skip to main content
10.1145/1143997.1144149acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
Article

Dynamics of evolutionary robustness

Published:08 July 2006Publication History

ABSTRACT

Recently there has been considerable interest in determining whether, and how much, evolutionary pressure for genetic robustness influences evolutionary processes. In this paper, we attempt to show that this evolutionary pressure does have a significant effect in typical genetic programming problems. Specifically we demonstrate that in a standard genetic programming implementation to solve a symbolic regression problem, pressure for genetic robustness forces the population away from high fitness, but less robust, solutions in favor of solutions with lower fitness, but higher genetic robustness.

References

  1. F. A. Castillo, K. A. Marshall, J. L. Green, and A. K. Kordon. Symbolic regression in design of experiments: A case study with linearizing transformations. In W. B. Langdon, E. Cantú-Paz, K. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrishnan, V. Honavar, G. Rudolph, J. Wegener, L. Bull, M. A. Potter, A. C. Schultz, J. F. Miller, E. Burke, and N. Jonoska, editors, GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, pages 1043--1047, New York, 9-13 July 2002. Morgan Kaufmann Publishers Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. J. W. Davidson, D. A. Savic, and G. A. Walters. Symbolic and numerical regression: Experiments and applications. Information Sciences, 150(1-2):95--117, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. K. DeJong. An analysis of the behavior of a class of genetic adaptive systems. PhD thesis, 1975.Google ScholarGoogle Scholar
  4. J. Duffy and J. Engle-Warnick. Using symbolic regression to infer strategies from experimental data. In D. A. Belsley and C. F. Baum, editors, Fifth International Conference: Computing in Economics and Finance, page 150, Boston College, MA, USA, 24-26 June 1999. Book of Abstracts.Google ScholarGoogle Scholar
  5. J. A. Edlund and C. Adami. Evolution of robustness in digital organisms. Artif. Life, 10(2):167--179, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. J. Eggermont. Data Mining using Genetic Programming: Classification and Symbolic Regression. PhD thesis, Leiden University, The Netherlands, 2005.Google ScholarGoogle Scholar
  7. J. Arjan G. M. de Visser, J. Hermisson, Gunter P. Wagner, Lauren Ancel Meyers, Homayoun Bagheri-Chaichian, Jeffrey L. Blanchard, Lin Chao, James M. Cheverud, Santiago F. Elena, Walter Fontana, Greg Gibson, Thomas F. Hansen, David Krakauer, Richard C. Lewontin, Charles Ofria, Sean H. Rice, George von Dassow, Andreas Wagner, and Michael C. Whitlock. Perspective: Evolution and detection of genetic robustness. Evolution, 57:1959--1972, 2003.Google ScholarGoogle Scholar
  8. A. Kordon, F. Castillo, G. Smits, and M. Kotanchek. Application issues of genetic programming in industry. In T. Yu, R. L. Riolo, and B. Worzel, editors, Genetic Programming Theory and Practice III. Kluwer, Ann Arbor, 12-14 May 2005.Google ScholarGoogle Scholar
  9. A. Kordon and C.-T. Lue. Symbolic regression modeling of blown film process effects. In Proceedings of the 2004 IEEE Congress on Evolutionary Computation, pages 561--568, Portland, Oregon, 20-23 June 2004. IEEE Press.Google ScholarGoogle ScholarCross RefCross Ref
  10. J. R. Koza. A genetic approach to econometric modeling. In Sixth World Congress of the Econometric Society, Barcelona, Spain, 1990.Google ScholarGoogle Scholar
  11. D. C. Krakauer and J. B. Plotkin. Redundancy, antiredundancy, and the robustness of genomes. Proceedings of the National Academy of Sciences, 99(3):1405--1409, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  12. P. Nordin and W. Banzhaf. Genetic reasoning evolving proofs with genetic search. Technical report, University Dortmund, 1996.Google ScholarGoogle Scholar
  13. G. R. Raidl. A Hybrid GP Approach for Numerically Robust Symbolic Regression, 1998.Google ScholarGoogle Scholar
  14. M. L. Siegal and A. Bergman. Waddingtons canalization revisited: Developmental stability and evolution. Proceedings of the National Academy of Sciences, 99(16):10528--10532, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  15. T. Soule. Resilient individuals improve evolutionary search. Artificial Life, 12(1), 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. M. J. Streeter. The root causes of code growth in genetic programming. In C. Ryan, T. Soule, M. Keijzer, E. Tsang, R. Poli, and E. Costa, editors, Genetic Programming, Proceedings of EuroGP'2003, volume 2610 of LNCS, pages 443--454, Essex, April 2003. Springer-Verlag. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. C. H. Waddington. Canalization of development and the inheritance of acquired characters. Nature, 150:563--565, 1942.Google ScholarGoogle ScholarCross RefCross Ref
  18. C. Wilke and C. Adami. Evolution of mutational robustness. Mutation Research, 522:3--11, 2002.Google ScholarGoogle ScholarCross RefCross Ref

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Conferences
    GECCO '06: Proceedings of the 8th annual conference on Genetic and evolutionary computation
    July 2006
    2004 pages
    ISBN:1595931864
    DOI:10.1145/1143997

    Copyright © 2006 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 8 July 2006

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • Article

    Acceptance Rates

    GECCO '06 Paper Acceptance Rate205of446submissions,46%Overall Acceptance Rate1,669of4,410submissions,38%

    Upcoming Conference

    GECCO '24
    Genetic and Evolutionary Computation Conference
    July 14 - 18, 2024
    Melbourne , VIC , Australia

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader