
ORDERTREE: A New Test Problem for Genetic
Programming

Tuan-Hao Hoang
School of IT & EE

University of New South
Wales @ Australian

Defence Force Academy,
Northcott drv, Canberra

ACT 2600,Australia
t.hao@adfa.edu.au

Nguyen Xuan Hoai
School of IT, Vietnamese

Military Technical
Academy,100 Hoang
Quoc Viet St, Hanoi,

Vietnam
nxhoai@gmail.com

Nguyen Thi Hien
School of IT, Vietnamese

Military Technical
Academy,100 Hoang
Quoc Viet St, Hanoi,

Vietnam
hien_cpqn@yahoo.com

RI McKay
Structural Complexity
Laboratory, School of
Computer Science &
Engineering, Seoul
National University,

South Korea
rim@cse.snu.ac.kr

Daryl Essam
School of IT & EE

University of New South
Wales @ ADFA,

Northcott drv, Canberra
ACT 2600, Australia

daryl@cs.adfa.edu.au

ABSTRACT
In this paper, we describe a new test problem for genetic
programming (GP), ORDERTREE. We argue that it is a natural
analogue of ONEMAX, a popular GA test problem, and that it
also avoids some of the known weaknesses of other benchmark
problems for Genetic Programming. Through experiments, we
show that the difficulty of the problem can be tuned not only by
increasing the size of the problem, but also by increasing the non-
linearity in the fitness structure.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods,
and Search – graph and tree search strategies.

General Terms
Theory, Performance, Languages
Keywords
Genetic Programming, Benchmark Problems, Problem Difficulty.

1. INTRODUCTION
Since its introduction [3, 13, 23], Genetic Programming (GP), has
gradually become a mature field with many applications. As the
number of different systems increases, there is a need to design
benchmark problems providing a common ground for comparing
their relative robustness. These problems (often simplified
versions of real-world problems) can also help to understand the
behavior and theoretical aspects of genetic programming.

In this paper, we describe a new test problem for GP,
ORDERTREE. We argue that it is a natural analogue of
ONEMAX, a popular Genetic Algorithm (GA) test problem, and
that it avoids some of the known weaknesses of other benchmark
problems for GP. Through experiments, we show that the problem
difficulty can be tuned both by increasing the size of the problem,
and by increasing the non-linearity in the fitness structure.

The paper is organized as follows. Section 2 briefly discusses the
related work on designing test problems for GA and GP. In
section 3, we detail our ORDERTREE problem, and discuss its
properties relative to those of other test problems in GP. Section 4
contains some experiments with the proposed problem, and
discussion of the results. The paper concludes with section 5,
where we discuss some possibilities for extending this work.

2. RELATED WORK
In the field of genetic algorithms (GA), commonly regarded as the
predecessor of GP, researchers have proposed a number of
benchmark problems. These problems are intended to illuminate
how different GA systems work, by comparing their performance.
The practice was first initiated in Dejong’s thesis with his
proposed set of test functions [7]. Since then, a range of test
problems have been proposed by GA researchers. Goldberg [9]
developed the idea of deceptive functions from the schema
processing perspective, where the average fitness of ‘deceptive’
schemata for these functions (subspaces that actually do not
contain the optima of the functions) is higher than the fitness of
schemata that would lead to the actual solutions. In [22], Schaffer
and Eshelman proposed the ONEMAX problem, using the idea of
‘unitation’ on binary representation. The value of the unitation
function on a binary vector x is the number of 1-bits in x (denoted
by u(x)). The optimal solution of the (maximization) ONEMAX
problem is the vector with all bits assigned as 1. The primary
advantage of the unitation function is that it is easy to describe the
fitness equivalence classes (solutions with the same number of
bits set to 1), greatly facilitating analysis [20]. In [6], unitation
was used to design trap functions as test beds for GA. The
designers specified a mapping v from the unitation function’s
range [0,l] (l being the length of the vector x) to [0,1]. They chose
a value z ∈ [0,l] as the trap location, defining v(0) = v(l) = 1, and
v(z) = 0; thus the composition of u and v defines a trap function,
with the minimum being the equivalence class of binary vectors x
with u(x)=z, and maxima at u(x)=0 and u(x) = l. Mitchell et al.
[16] devised ‘Royal Road’ functions, aiming to test the building
block hypothesis. The main idea is to construct a function from
disjoint schemata. A variant of the Royal Road function was the
‘Hierarchical-IFF’ (HIFF) functions, constructed by Watson et al.
[24] to model the dependencies between different schemata.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

