 
significantly increasing the density of solutions in the search 
space [14]). The problems thus violate the principle of ‘bounded 
difficulty’ used in designing GA test problems [9]. 

For the purpose of understanding the behavior and theoretical 
aspects of GP, the problems in [13] are generally difficult to 
analyze  For instance, it is often difficult to detect all introns (non 
fitness-contributing parts), which means that the study of introns 
and code bloat on those problems can only be approximate. Some 
other practical difficulties, such as numeric overflow, add further 
complication to their use in understanding GP. 

In [19], Punch et al. proposed the Reoyal Tree problem, a natural 
extension of the GA Royal Road problem in GA, as a GP 
benchmark. The function set consists of alphabetic characters 
‘A’,’B’,’C’,... with increasing arity (i.e nodes labeled with ‘A’ 
should have 1 child, with ‘B’ should have 2 children, and so on); 
the terminal set contains only one character ‘X’. The fitness of a 
program is calculated based on the positions of nodes, and the 
optimal solution is the tree with all nodes positioned correctly. 
Figure 1 depicts the optimal solution for the Royal Tree problem 
with a problem size of 3 (‘A’, ‘B’, ‘C’). 

 
Figure 1. Optimal solution for Royal Tree problem of size 3. 

The Royal Tree problem is difficulty-tunable by increasing the 
size of the problem (and therefore the size of the solution). 
However, the optimal solution is unique, and highly specific in 
shape – i.e it must be the fullest tree. As pointed out in [4], fullest 
trees are among the most difficult tree structures to find by genetic 
programming, regardless of the contents of tree nodes. Thus the 
problem is atypical of the class of problems which GP may be 
expected to solve effectively. 

In [8], Gathercole and Ross introduced the MAX problem to GP, 
to highlight some deficiencies in the standard (subtree) crossover 
operator, resulting from the tree (program) depth limit imposed in 
most practical GP systems. The function set for the MAX problem 

consists of arithmetic multiplication (×) and addition (+), and the 
terminal set is the numeric value 0.5. The task required of GP is to 
find the tree with maximal value, subject to the constraint that 
depth cannot exceed D (maximal depth). Figure 2 shows an 
example solution for D=4.  

 
Figure 2. The optimal solution for MAX with D=4. 

Good solutions for the MAX problem have + nodes deep in the 
tree (to build values greater than 1) so that multiplication may be 
applied effectively. Once the value of the subtrees exceeds 1 (2 
being the simplest value to construct), they should be combined 
by  × to maximize the overall value (since multiplication increases 
faster than addition once the operands exceed 1). The problem 
becomes very difficult for GP (with increasing D) because × and 
+ which appear in the wrong places are difficult to move with 
standard crossover without violating the depth bound (D). A 
comprehensive analysis of GP on the MAX problem can be found 
in [15] (chapter 10). 

The MAX problem is a difficulty-tunable problem for GP. MAX 
also, unlike the Royal Tree problem, has multiple solutions for 
each D. For instance, a variant of the optimal solution shown in 
Figure 2 could replace some depth-1 nodes × with + (for D-3), 
since 2×2=2+2. However, these multiple solutions become 
exponentially rarer (as a proportion of the solution space) as D 
increases, so the advantage over Royal Tree is limited. Otherwise, 
MAX shares the same weakness as the Royal Tree problem, in 
that the shape of optimal solutions is again the fullest tree.  

In [11], Goldberg and O’Reilly devised two difficulty-tunable 
problems for GP, ORDER and MAJORITY, to model the 
dependencies between different components within a program 
tree. The function set of these two problems contains only a 
binary term called JOINT, while the terminal set has two subsets: 
positive - P1,P2,...Pn, and negative - N1,N2,...Nn. In the ORDER 
problem, a leaf is ‘expressed’ if it is labeled with Pi (i=1,..n), and 
there is no node before that node (taking the preorder traversal of 
the tree) labeled with Ni. In the MAJORITY problem, a leaf is 
‘expressed’ if it is labeled with a Pi (i=1,...n) and the number of Pi 
contained in the (program) tree is larger than the number of Ni. 
The task for GP on ORDER and MAJORITY is to find trees with 
the maximal number of different expressed leaves (in fact, n). In 
[18], the authors used the problems to investigate how different 
fitness structures affect the performance of GP. Sastry et al. used 
the ORDER problem to analyse population sizing in GP [21]. 
Figures 3 and 4 depict two of many possible optimal solutions for 
ORDER and MAJORITY respectively (with n=3). 
It was noted in [11] that the ORDER and MAJORITY problems 
resemble the GA ONEMAX problem, in that the fitness 
contribution of each expressed leaf to the fitness of the whole tree 
resembles the contribution of 1-bits in unitation. It was also 
argued that the problems share some aspects with the real 
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problems usually used in the GP literature. They are difficulty 
tunable (by changing problem size n), there are multiple optimal 
solutions, and introns may appear at any place in a program tree. 
This reduces the shape bias of optimal solutions compared with 
earlier test problems such as Royal Tree and MAX. However 
these problems differ in one important characteristic of GP 
problems, in which the content of internal nodes is important in 
determining fitness, and the dependencies between sub-tree 
components. In this respect, it is arguable that they resemble 
typical GA problems more than GP problems. For instance, if we 
have an arithmetic tree such as shown in Figure 5 where the left 
branch evaluates as zero, the content of the root node even 
determines whether the right part is an intron. If the content of the 
root node is multiplication, then the right part is an intron, while it 
is effective code if the content of the root node is addition. 

