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ABSTRACT
This paper describes the use of a recently introduced crossover
operator for GP, context-aware crossover. Given a randomly
selected subtree from one parent, context-aware crossover
will always find the best location to place the subtree in the
other parent.

We examine the performance of GP when context-aware
crossover is used as an extra crossover operator, and show
that standard crossover is far more destructive, and that
performance is better when only context-aware crossover is
used.

There is still a place for standard crossover, however,
and results suggest that using standard crossover in the ini-
tial part of the run and then switching to context-aware
crossover yields the best performance.

We show that, across a range of standard GP benchmark
problems, context-aware crossover produces a higher best
fitness as well as a higher mean fitness, and even man-
ages to solve the 11-bit multiplexer problem without ADFs.
Furthermore, the individuals produced this way are much
smaller than standard GP, and far fewer individual evalua-
tions are required, so GP achieves a higher fitness by evalu-
ating fewer and smaller individuals.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Problem Solving, Control Meth-
ods, and Search

General Terms
Performance

Keywords
Context Aware crossover, context, tree context, performance,
destructive effects, standard crossover, one point crossover
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1. INTRODUCTION
Standard crossover for GP is widely accepted as being

a destructive operator [2]. It is destructive because it ex-
changes sub trees without respect for their context, so, a
subtree behaving constructively in one parent tree can have
an adverse effect towards the fitness of the second parent.
Many theories are put forth to combat this inherent prob-
lem of standard crossover. Most of these work by preserving
the context of the exchanged subtree in the two parents,
although Majeed and Ryan [7] have recently introduced a
new context-aware crossover for GP which works by plac-
ing the subtrees-to-be-exchanged in the best context in the
parents. It exhaustively explores all the possible positions
at which the subtree-to-be-exchanged can be placed in the
parent tree and then places it at the best position. Although
this approach may sound quite expensive, it was shown that
it resulted in dramatic fitness gains and evaluated consider-
ably fewer individuals than standard crossover.

In the initial implementation of context-aware crossover
no intention was given towards optimising its use, rather the
emphasis was on demonstrating that using it in conjunction
with standard crossover improved the performance of GP.
We hypothesize that the adjustment of the order and the
time of its application during a run can have a huge effect
on the outcome of the run. This paper discusses different
ways to employ it to get the best performance out of GP. The
proposed methods are tested on different problem domains
and the results obtained are very encouraging.

2. BACKGROUND
GP, in its traditional implementation (high crossover and

low mutation rate), is driven by a combination of exploration
and exploitation. Exploration happens during crossover, in
which two parents are recombined to produce one or two
offspring, while exploitation is achieved through a combi-
nation of selection and mutation. Selection ensures that
the best newly produced offspring survive, while mutation
allows for (relatively) minor tweaks of individuals, and a
proper balance of parameters will get a population to evolve
increasingly more fit individuals.

In a sense, GP has to make the best of a bad lot. Off-
springs are randomly created, and there is no guarantee that
they will even be as fit as their parents. However, the fact
that GP manipulates a population of individuals means that
there are usually enough offsprings produced in a generation
to at least maintain fitness.

In the early stages of a run, GP is very productive, pro-
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ducing increasingly more fit individuals, but, as time pro-
gresses, this exploration becomes more difficult. The trees
tend to bloat, an effective measure against being disrupted
by crossover, so minor changes become increasingly more
difficult, and, as noted in [2], the majority of crossovers re-
sult in offspring that are inferior to their parents.

There have been a number of previous attempts to im-
prove the performance of GP by improving crossover. This
is a reasonable approach, motivated by the hypothesis that
if selection is given a better (in the sense of more fit) set
of individuals to choose from, the performance of GP will
improve. The question, of course, is how to produce these
better individuals. [7] contains a detailed description of sev-
eral approaches. Most of these approaches [3][4][5] were con-
text preserving, in that they tried to ensure that a sub tree
being swapped into a parent was being used in the way it
was in the original parent. The reasoning behind this is
that changing the context of a sub tree is likely to be more
disruptive.