As in GA, several challenging test problems have been proposed
within the genetic programming literature to develop and test new
GP systems and/or theories. In the early days, the set of problems
presented in [13], such as symbolic regression, artificial ants,

GECCO'06, July 8–12, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-186-4/06/0007...$5.00.

807

multiplexers, and n-parity, were usually used when GP
researchers compared the performance of different GP systems, or
wanted to investigate theoretical aspects of genetic programming
(e.g code bloat phenomena). However, as problem test beds, these
problems are imperfect choices.

Some lack an important characteristic of good test beds, namely
tunable difficulty. Tunability is important, since it gives an
indication of how a GP system scales with problem difficulty

In others (e.g. n-parity), problem difficulty arises primarily from
the extremely low density of high-fitness solutions in the search
space (needle in the haystack) [15]. Such problems are
intrinsically difficult for all search methods (recognizing that
change of representation may ameliorate the difficulty - e.g for the
n-parity problem, Automatically Defined Functions (ADFs) could
help to acquire new boolean functions, such as EQ and XOR,
significantly increasing the density of solutions in the search
space [14]). The problems thus violate the principle of ‘bounded
difficulty’ used in designing GA test problems [9].

For the purpose of understanding the behavior and theoretical
aspects of GP, the problems in [13] are generally difficult to
analyze For instance, it is often difficult to detect all introns (non
fitness-contributing parts), which means that the study of introns
and code bloat on those problems can only be approximate. Some
other practical difficulties, such as numeric overflow, add further
complication to their use in understanding GP.

In [19], Punch et al. proposed the Reoyal Tree problem, a natural
extension of the GA Royal Road problem in GA, as a GP
benchmark. The function set consists of alphabetic characters
‘A’,’B’,’C’,... with increasing arity (i.e nodes labeled with ‘A’
should have 1 child, with ‘B’ should have 2 children, and so on);
the terminal set contains only one character ‘X’. The fitness of a
program is calculated based on the positions of nodes, and the
optimal solution is the tree with all nodes positioned correctly.
Figure 1 depicts the optimal solution for the Royal Tree problem
with a problem size of 3 (‘A’, ‘B’, ‘C’).

Figure 1. Optimal solution for Royal Tree problem of size 3.

The Royal Tree problem is difficulty-tunable by increasing the
size of the problem (and therefore the size of the solution).
However, the optimal solution is unique, and highly specific in
shape – i.e it must be the fullest tree. As pointed out in [4], fullest
trees are among the most difficult tree structures to find by genetic
programming, regardless of the contents of tree nodes. Thus the
problem is atypical of the class of problems which GP may be
expected to solve effectively.

In [8], Gathercole and Ross introduced the MAX problem to GP,
to highlight some deficiencies in the standard (subtree) crossover
operator, resulting from the tree (program) depth limit imposed in
most practical GP systems. The function set for the MAX problem

consists of arithmetic multiplication (×) and addition (+), and the
terminal set is the numeric value 0.5. The task required of GP is to
find the tree with maximal value, subject to the constraint that
depth cannot exceed D (maximal depth). Figure 2 shows an
example solution for D=4.

Figure 2. The optimal solution for MAX with D=4.

Good solutions for the MAX problem have + nodes deep in the
tree (to build values greater than 1) so that multiplication may be
applied effectively. Once the value of the subtrees exceeds 1 (2
being the simplest value to construct), they should be combined
by × to maximize the overall value (since multiplication increases
faster than addition once the operands exceed 1). The problem
becomes very difficult for GP (with increasing D) because × and
+ which appear in the wrong places are difficult to move with
standard crossover without violating the depth bound (D). A
comprehensive analysis of GP on the MAX problem can be found
in [15] (chapter 10).