 
Figure 3. An optimal solution for ORDER with n=3. 

 

 
Figure 4. An optimal solution for MAJORITY with n=3. 

 
Figure 5. Content of an internal node is important. 

Daida et al. [4] investigated the binomial-3 problem (symbolic 
regression problem with the target function (1+x)3). They found 
that by varying the range of the ephemeral random constants, the 
problem becomes tunably difficult for GP. Subsequently, by 
observing the evolution of program tree shapes of GP on the 
problem, they discovered that structure alone could pose great 
difficulties to GP. To validate this hypothesis, they subsequently 
designed a test problem for GP called LID [5]. The function set 

for the LID problem includes only one binary term, “joint”, which 
plays a similar role to “joint” in the ORDER and MAJORITY 
problems described above, and the terminal set contains only one 
terminal, LEAF. The fitness of a program tree is measured by how 
close in shape (using a shape metric defined in [5]) it is to the 
target program tree. By experimenting with the LID problem, they 
were able to demonstrate the inherent problem of structural 
difficulty in GP. In particular, they found a separation of the tree 
shape space into three areas. In the first, it is easy for GP to find 
solutions. In the second, GP finds solutions only with great 
difficulty. In the last, including fuller and thinner trees, it is almost 
impossible for GP to find any solutions.  
The problem of structural difficulty is important to GP for a 
number of reasons. When solving problems whose simplest 
solutions have shapes in the second or third areas, GP may have to 
accumulate introns in order to find equivalent solutions that lie in 
the first area. This may provide one reason why introns emerge in 
GP systems, and why GP usually obtains long and complex 
solutions even when short and simple solutions exist. Moreover, it 
also means that it is possible that, for some of the test problems 
proposed in GP literature, the source of difficulties not only come 
from the claimed characteristics of the problems (such as the 
increase of problem/solution size/depth) but also from the biased 
shape of the optimal solution. Royal Tree and MAX problems are 
two examples of such problems. The test problem proposed in this 
paper (detailed in the next section) was designed with the 
awareness of Daida’s problem of structural difficulty and so 
attempts to remove the shape bias in the optimal solutions. 
While the above are the best-known test problems, a number of 
other difficulty-tunable test problems have been proposed. Burke 
et al. devised the N-prisoner puzzle based on the N-hat game [2]. 
Nguyen et al. [17] used simple symbolic regression problems, in 
which the target functions are a family of polynomial functions of 
increasing order, to compare some different GP and grammar-
guided GP systems. In [12], Gustafson et al. also used simple 
symbolic regression, in which the target functions are a family of 
randomly generated polynomials functions with increasing order, 
to derive some analysis for GP runs.  

3. PROBLEM DESCRIPTION 
The design of the ORDERTREE problem was inspired by the 
ONEMAX problem in GA, and some of the test problems 
described in the previous section, particularly the MAX, ORDER, 
and MAJORITY problems. In this section, we first describe a 
simple version of the problem which is tunably difficult, but still 
has the weakness that the optimal solutions are relatively fixed 
and biased in shape (fullest tree). Next, we amend that deficiency 
by introducing the ‘left-neutral- walk’ into the fitness calculation. 
We then discuss how the ORDERTREE problem relates to test 
problems mentioned in the previous section.  