Quite apart from the issue of how to define the context
of a sub tree, these methods are hamstrung by the fact that
(especially early on in a run) there may exist a different and
better context for a subtree.

Altenberg in his “soft brood selection” method [1] gener-
ated a brood randomly and introduced the best of the brood
in the next generation by holding a tournament. Tackett re-
fined this idea and used the cheap “culling function” [9] to
identify the best of the brood. He introduced the best two
offsprings in the next generation.

Other approaches [8][10] try to choose good subtrees to
swap, or good crossover points, depending on the approach,
by measuring the contribution of the subtree that is to be
replaced to the overall fitness of an individual. However, it
isn’t straightforward how to measure this contribution, as
it isn’t always clear how to replace a subtree. [6] demon-
strated a way to neutralise individual subtrees, so that their
contribution could be accurately measured. However, this
approach could only be applied to problems with functions
that can be canceled out using identity functions, such as
Boolean problems and problems with function sets such as
simple binary arithmetic.

3. CONTEXT-AWARE CROSSOVER FOR GP
In general, the above methods reduce the exploratory

power of GP. The search is constrained either by reducing
the different contexts into which a subtree can be swapped,
or by reducing the number of subtrees that can be chosen
for exchange. A different approach, termed Context-aware
crossover was introduced in [7]. Context-aware crossover
operates by finding the best possible context for a randomly
chosen subtree in the new child. This is achieved by swap-
ping the subtree into every possible position in the second
parent, and evaluating each resulting child.

Although intuitively, this may sound expensive, it was
shown that the resulting increase in performance permits
the use of dramatically smaller populations, so that the
total number of individuals evaluated decreased. Further-
more, because it is far more difficult for individuals to bloat
with this type of crossover, the individuals tend to be much
smaller.

Figure 1 shows the operation of this crossover. To make
the figure more readable we have set tree-depth to five for
this example.
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Figure 1: Context aware crossover. The shaded
nodes in parent-1 are possible crossover points
where selected-subtree from parent-2 can go in. All
generated children are evaluated and the best se-
lected

.

Two parents are selected for crossover as normal, and
crossover cannot take place at the root node. In this exam-
ple, node 2 of parent 2 is selected randomly as a crossover
point (the subtree is shown shaded in parent 2). Next, all
possible valid offspring are generated, that is, all those in-
dividuals that are within depth limits, etc. Each of these
individuals is then evaluated, and the best one introduced
to the next generation. Only one individual per crossover is
entered into the following generation.

The selection of the crossover points is followed by gener-
ation of a pool of offsprings and their evaluation. The best
individual among them is introduced into the next genera-
tion.

In the initial paper on this work, the probability of using
standard crossover and context-aware crossover was varied
as follows:

context aware prob = curr gen/max gen (1)

standard xover prob = 1 − context aware prob (2)

The motivation behind this is that it has been shown
that standard crossover is most effective in the early part of
runs [2], and is least effective in the later stages. As noted in
the initial paper, no effort was made to optimise the rate at
which the probabilities varied, although it was shown that,
when compared to standard crossover, this mixed method
tended to evaluate fewer individuals to get the same fitness.

This paper is concerned with examining how one should
vary these probabilities, as well as determining whether it is
better to only make available one operator at a time, rather
than a combination of them as in the previous work. We
will examine performance in terms of fitness attained, the
total number of individuals evaluated, and the size of these
individuals.

4. OPTIMISING GP’S PERFORMANCE
We performed two initial tests to analyse the settings used

initially. First, the rate at which the probabilities change
over the course of a run is examined, and second, the as-
sumption that having both crossover operators available is
tested. We hypothesise that standard crossover can actually
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undo the work done by context-aware crossover because it
is inherently more destructive, so the order of application of
crossover operators (throughout a run) could be crucial.

For this paper we have selected the same set of prob-
lems used in the initial introductory paper of context-aware
crossover [7] to have a better performance comparison.