The MAX problem is a difficulty-tunable problem for GP. MAX
also, unlike the Royal Tree problem, has multiple solutions for
each D. For instance, a variant of the optimal solution shown in
Figure 2 could replace some depth-1 nodes × with + (for D-3),
since 2×2=2+2. However, these multiple solutions become
exponentially rarer (as a proportion of the solution space) as D
increases, so the advantage over Royal Tree is limited. Otherwise,
MAX shares the same weakness as the Royal Tree problem, in
that the shape of optimal solutions is again the fullest tree.

In [11], Goldberg and O’Reilly devised two difficulty-tunable
problems for GP, ORDER and MAJORITY, to model the
dependencies between different components within a program
tree. The function set of these two problems contains only a
binary term called JOINT, while the terminal set has two subsets:
positive - P1,P2,...Pn, and negative - N1,N2,...Nn. In the ORDER
problem, a leaf is ‘expressed’ if it is labeled with Pi (i=1,..n), and
there is no node before that node (taking the preorder traversal of
the tree) labeled with Ni. In the MAJORITY problem, a leaf is
‘expressed’ if it is labeled with a Pi (i=1,...n) and the number of Pi
contained in the (program) tree is larger than the number of Ni.
The task for GP on ORDER and MAJORITY is to find trees with
the maximal number of different expressed leaves (in fact, n). In
[18], the authors used the problems to investigate how different
fitness structures affect the performance of GP. Sastry et al. used
the ORDER problem to analyse population sizing in GP [21].
Figures 3 and 4 depict two of many possible optimal solutions for
ORDER and MAJORITY respectively (with n=3).
It was noted in [11] that the ORDER and MAJORITY problems
resemble the GA ONEMAX problem, in that the fitness
contribution of each expressed leaf to the fitness of the whole tree
resembles the contribution of 1-bits in unitation. It was also
argued that the problems share some aspects with the real

808

problems usually used in the GP literature. They are difficulty
tunable (by changing problem size n), there are multiple optimal
solutions, and introns may appear at any place in a program tree.
This reduces the shape bias of optimal solutions compared with
earlier test problems such as Royal Tree and MAX. However
these problems differ in one important characteristic of GP
problems, in which the content of internal nodes is important in
determining fitness, and the dependencies between sub-tree
components. In this respect, it is arguable that they resemble
typical GA problems more than GP problems. For instance, if we
have an arithmetic tree such as shown in Figure 5 where the left
branch evaluates as zero, the content of the root node even
determines whether the right part is an intron. If the content of the
root node is multiplication, then the right part is an intron, while it
is effective code if the content of the root node is addition.

Figure 3. An optimal solution for ORDER with n=3.

Figure 4. An optimal solution for MAJORITY with n=3.

Figure 5. Content of an internal node is important.

Daida et al. [4] investigated the binomial-3 problem (symbolic
regression problem with the target function (1+x)3). They found
that by varying the range of the ephemeral random constants, the
problem becomes tunably difficult for GP. Subsequently, by
observing the evolution of program tree shapes of GP on the
problem, they discovered that structure alone could pose great
difficulties to GP. To validate this hypothesis, they subsequently
designed a test problem for GP called LID [5]. The function set