3.1 The restricted version of ORDERTREE 
The function set for ORDERTREE of size n is defined as follows:  

F= {‘0’,’1’,’2’,....’n-1’} 

The function nodes are labeled with numbers from the set 
{0,1,2,...n-1}. All the functions are of arity 2 (i.e each function 
has two arguments). The terminal set is defined as: 

T={‘0’,’1’,’2’,....’n-1’} 
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The terminal nodes are also labeled with numbers from the set 
{1,2,...n-1}. Algorithm A below calculates the fitness for a tree. 
 
 
Algorithm A. Calculation of fitness. 
 
Input: A program tree t for ORDER problem  
Output: Fitness of t. 
Global variable F to contain the total 
fitness. 
 
1. Procedure NodeCal (p :node){ 
2.       l = p->LeftChild; 
3.       r = p->RightChild; 
4.   if (VALUE(p) < VALUE(l)){ 
5.        F++; 
6.       NodeCal(l); 
7.    } 
8.   if (VALUE(p)<VALUE(r)) { 
9.      F++; 
10.      NodeCal(r);  
11.   }  
12. } 
The main program: 
1. F=0; 
2. Return NodeCal(root node of t); 
 
The fitness of a program tree is calculated in top-down fashion. A 
node contributes one unit to the total fitness of the tree if its 
content (numeric value of the label) is bigger than its parent node 
content, and if its parent node is also fitness-contributing (by 
default, the root node is always fitness-contributing).  The 
function VALUE in algorithm A returns the numeric value of the 
label of each node (e.g VALUE(‘1’) returns 1). Figure 6 shows 
some program trees, together with their fitness for the 
ORDERTREE problem of size 4. Broken lines indicate the parts 
of the tree which are not fitness-contributing (introns). 

 
Figure 6. Some examples of individuals and their fitness 

values for ORDERTREE (n=3). 

The task for GP is to find solutions (individuals) with maximal 
fitness. One trivial optimal solution for ORDERTREE problem is 
the fullest tree of depth n where node at depth D (D < n) is labeled 

with ‘D’, and the (maximal) fitness is 2n - 2. Figure 7 shows this 
optimal solution when n=4. 

The only variants of the optimal solution shown in Figure 7 are 
deeper trees, having the top part identical with the optimal tree (as 
in Figure 7) and introns appearing under it (the contents of those 
nodes must have values smaller or equal to n). Figure 8 gives an 
example of such trees. 

 
Figure 7. An individual with optimal fitness for 

ORDERTREE (n=4).   

 
Figure 8. Individual with optimal fitness for ORDERTREE 

(n=4) the nodes under broken links are introns.   

3.2 The complete version of ORDERTREE 
As with the previously discussed problems, the shape restriction is 
an important weakness of the restricted version of ORDERTREE 
– it means that the problem is atypical of the class of problems 
which GP may be expected to solve readily [5]. To remove this 
bias in shape and positions of introns, we allow a ‘left-neutral-
walk’ procedure in the process of fitness calculation. In the 
restricted version, the fitness calculation process terminates the 
calculation of a branch, if the node content is less than or equal to 
its parent node. In the full problem version, if the value of a node 
is equal to that of its parent node, the fitness calculation continues 
by visiting the left child. If that new node’s value is less than its 
own parent, the process terminates as before, and no fitness 
contribution results, the whole subtree being treated as an intron. 
If the node value is greater, the subtree is evaluated, and the 
fitness contribution is passed to the parent. If the value is equal to 
its parent’s, its left child is evaluated recursively. In all cases, the 
fitness contribution of the right child is zero, so that the right 
subtree acts as an intron. The process is detailed in Algorithm B.  
For the complete version, an optimal solution need not be a full 
tree – it can be of a wide variety of shapes, with the introduction 
of introns at any depth of the tree due to the ‘left-neutral-walk’ 
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procedure. Figure 9 depicts one such solution. We note that with 
the introduction of introns, the optimal solutions for 
ORDERTREE of size n do not necessary have depth n-1 (i.e it 
could be bigger). The ‘left-neutral-walk’ procedure is by no 
means the only way to solve the problem of bias in shape and 
positions of introns for the restricted version of ORDERTREE. 
Other possibilities are discussed, though not investigated, in the 
final section of the paper. 
Algorithm B. Calculation of fitness. 
 
Input: A program tree t for ORDER problem  
Output: Fitness of t. 
Global variable F to contain the total 
fitness. 
 