4.1 Varying order and rates of crossovers
To find the optimal setting for the probabilities of the

crossovers, a number of experiments were conducted. Due
to space restrictions we will only discuss the standard Koza’s
Quartic Polynomial Symbolic Regression problem in this
section. Other problems showed the same trend, and the
results presented here are representative of the others.

For these experiments, a population size of 200 was al-
lowed to evolve for 50 generations. No mutation was used,
and the only variation operators were the standard and
context-aware crossover operators. The initial population
was generated using ramped half and half method with ini-
tial tree sizes varying from 2-6, and the maximum tree depth
was set to 17.

exp
curr genslope

curr gen−max gen (3)

After a careful study equation 3 was generated for vary-
ing the crossovers rates. The behavior of this exponential is
highly dependent on the slope variable. By adjusting it, it
can behave as a linear, exponential or combination of expo-
nential and linear functions. For this paper, the slope vari-
able was set to 0.3, 0.6 and 0.9 to vary the rate of change of
crossover probabilities. The slope with a value of 0.3 has an
exponential rise at the latter part of a run whereas slope with
a value of 0.9 shows behavior similar to a linear polynomial.
Slope with a value of 0.6 lies between the two extremes.
The fitness graphs using only standard and context-aware
crossovers are also shown to compare the destructive effects
of standard crossover.

In the first set of experiments, the probability of context-
aware crossover was varied from one to zero using eq 3, re-
ferred to as context aware prob, while the probability of
standard crossover varied from zero to one using equation
“1 − context aware prob”.

In the second set of experiments, the probabilities of the
crossovers were reversed, i.e., the probability of the standard
crossover, standard prob was varied from one to zero using
equation 3, and the context-aware crossover was varied from
zero to one using equation “1 − standard prob”.

Apart from varying the crossover rates these setups show
the importance of the order of the application of these crossovers.
In the first setup, context-aware crossover was applied before
standard crossover while in the second setup it was applied
after standard crossover.

Results are averaged over 50 runs and plotted in Figure 2.
It is clear from the graphs that activation of context-aware
crossover during a run results in a significant improvement in
mean fitness of the populations. The graphs using standard
crossover with high probability and after the use of context-
aware crossover ( P 0.3 inv, P 0.6 inv and P 0.9 inv) show
performance lower than the performance of standard and
context-aware crossovers alone. It is a clear indication of the
fact that standard crossover has lost most of the syntactic
and semantic improvements done previously by the context-
aware crossover.
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Figure 2: Mean average fitness of the quartic
polynomial symbolic regression problem with vary-
ing crossover rates of context-aware and standard
crossover operators. Std Xvr and Ctxt Xvr show the
performance of only standard and context-aware
crossovers.

These experiments give us enough evidence to conclude
that standard crossover has to be applied before (if at all)
the application of the context-aware crossover to get better
performance.

4.2 Effect of standard crossover on perfor-
mance

Although it was established in the previous section that
the use of standard crossover after context-aware crossover
lowers the mean population fitness, there is still a need to
quantify this destruction along with the proof that this drop
is only due to standard crossover, and not some unfore-
seen interaction between the two crossovers. To prove this
another set of experiments was conducted. The standard
Koza’s Quartic Polynomial Symbolic Regression, the 11-bit
multiplexer and the lawnmower problems were used for these
experiments. Population sizes of 200, 50 and 100 were used
for the regression, the multiplexer and the lawnmower prob-
lems respectively. For all experiments, the maximum num-
ber of generations was set to 50, the initial population was
generated using ramped half and half method with initial
tree sizes varying from 2-6, and the maximum tree depth
was set to 17. The populations during a run were gener-
ated using either context-aware or standard crossover, not
both at a time. Standard crossover was only applied in reg-
ular intervals of five generations, while the rest of the time
context-aware crossover was used.