for the LID problem includes only one binary term, “joint”, which
plays a similar role to “joint” in the ORDER and MAJORITY
problems described above, and the terminal set contains only one
terminal, LEAF. The fitness of a program tree is measured by how
close in shape (using a shape metric defined in [5]) it is to the
target program tree. By experimenting with the LID problem, they
were able to demonstrate the inherent problem of structural
difficulty in GP. In particular, they found a separation of the tree
shape space into three areas. In the first, it is easy for GP to find
solutions. In the second, GP finds solutions only with great
difficulty. In the last, including fuller and thinner trees, it is almost
impossible for GP to find any solutions.
The problem of structural difficulty is important to GP for a
number of reasons. When solving problems whose simplest
solutions have shapes in the second or third areas, GP may have to
accumulate introns in order to find equivalent solutions that lie in
the first area. This may provide one reason why introns emerge in
GP systems, and why GP usually obtains long and complex
solutions even when short and simple solutions exist. Moreover, it
also means that it is possible that, for some of the test problems
proposed in GP literature, the source of difficulties not only come
from the claimed characteristics of the problems (such as the
increase of problem/solution size/depth) but also from the biased
shape of the optimal solution. Royal Tree and MAX problems are
two examples of such problems. The test problem proposed in this
paper (detailed in the next section) was designed with the
awareness of Daida’s problem of structural difficulty and so
attempts to remove the shape bias in the optimal solutions.
While the above are the best-known test problems, a number of
other difficulty-tunable test problems have been proposed. Burke
et al. devised the N-prisoner puzzle based on the N-hat game [2].
Nguyen et al. [17] used simple symbolic regression problems, in
which the target functions are a family of polynomial functions of
increasing order, to compare some different GP and grammar-
guided GP systems. In [12], Gustafson et al. also used simple
symbolic regression, in which the target functions are a family of
randomly generated polynomials functions with increasing order,
to derive some analysis for GP runs.

3. PROBLEM DESCRIPTION
The design of the ORDERTREE problem was inspired by the
ONEMAX problem in GA, and some of the test problems
described in the previous section, particularly the MAX, ORDER,
and MAJORITY problems. In this section, we first describe a
simple version of the problem which is tunably difficult, but still
has the weakness that the optimal solutions are relatively fixed
and biased in shape (fullest tree). Next, we amend that deficiency
by introducing the ‘left-neutral- walk’ into the fitness calculation.
We then discuss how the ORDERTREE problem relates to test
problems mentioned in the previous section.

3.1 The restricted version of ORDERTREE
The function set for ORDERTREE of size n is defined as follows:

F= {‘0’,’1’,’2’,....’n-1’}

The function nodes are labeled with numbers from the set
{0,1,2,...n-1}. All the functions are of arity 2 (i.e each function
has two arguments). The terminal set is defined as:

T={‘0’,’1’,’2’,....’n-1’}

809

The terminal nodes are also labeled with numbers from the set
{1,2,...n-1}. Algorithm A below calculates the fitness for a tree.

Algorithm A. Calculation of fitness.

Input: A program tree t for ORDER problem
Output: Fitness of t.
Global variable F to contain the total
fitness.

1. Procedure NodeCal (p :node){
2. l = p->LeftChild;
3. r = p->RightChild;
4. if (VALUE(p) < VALUE(l)){
5. F++;
6. NodeCal(l);
7. }
8. if (VALUE(p)<VALUE(r)) {
9. F++;
10. NodeCal(r);
11. }
12. }
The main program:
1. F=0;
2. Return NodeCal(root node of t);

The fitness of a program tree is calculated in top-down fashion. A
node contributes one unit to the total fitness of the tree if its
content (numeric value of the label) is bigger than its parent node
content, and if its parent node is also fitness-contributing (by
default, the root node is always fitness-contributing). The
function VALUE in algorithm A returns the numeric value of the
label of each node (e.g VALUE(‘1’) returns 1). Figure 6 shows
some program trees, together with their fitness for the
ORDERTREE problem of size 4. Broken lines indicate the parts
of the tree which are not fitness-contributing (introns).

Figure 6. Some examples of individuals and their fitness

values for ORDERTREE (n=3).

The task for GP is to find solutions (individuals) with maximal
fitness. One trivial optimal solution for ORDERTREE problem is
the fullest tree of depth n where node at depth D (D < n) is labeled

with ‘D’, and the (maximal) fitness is 2n - 2. Figure 7 shows this
optimal solution when n=4.