1. Procedure NodeCal (p :node){ 
2.       l is left child of p; 
3.       r is the right child of p; 
4.   if (VALUE(p) < VALUE(l)) { 
5.        F++; 
6.       NodeCal(l); 
7.    } 
7b.   q=l->leftchild; 
8   if (VALUE(p)==VALUE(l)){ 
9.      FOUND = FALSE; 
10.  while ((l>LeftChild!=NULL)  && 
(VALUE(l)==VALUE(q)) && ! FOUND){ 
12.  q=l->LeftChild; 
13.  if (VALUE(q)>VALUE(p)) 
14.   FOUND=TRUE; 
15. } 
16. if (FOUND){ 
17.     F++; 
18.     NodeCal(q);  
19. } 
20. if (VALUE(p)<VALUE(r)){ 
21.      F++; 
22.      NodeCal(r);  
23.  } 
24.  if (VALUE(p)==VALUE(r)){ 
25.      FOUND = FALSE; 
25b. q=r->Leftchild; 
26.  while ((l->LeftChild!=NULL) && 
(VALUE(q)==VALUE(r)) ! FOUND){ 
27.  q=r->LeftChild; 
28.  if (VALUE(q)>VALUE(p)) 
29.   FOUND=TRUE; 
30. } 
31. if (FOUND){ 
32.     F++; 
33.     NodeCal(q);  
34. }  
35.} 
The main program: 
1. F=0; 
2. Return NodeCal(root node of t); 

3.3 Discussions of ORDERTREE problem 
The ORDERTREE problem shares a number of common 
properties with some of the benchmark problems described in the 
previous section. As with ONEMAX, it uses the idea of unitation, 
i.e each node used in the fitness calculation process contributes 

one unit to the total fitness. However, in the next section, we will 
also consider other kinds of fitness structures. 
 As with ORDER and MAJORITY, dependencies between the 
nodes within a tree are modeled in ORDERTREE. In this case, the 
dependency is the relationship between parent and child nodes. 
This relationship determines whether a node contributes to the 
total fitness of the individual (tree). This situation happens quite 
often in practice, and Figure 5 depicts one example of it. The 
primary difference between ORDERTREE and ORDER/ 
MAJORITY lies in the importance of structure information – it is 
ignored in the latter, but emphasized in the former. 
The restricted version of ORDERTREE is similar to MAX in that 
the optimal solutions for both must be the full tree of maximal 
depth. Moreover, if the depth limit for GP is n-1, when n is the 
size of the problem, ORDERTREE would illustrate the same 
difficulty with standard subtree crossover as MAX. However, this 
difficulty is at least partially removed in the complete version of 
ORDERTREE. 
Finally, like all the problems described in the previous section, the 
size of the ORDERTREE problem can be tuned, and in the next 
section, we show that it leads to increasing difficulty for GP. 

 
Figure 9. Individual with optimal fitness for ORDERTREE 

(n=3) the nodes under broken links are introns. 

4. EXPERIMENTS & RESULTS 
Two experiments were conducted with GP on the ORDERTREE 
problem. In the first experiment, GP was tried on ORDERTREE 
with problem sizes (n) 5, 6, 7, and 8 to investigate how GP copes 
with scalability in problem size. In the second experiment, 
different fitness structures were used to test how they affect the 
performance of GP. The parameter settings for GP in every run of 
the two experiments are summarized in Table 1. For each problem 
instance, the number of runs conducted was 100. The GP system 
used in all runs is an implementation of GP, as described in [13], 
with tree representation, subtree crossover, and subtree mutation. 

4.1 Experiment 1 
In this experiment, GP was tried on ORDERTREE with problem 
size n=5, 6, 7, 8. The proportions of success were 95%, 78%, 
42%, 8% respectively. These results show that as the size (n) 
increases, the problem becomes increasingly difficult for GP. 
Figure 10 shows the average standardized fitness of the 
population over time. It can be seen that the GP population did 
converge in terms of fitness. The similar slopes of the curves 
suggest that the increase of the problem size just delayed the 
convergence of the GP population, without changing the speed of 
convergence. Figures 11-14 depict the fitness distribution of the 
GP population over time, where the z-axis is the number of 
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individuals (over 500) that have the same fitness value (y-axis) at 
each generation (x-axis).  It clearly shows that for n=5 or 6, the 
whole population converged very quickly to the optimal solutions. 
Figures 15-18 show how the average size and average effective 
size of the individuals in the GP population evolve over time. The 
effective size is the size of the individual minus the size of 
introns. All four figures depict the same pattern: while the 
effective size was relatively stable after 100 generations, the size 
of the whole individuals kept increasing very fast. In the end, 
introns account for almost 6/7 of individual trees on average. This 
is not surprising, in view of the general understanding of the 
prevalence of bloat in GP [1]. 