Results were averaged over 50 runs and the mean popu-
lation fitness is plotted in figure 3. The standard crossover
operator is consistently destructive in all the problems bar-
ring the multiplexer problem. The multiplexer problem is
an exception because of two reasons. i) it has an inherent
property of producing relatively fitter random populations
compared to other two problems used. ii) It is difficult to
drop below the fitness of the random population during a
run. Notice, although there are huge drops in the graph,
context-aware crossover has still managed to improve the
mean population fitness by evaluating comparatively more
number of individuals. Notice that Ctxt Xvr (Figure 2) and
Regression (Figure 3) converges to the same final fitness
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Figure 3: Destructive effects of standard crossover
on GP performance when applied at regular inter-
vals.

value but Cxt Xvr evaluates 23% less individuals and gen-
erates 50% smaller individuals (not shown) to achieve it.
Same argument holds true for the best fitness values of the
two setups (not shown due to space restrictions). This is
enough evidence to deduce that standard crossover is acting
as a liability and context-aware crossover has to put in an
extra effort to undo the damages done by standard crossover
before imporving the fitness of the popualtion.

These experiments along with the experiments conducted
in section 4.1 tell us that only one crossover operator should
be used for population generation, and that standard crossover
should be used (if any) before context-aware crossover during
a run.

5. EXPERIMENTAL SETUP
The results from the previous section address the ques-

tion of when context-aware crossover should be turned on.
Clearly, once it is turned on, it should stay on, and be the
only crossover operator available, but it isn’t clear that stan-
dard crossover should never be used. To investigate this,
same problems and setups as used in the previous section
are employed here.

These are also the problems employed by [7], and here we
use the same experimental setups. All the experiments were
run for 50 generations and averaged over 50 runs. For each
problem, two sets of experiments were conducted.

The first set comprised of ten experiments, each conducted
by turning on context-aware crossover after completion of
certain percentage of a run. For this paper intervals of 10%
were used starting from 0% to 90%. For example, if the
context-aware crossover was turned on after 10% comple-
tion of a run (labeled P 10 in the figures to indicate the
Percentage of the run completed), then the first 10% of the
run was completed by using only standard crossover and the
rest of the run was generated by only using context-aware
crossover. This setting is in accordance with the rules laid
out in the section 4. These experiments will tell us the
best point to turn on context-aware crossover to get opti-
mal performance with minimal effort (evaluations) and how
sensitive GP is to when it gets turned on.

The second set of experiments was a control group, com-
prising of the experiments presented in [7]. These involved
the solving of the above problems using standard GP (la-
beled as StdGP in the figures) and context-aware crossover

with varying rates of crossovers using equations 1 and 2 (la-
beled as P var in the figures to indicate the probability varies
throughout the run). For this paper, the maximum number
of generations are reduced to 50 which was 100 in [7]. As
equations 1 and 2 show that P var experiments are depen-
dent on the maximum number of generations therefore these
experiments were rerun with the new generation value.

As in [7], we used oversized population for the standard
GP experiments, which helped us to better compare the
evaluations count for standard and context-aware crossovers.
In addition, to complete this study we also checked the
performance of context-aware and standard crossovers with
small and normal sized populations respectively. Even with
small populations, context-aware crossover performed bet-
ter than standard crossover where they both had the same
evaluations count, and it is well known that standard GP
performs better with an oversized population. Therefore,
the use of oversized population for standard GP is an addi-
tional help to its performance. For the sake of brevity we
will only discuss the results obtained with normal and over-
sized populations for context-aware and standard crossovers
respectively.

Note, to facilitate reading, in the following sections the
term context-aware crossover will be used to refer to the
new way of using context-aware crossover, i.e. switching on
context-aware crossover after x% completion of a run, not
the way it was used in the original implementation [7]. The
original implementation of context-aware crossover is only
used for P var experiments.

The number of individuals evaluated by each P var, StdGP
and P x can vary dramatically at different stages of a run,
therefore, it seems reasonable to compare the performance
of the setups in terms of number of evaluations done by each
setup.

For each problem, four different graphs were plotted after
completion of the runs. A brief description of each is as
follows:

The Average Best and Average Mean Fitness graphs
show the comparison of the best and average perfor-
mances of the different setups.