The only variants of the optimal solution shown in Figure 7 are
deeper trees, having the top part identical with the optimal tree (as
in Figure 7) and introns appearing under it (the contents of those
nodes must have values smaller or equal to n). Figure 8 gives an
example of such trees.

Figure 7. An individual with optimal fitness for

ORDERTREE (n=4).

Figure 8. Individual with optimal fitness for ORDERTREE

(n=4) the nodes under broken links are introns.

3.2 The complete version of ORDERTREE
As with the previously discussed problems, the shape restriction is
an important weakness of the restricted version of ORDERTREE
– it means that the problem is atypical of the class of problems
which GP may be expected to solve readily [5]. To remove this
bias in shape and positions of introns, we allow a ‘left-neutral-
walk’ procedure in the process of fitness calculation. In the
restricted version, the fitness calculation process terminates the
calculation of a branch, if the node content is less than or equal to
its parent node. In the full problem version, if the value of a node
is equal to that of its parent node, the fitness calculation continues
by visiting the left child. If that new node’s value is less than its
own parent, the process terminates as before, and no fitness
contribution results, the whole subtree being treated as an intron.
If the node value is greater, the subtree is evaluated, and the
fitness contribution is passed to the parent. If the value is equal to
its parent’s, its left child is evaluated recursively. In all cases, the
fitness contribution of the right child is zero, so that the right
subtree acts as an intron. The process is detailed in Algorithm B.
For the complete version, an optimal solution need not be a full
tree – it can be of a wide variety of shapes, with the introduction
of introns at any depth of the tree due to the ‘left-neutral-walk’

810

procedure. Figure 9 depicts one such solution. We note that with
the introduction of introns, the optimal solutions for
ORDERTREE of size n do not necessary have depth n-1 (i.e it
could be bigger). The ‘left-neutral-walk’ procedure is by no
means the only way to solve the problem of bias in shape and
positions of introns for the restricted version of ORDERTREE.
Other possibilities are discussed, though not investigated, in the
final section of the paper.
Algorithm B. Calculation of fitness.

Input: A program tree t for ORDER problem
Output: Fitness of t.
Global variable F to contain the total
fitness.

1. Procedure NodeCal (p :node){
2. l is left child of p;
3. r is the right child of p;
4. if (VALUE(p) < VALUE(l)) {
5. F++;
6. NodeCal(l);
7. }
7b. q=l->leftchild;
8 if (VALUE(p)==VALUE(l)){
9. FOUND = FALSE;
10. while ((l>LeftChild!=NULL) &&
(VALUE(l)==VALUE(q)) && ! FOUND){
12. q=l->LeftChild;
13. if (VALUE(q)>VALUE(p))
14. FOUND=TRUE;
15. }
16. if (FOUND){
17. F++;
18. NodeCal(q);
19. }
20. if (VALUE(p)<VALUE(r)){
21. F++;
22. NodeCal(r);
23. }
24. if (VALUE(p)==VALUE(r)){
25. FOUND = FALSE;
25b. q=r->Leftchild;
26. while ((l->LeftChild!=NULL) &&
(VALUE(q)==VALUE(r)) ! FOUND){
27. q=r->LeftChild;
28. if (VALUE(q)>VALUE(p))
29. FOUND=TRUE;
30. }
31. if (FOUND){
32. F++;
33. NodeCal(q);
34. }
35.}
The main program:
1. F=0;
2. Return NodeCal(root node of t);

3.3 Discussions of ORDERTREE problem
The ORDERTREE problem shares a number of common
properties with some of the benchmark problems described in the
previous section. As with ONEMAX, it uses the idea of unitation,
i.e each node used in the fitness calculation process contributes