Table 1. Parameter settings for GP. 

Objective Find a tree with maximal fitness  
Terminal 
Operands 

0, 2, 3, ...., n-1 (with n=5,6,7,8) 

Terminal 
Operators 

The binary function symbols: 
0, 2, 3, ...., n-1 (with n=5,6,7,8) 

Raw fitness The fitness of the tree calculated 
by Algorithm B 

Standardized 
Fitness 

Max Fitness – Raw Fitness. 

Genetic Operators Tournament selection 
(TOUR_SIZE=6), subtree 
crossover and subtree mutation. 

Parameters The operator probability: 
Crossover: 0.9; mutation: 0.1. 
Population Size =500, Max 
Generation =201. Max Depth =20, 
Max Initial Depth = 6. 

Success predicate An individual that has Max Fitness 

4.2 Experiments 2 
In the second series of experiments, similarly to [18], we 
investigated the effect of changing fitness structures on GP 
performance.  In procedure NodeCal of algorithm B, each time the 
content of a node is bigger than the content of its parent node, the 
total fitness of the tree (variable F) is increased by one (lines 6, 
12, 25, and 39). In other word, when a node is in the ‘right place’, 
it contributes one unit to the total fitness (this is denoted as fitness 
structure f1). In this experiment, we used three other ways of 
calculating the fitness contribution for each such node, namely, 
using the node value itself as the contribution (linear fitness 
structure – f2), using its square (square fitness structure – f3), and 
using its exponent base 3 (exponential fitness structure – f4). 
Specifically, in line 6 in algorithms B: 
6.      F++; 
is replaced by: 
6.  F= F+ l; /* linear – f2 */ 
Instead of adding one unit to the fitness, we add the node value  
6.  F=F+ l*l; /* square – f3 */ 
6. F=F+ 3l; /* exponential – f4 */ 
In moving from f1 to f4, we increase the non-linearity in the 
contribution of each ‘correct’ node to the fitness of the tree.  In 

simple terms, this makes the problem more deceptive, because for 
these cases, GP is given an immediate reward for each larger value. 
However, if this is done too high in the tree, GP has a longer-term 
liability, as it will be difficult to create below it a large evaluated 
subtree, which would have instead been of greater worth. 
Table 2 shows the results (proportion of success) of GP on 
ORDERTREE problem (with n=5, 6, 7, 8) with different fitness 
structures (f1, f2, f3, f4). 

Table 2. Performance of GP on different fitness structures. 
 n=5 n=6 n=7 n=8 

f1 95% 78% 42% 8% 

f2 87% 71% 29% 3% 

f3 78% 66% 21% 7% 

f4 72% 36% 12% 2% 

From Table 2, it can be seen that, except for the case n=8, the 
increase of the non-linearity of the fitness structures significantly 
deteriorates GP performance. When n=8, ORDERTREE is very 
difficult for GP, and the effect of increasing size seems to override 
the effect of changing fitness structures.   

5. CONCLUSION AND FUTURE WORK 
In this paper, we have introduced ORDERTREE, a new test 
problem for GP based on ideas from the ONEMAX problem in 
GA. We argued that, while it shares a number of interesting 
properties with other known GP benchmark problems, it avoids 
some of their deficiencies. Through experiments, we showed that 
ORDERTREE has tunable difficulty. This difficulty can be tuned 
in at least two ways: by increasing the size of the problem 
(solution); and by decreasing the linearity in the fitness structures. 
Future work will test alternative strategies (other than ‘left-neutral-
walk’) for reducing the shape bias of optimal solutions in 
ORDERTREE. One alternative is ‘max-value-branch’, i.e instead of 
going to the left branch of a node that has content equal to its parent 
content, the search process could be carried out in both branches of 
the node, and the branch returning the bigger value for fitness 
contribution is selected (while the other becomes an intron). 

In the longer term, we believe that the ORDERTREE problem can 
make a contribution to understanding a range of issues in GP, 
including rooted schemata theory [15] and population sizing [21]. 

 
Figure 10. Average standardized fitness of the populations. 

812



 
Figure 11. Fitness distribution n=5. 

 
Figure 12. Fitness distribution n=6. 

 
Figure 13. Fitness distribution n=7. 

 
Figure 14. Fitness distribution n=8. 

 
Figure 15. Evolution of size and effective size n=5. 

 
Figure 16. Evolution of size and effective size n=6. 
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