The Running Evaluation Count graph keeps track of
the cumulative sum of the evaluations done per gen-
eration. This is a good measure for calculating the
expensiveness of a setup, because the context-aware
crossover operator produces a variable number of off-
spring each generation.

The Program Size graph shows the average number of
nodes per tree generated by each setup. The expen-
siveness of a setup is directly proportional to the tree
sizes generated by it. Smaller trees need less effort to
evaluate due to fewer nodes.

5.1 Quartic Polynomial Symbolic Regression
Problem

To show the performance of context-aware crossover on
the symbolic regression problem domain, Koza’s Quartic
Polynomial Symbolic Regression problem (x4 +x3 +x2 +x)
was employed, and a population size of 200 with fitness pro-
portionate was used. To make comparisons fair between the
standard setup and others an oversized population of 4000
was used for the standard setup. The function and termi-
nal sets used were {+,−,÷,×, sin, cos, log, exp} and {x,�}
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Figure 4: Performance comparison for the Quartic Polynomial Symbolic Regression problem. “StdGP” and
“P var” show the performance of standard GP and varying the probabilties of the two crossover operators,
while the P x curves show the performance of the system when context-aware crossover is turned on after
completion of x% of the run.

respectively. � is the commonly used ephemeral random
constant. The averaged results are shown in figure 4.

Figure 4 (Top-Left) shows the average mean population
fitness. Context-aware crossover, in general, has shown an
exponential gain over P var and StdGP due to the absence of
standard crossover. Surprisingly, early use of context-aware
crossover results in the low final fitness value (P 0 and P 10).
One plausible reason for this behavior is the presence of un-
helpful genetic material in the initial generations. This is
because context aware crossover is greedy, in that, although,
the best possible use is made of the subtrees in the popula-
tion, there is no guarantee that the best subtrees will get a
chance to emerge as quickly as with standard crossover. The
delayed use of context-aware crossover improves the fitness
instantly and relatively cheaper. For example, P 70 after
50,000 evaluations shows 100% and 860% performance gain
over P var and StdGP respectively.

Figure 4 (Top-Right) shows the average best population
fitness. The trends shown by all the plots are similar to
the ones shown by the plots of the figure 4 (Top-Left), and
they indicate that the system shows an improvement in best
fitness as well as mean fitness. By examining figure 4 (Top-
Right) and figure 4 (Top-Left), one can identify the best
point to turn on context-aware crossover for this problem.
As the plots suggest the use of it should be delayed as much
as possible. Note, although P 50 attains the best final fitness

(0.87) but it turns out to be significantly expensive, therefore
we will not advocate its use and think that the setups with
the delayed use of context-aware crossover can attain the
same performance cheaply if are allowed to evolve for a few
more generations.

Figure 4 (Bottom-Left) compares the cumulative evalua-
tions counts for all the setups. The cumulative counts of
P 30 and beyond are much less than the cumulative counts
of StdGP and P var. These dramatically smaller counts have
also resulted in significantly higher fitness values.

Figure 4 (Bottom-Right) compares the program sizes gen-
erated by different setups. The use of context-aware crossover
has not only increased the system’s performance cheaply but
managed to contain code bloat to a great extent. Again,
context-aware crossover has generated significantly smaller
individuals than P var and StdGP setups, showing that not
only are there fewer trees evaluated, but those that are eval-
uated are substantially smaller than with standard GP.

The peformance and program size graphs for this problem
tell us that context-aware crossover should be used after 80%
completion of a run.

5.2 11-Bit Multiplexer Problem
To check the performance of context-aware crossover on

hard problems, we tried to solve the 11-bit multiplexer prob-
lem without using ADFs. This is known to be a very difficult
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Figure 5: Performance comparison for the 11-bit multiplexer problem.

problem for GP when ADFs are not available, and standard
non-ADF based GP implementation could not solve the 6-
bit and higher multiplexer problems. A population size of
50 and fitness proportionate selection method for selecting
parents were used. To make comparisons fair between the
standard setup and others, an oversized population of 2000
was used for the standard setup. The function and the ter-
minal sets were defined as {and, or, nand, nor, not, if} and
{a0, a1, a2, d0, d1, d2, d3, d4, d5, d6, d7} respectively. The av-
eraged results are shown in figure 5.