one unit to the total fitness. However, in the next section, we will
also consider other kinds of fitness structures.
 As with ORDER and MAJORITY, dependencies between the
nodes within a tree are modeled in ORDERTREE. In this case, the
dependency is the relationship between parent and child nodes.
This relationship determines whether a node contributes to the
total fitness of the individual (tree). This situation happens quite
often in practice, and Figure 5 depicts one example of it. The
primary difference between ORDERTREE and ORDER/
MAJORITY lies in the importance of structure information – it is
ignored in the latter, but emphasized in the former.
The restricted version of ORDERTREE is similar to MAX in that
the optimal solutions for both must be the full tree of maximal
depth. Moreover, if the depth limit for GP is n-1, when n is the
size of the problem, ORDERTREE would illustrate the same
difficulty with standard subtree crossover as MAX. However, this
difficulty is at least partially removed in the complete version of
ORDERTREE.
Finally, like all the problems described in the previous section, the
size of the ORDERTREE problem can be tuned, and in the next
section, we show that it leads to increasing difficulty for GP.

Figure 9. Individual with optimal fitness for ORDERTREE

(n=3) the nodes under broken links are introns.

4. EXPERIMENTS & RESULTS
Two experiments were conducted with GP on the ORDERTREE
problem. In the first experiment, GP was tried on ORDERTREE
with problem sizes (n) 5, 6, 7, and 8 to investigate how GP copes
with scalability in problem size. In the second experiment,
different fitness structures were used to test how they affect the
performance of GP. The parameter settings for GP in every run of
the two experiments are summarized in Table 1. For each problem
instance, the number of runs conducted was 100. The GP system
used in all runs is an implementation of GP, as described in [13],
with tree representation, subtree crossover, and subtree mutation.

4.1 Experiment 1
In this experiment, GP was tried on ORDERTREE with problem
size n=5, 6, 7, 8. The proportions of success were 95%, 78%,
42%, 8% respectively. These results show that as the size (n)
increases, the problem becomes increasingly difficult for GP.
Figure 10 shows the average standardized fitness of the
population over time. It can be seen that the GP population did
converge in terms of fitness. The similar slopes of the curves
suggest that the increase of the problem size just delayed the
convergence of the GP population, without changing the speed of
convergence. Figures 11-14 depict the fitness distribution of the
GP population over time, where the z-axis is the number of

811

individuals (over 500) that have the same fitness value (y-axis) at
each generation (x-axis). It clearly shows that for n=5 or 6, the
whole population converged very quickly to the optimal solutions.
Figures 15-18 show how the average size and average effective
size of the individuals in the GP population evolve over time. The
effective size is the size of the individual minus the size of
introns. All four figures depict the same pattern: while the
effective size was relatively stable after 100 generations, the size
of the whole individuals kept increasing very fast. In the end,
introns account for almost 6/7 of individual trees on average. This
is not surprising, in view of the general understanding of the
prevalence of bloat in GP [1].

Table 1. Parameter settings for GP.

Objective Find a tree with maximal fitness
Terminal
Operands

0, 2, 3,, n-1 (with n=5,6,7,8)

Terminal
Operators

The binary function symbols:
0, 2, 3,, n-1 (with n=5,6,7,8)

Raw fitness The fitness of the tree calculated
by Algorithm B

Standardized
Fitness

Max Fitness – Raw Fitness.

Genetic Operators Tournament selection
(TOUR_SIZE=6), subtree
crossover and subtree mutation.

Parameters The operator probability:
Crossover: 0.9; mutation: 0.1.
Population Size =500, Max
Generation =201. Max Depth =20,
Max Initial Depth = 6.

Success predicate An individual that has Max Fitness

4.2 Experiments 2
In the second series of experiments, similarly to [18], we
investigated the effect of changing fitness structures on GP
performance. In procedure NodeCal of algorithm B, each time the
content of a node is bigger than the content of its parent node, the
total fitness of the tree (variable F) is increased by one (lines 6,
12, 25, and 39). In other word, when a node is in the ‘right place’,
it contributes one unit to the total fitness (this is denoted as fitness
structure f1). In this experiment, we used three other ways of
calculating the fitness contribution for each such node, namely,
using the node value itself as the contribution (linear fitness
structure – f2), using its square (square fitness structure – f3), and
using its exponent base 3 (exponential fitness structure – f4).
Specifically, in line 6 in algorithms B:
6. F++;
is replaced by:
6. F= F+ l; /* linear – f2 */
Instead of adding one unit to the fitness, we add the node value
6. F=F+ l*l; /* square – f3 */
6. F=F+ 3l; /* exponential – f4 */
In moving from f1 to f4, we increase the non-linearity in the
contribution of each ‘correct’ node to the fitness of the tree. In

simple terms, this makes the problem more deceptive, because for
these cases, GP is given an immediate reward for each larger value.
However, if this is done too high in the tree, GP has a longer-term
liability, as it will be difficult to create below it a large evaluated
subtree, which would have instead been of greater worth.
Table 2 shows the results (proportion of success) of GP on
ORDERTREE problem (with n=5, 6, 7, 8) with different fitness
structures (f1, f2, f3, f4).

Table 2. Performance of GP on different fitness structures.
 n=5 n=6 n=7 n=8

f1 95% 78% 42% 8%

f2 87% 71% 29% 3%

f3 78% 66% 21% 7%

f4 72% 36% 12% 2%

From Table 2, it can be seen that, except for the case n=8, the
increase of the non-linearity of the fitness structures significantly
deteriorates GP performance. When n=8, ORDERTREE is very
difficult for GP, and the effect of increasing size seems to override
the effect of changing fitness structures.

5. CONCLUSION AND FUTURE WORK
In this paper, we have introduced ORDERTREE, a new test
problem for GP based on ideas from the ONEMAX problem in
GA. We argued that, while it shares a number of interesting
properties with other known GP benchmark problems, it avoids
some of their deficiencies. Through experiments, we showed that
ORDERTREE has tunable difficulty. This difficulty can be tuned
in at least two ways: by increasing the size of the problem
(solution); and by decreasing the linearity in the fitness structures.
Future work will test alternative strategies (other than ‘left-neutral-
walk’) for reducing the shape bias of optimal solutions in
ORDERTREE. One alternative is ‘max-value-branch’, i.e instead of
going to the left branch of a node that has content equal to its parent
content, the search process could be carried out in both branches of
the node, and the branch returning the bigger value for fitness
contribution is selected (while the other becomes an intron).

In the longer term, we believe that the ORDERTREE problem can
make a contribution to understanding a range of issues in GP,
including rooted schemata theory [15] and population sizing [21].

Figure 10. Average standardized fitness of the populations.

812

Figure 11. Fitness distribution n=5.

Figure 12. Fitness distribution n=6.

Figure 13. Fitness distribution n=7.

Figure 14. Fitness distribution n=8.

Figure 15. Evolution of size and effective size n=5.

Figure 16. Evolution of size and effective size n=6.

813

[8] Gathercole C. and Ross P. An Adverse Interaction between
Crossover and Restricted Tree Depth in Genetic
Programming, in Proceedings of the First Annual
Conference on GP, MIT Press, CA, 1996, 28-31.

[9] Goldberg, D. E. Genetic Algorithms in Search, Optimization,
and Machine Learning, Addison-Wesley, MA, 1989.

[10] Goldberg, D.E. The Design of Innovation: Lessons from and
for Competent Genetic Algorithms, Kluwer Academic
Publisher, 2002.

[11] Goldberg D.E. and O’Reilly U.M. Where Does the Good
Stuff Go and Why?, In Proceedings of The First European
Conference on Genetic Programming (EuroGP), Springer-
Verlag, 1998.

[12] Gustafson S. et al. Problem Difficulty and Code Growth in
Genetic Programming, Genetic Programming and Evolvable
Machines, 5, 2004, 271-290.

Figure 17. Evolution of size and effective size n=7.

[13] Koza J.R. Genetic Programming: On the Programming of
Computers by Natural Selection, MIT Press, MA, 1992.

[14] Koza J.R. Genetic Programming II: Automatic Discovery of
Reusabe Programs, MIT Press, MA, 1994.

[15] Langdon W.B. and Poli R. Foundations of Genetic
Programming, Springer-Verlag, Berlin, 2002.