Figure 5 (Top-Left) compares the average mean popula-
tion fitness values of different setups. The results obtained
by using context-aware crossover are slightly better than
P var and P 0 converges to the maximum fitness value 0.9
after an extended evolution. Only plausible reason behind
difference in the performance of P var is the use of standard
crossover as it is mostly acting as a liability. For this prob-
lem, only use of context-aware crossover throughout the run
results in the best performance as standard crossover has
nothing significant to contribute towards the fitness of the
population, this fact is also evident from the flat plot of
StdGP. As in [7], StdGP failed to show any sign of improve-
ment throughout the run.

Figure 5 (Top-Right) shows the comparison of the average
best fitness values. We were able to solve this problem using
context-aware crossover, even though the system did not em-
ploy ADFs, while standard GP is unable to solve a simpler
version of the problem (6-bit) without ADFs. The perfect
solution was found on three different independent runs and

most of the runs with the P 0 setup finish with fitness values
higher than 0.95. For this problem it is a good strategy to
always and only use context-aware crossover through out a
run.

Figure 5 (Bottom-Left) compares the cumulative evalu-
ations count generated by the different setups. The runs
using context-aware crossover, in general, have achieved the
maximum fitness relatively cheaply compared to standard
GP. Consider figure 5 (Top-Right), after 70,000 evaluations,
P 0 is showing 7% and 31% performance gain over P var and
StdGP respectively..

Figure 5 (Bottom-Right) shows the program sizes gen-
erated by each setup. Interestingly, all the setups using
context-aware crossover generated huge trees when attempt-
ing to improve the population fitness. This seems to be a
requirement for the improvement in the absence of ADFs,
as all the setups with relatively high fitness values gener-
ated relatively larger trees. This indicates that, although
context-aware crossover promotes small trees in general, it
is still capable of producing large ones when required. The
programs generated by standard crossover diminish in size
with time. We believe that ramped half and half initial-
ization method generated relatively larger trees with many
subtrees acting adversely on the fitness, standard crossover
got rid of them with time but couldn’t improve upon them
due to the complexity of the search landscape.

5.3 Lawnmower Problem
The Lawnmower problem is an example of a scalable prob-
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Figure 6: Performance comparison for the Lawnmower problem.

lem, which has been solved both with and without using
ADFs by Koza. In this paper, to show the performance
of context aware crossover on ADF related problems, we
tried to solve it using ADFs. For this problem, a population
size of 100 and tournament selection with size seven were
used. For a fair comparison with the standard setup, a pop-
ulation size of 5000 was employed for the standard setup.
Using Koza’s standard implementation, two function defin-
ing branches (ADF0 and ADF1) and one result producing
branch (RPB1) were used. The results are shown in figure 6.

Figure 6 (Top-Left) shows the fitness comparison of the
setups employed. This is clearly a relatively easy problem,
as all the setups perform fairly well. Barring StdGP, they
all attain the same maximum fitness value by the end. The
context aware crossover setups show an exponential rise in
fitness and reach the maximum value as soon as the context-
aware crossover is turned on.

Figure 6 (Top-Right) shows the plots for the best perfor-
mance of the setups. All the context-aware setups attain the
maximum fitness value by evaluating less than 20,000 indi-
viduals, while StdGP turns out to be quite slow and evaluates
75,000 (3.75 times more) individuals to achieve the same fit-
ness value.

Figure 6 (Bottom-Left) compares the cumulative evalua-
tions count generated by the different setups. Interestingly,
the behavior of the cumulative counts is different from the
ones shown by the aforementioned problems. In the previous
problems the cumulative counts were growing with a posi-
tive derivative while for this problem they are growing with

a constant derivative value. The change in this behavior
can be understood by inspecting the size of the individuals
generated over time (look at Figure 6 (Bottom-Right)). Un-
like other problems, the use of standard crossover for this
problem in the early stages of a run has generated bloated
trees and context-aware crossover after activation used these
bloated parent trees to generate significantly high number
of offsprings due to availability of increased number of the
crossover points. The evaluation of these individuals re-
sulted in higher number of evaluations count. The drop in
the tree sizes in the latter part of the run results in sluggish
growth of the evaluations count over time.