[16] Mitchell M., Holland J.H., and Forrest S. When Will a
Genetic Algorithm Outperform Hill Climbing?, In Advances
in Neural Information Processing Systems 6, Morgan
Kaufmann, CA, 1994.

[17] Nguyen X. H. et al. Solving the Symbolic Regression
Problem with Tree Adjunct Grammar Guided Genetic
Programming: The Comparative Result, In Proceedings of
Congress on Evolutionary Computation (CEC 2002), IEEE
Press, 2002, 1326-1331.

Figure 18. Evolution of size and effective size n=8.

6. REFERENCES [18] O’Reilly U.M. and Goldberg D.E. How Fitness Structure
Affects Subsolution Acquisition in Genetic Programming, in
Proceedings of the Third Annual Conference on Genetic
Programming, Morgan Kaufmann, 1998, 269-277.

[1] Banzhaf, W.el al. Genetic Programming: An Introduction,
Morgan Kaufmann, CA, 1998.

[2] Burke E., Gustafson S., and Kendall G., A Puzzle to
Challenge Genetic Programming, in Proceedings of the 5th
European Conference in Genetic Programming, LNCS 2278,
Spinger-Verlag, Berlin, 2002, 238-247.

[19] Punch W.F., Zongker D., and Goodman E.D. The Royal Tree
Problem, a Benchmark for Single and Multi-population
Genetic Programming, in Advances in Genetic Programming
2, MIT Press, MA, 1996, 299-316.

[3] Cramer, N.L. A Representation for the Adaptive Generation
of Sequential Programs, Proceedings of an International
Conference on GA and the Applications, 183-187, 1985.

[20] Reeves C.R. and Rowe J.E. Genetic Algorithms: Principles
and Perspectives, Kluwer Academic Publisher, 2003.

[21] Sastry K., O’Reilly U.M., and Goldberg D.E. Population
Sizing for Genetic Programming based on Decision Making,
in Genetic Programming Theory and Practice II, Springer-
Verlag, 2004, 49-65.

[4] Daida J.M.et al. What Makes a Problem GP-Hard? Analysis of
a Tunably Difficult Problem in Genetic Programming, Genetic
Programming and Evolvable Machines,2001, 165-191.

[5] Daida J.M et al What Makes a Problem GP-Hard? Validating
a Hypothesis of Structure Causes, Proceedings of Genetic
Algorithms and Evolutionary Computation Conference
(GECCO2003), LNCS 2724, Springer-Verlag 2003,1665-1677.

[22] Schaffer J.D. and Eshelman L.J. On crossover as an evolutionary
viable strategy. In Proceedings of the 4th International
Conference on Genetic Algorithms, Morgan Kaufmann, 1991,
61-68.

[6] Deb K. and Goldberg D.E. Analyzing Deception in Trap
Functions, Foundations of Genetic Algorithms 2, Morgan
Kaufmann, CA, 1993, 93-108.

[23] Schmidhuber, J. Evolutionary Principles in Self-Referential
Learning, Diploma Thesis, Technische Universitat, Muchen, 1987.

[24] Watson, R.A. Hornby G.S, and Pollack J.B. Modeling
Building Blocks Dependency, in Parallel Problem-Solving
from Nature 5, Springer-Verlag, Berlin, 97-106.

[7] Dejong, K.A. An Analysis of the Behavior of a Class of
Genetic Adaptive Systems, Doctoral Dissertation, University
of Michigan, Ann Arbor. Michigan, 1975.

814

	1. INTRODUCTION
	2. RELATED WORK
	3. PROBLEM DESCRIPTION
	3.1 The restricted version of ORDERTREE
	3.2 The complete version of ORDERTREE
	3.3 Discussions of ORDERTREE problem
	4. EXPERIMENTS & RESULTS
	4.1 Experiment 1
	4.2 Experiments 2

	6. F=F+ l*l; /* square – f3 */
	5. CONCLUSION AND FUTURE WORK
	6. REFERENCES