Figure 6 (Bottom-Right) shows the program size gener-
ated by the various setups. The use of standard crossover in
the early stages of the run results in bloated tree, while the
use of context-aware crossover in the latter stages of the run
results in deletion of the dead code (inactive nodes) and in
drop of the program size. The use of context-aware crossover
in the early stages of the run does not result in code bloat
which is evident from the flatness of the pre-P 30 plots.

Although, all the setups using context-aware crossover are
performing quite well but the setups with its delayed use are
performing slightly better than the rest.

6. DISCUSSION
The proposed context-aware crossover has performed con-

sistently well on different problem domains. The experimen-
tal results have confirmed the effectiveness of context-aware
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crossover. It has performed significantly better than the
P var and the StdGP setups on all the problems examined
and was able to reduce the destructive effect of the stan-
dard crossover. Additionally, it improved the performance
dramatically without incurring high costs in terms of num-
bers of individuals evaluated.

On the Quartic Polynomial Symbolic Regression problem
the delayed use of context-aware crossover has not only re-
sulted in the best performance but did so quite cheaply. This
is an evidence of the fact that context-aware crossover acts
as a local-search operator and improves upon the individuals
evolved by standard crossover.

In the case of the 11-bit multiplexer problem we were able
to solve it on three different occasions. This is an impressive
result on a very hard problem, particularly as GP fails to
solve a simpler version of the problem (the 6-bit multiplexer)
when using a similar configuration, that is, without ADFs.
The use of standard crossover had an insignificant effect on
the out come of the run and most of the improvements were
done by employing context-aware crossover.

Finally, the Lawnmower problem is proven to be an easy
one due to the use of ADFs and all the experiments, includ-
ing those using standard crossover, have shown good per-
formance. Although, all the setups involving context-aware
crossover have performed quite well but the ones using it bit
late are performing marginally better than the others.

To summarize, the new setup has shown a dramatic gain
in the performance on all the problems using relatively less
computational effort and by generating quite small programs.
The results also show that any use of context-aware crossover
is good for the system as long it is used after the use of stan-
dard crossover.

7. CONCLUSION & FUTURE WORK
This paper discusses different ways to use context-aware

crossover to get an optimal performance. We have recorded
an exponential gain in the performance and a dramatic re-
duction in the computational effort during a run by only
adjusting its order and time of application.

We have shown that using both standard and context-
aware crossover at the same time during a run can be coun-
terproductive, because most of the time standard crossover
acts destructively and requires an extra effort from the context-
aware crossover to improve the fitness of the population.
This extra effort results in additional evaluations. In most
cases, the use of context-aware crossover only has resulted
in a huge performance gain using less computational effort.

We have also shown that context-aware crossover should
be used after the use of standard crossover. As the use of
standard crossover after the use of context-aware crossover
can results in the loss of all the semantic and syntactic im-
provements previously achieved by context-aware crossover.

In many cases the delayed use of context-aware crossover
during a run can result in a dramatic drop in the evaluations
count without effecting the performance adversely. This is
because GP benefits from having some access to standard
crossover in the initial generations, which is then later ex-
ploited by context aware crossover.

In general, we would advise practioners wishing to use
context-aware crossover to turn it on as late as possible for
the problem on which standard crossover shows a perfor-
mance improvement, for others, only context-aware crossover
should be used throughout the run.

Currently we only introduce a single offspring for each
two parents chosen for crossover, even though a substan-
tial number of them may be produced. Introducing more
will certainly lead to faster convergence, but a balanced ap-
proach will be required to prevent this convergence from
being premature.

We are also looking at the ways to select a subtree in-
telligently from the first parent tree, which will help us to
increase the performance of the system.
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