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ABSTRACT
Embedded Cartesian Genetic Programming (ECGP) is an
extension of the directed graph based Cartesian Genetic Pr-
ogramming (CGP), which is capable of automatically ac-
quiring, evolving and re-using partial solutions in the form
of modules. In this paper, we apply for the first time, CGP
and ECGP to the well known Lawnmower problem and to
the Hierarchical-if-and-Only-if problem. The latter is nor-
mally associated with Genetic Algorithms. Computational
effort figures are calculated from the results of both CGP
and ECGP and our results compare favourably with other
techniques.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming—
Program synthesis; I.2.8 [Artificial Intelligence]: Problem
Solving, Control Methods and Search

General Terms
Algorithms, Design, Performance

Keywords
Cartesian Genetic Programming, Embedded Cartesian Ge-
netic Programming, Module Acquisition, Automatically De-
fined Functions, Evolution, Lawnmower problem, Hierarch-
ical-if-and-only-if

1. INTRODUCTION
Embedded Cartesian Genetic Programming (ECGP) is an

extension of the directed graph-based Cartesian Genetic Pr-
ogramming (CGP), incorporating ideas from a technique
known as Module Acquisition [1]. This allows the auto-
matic acquisition, evolution and re-use of partial solutions
in the form of modules. Previous work [15, 17, 16] has
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shown ECGP to be more computational efficient than CGP
on evolving solutions to a range of digital circuit problems
(such as even parity, adders and multipliers) and that the
speedup grows with problem difficulty. This suggests that
ECGP may be even more computational efficient than CGP
on harder problems. The aim for this paper is to build on the
results from the previous work on ECGP, by applying the
technique to two problems that are not related to circuit
evolution. The two problems chosen are: the lawnmower
problem, which is a well known problem in the GP commu-
nity and the Hierarchical if-and-only-if (H-IFF) problem,
which is normally associated with Genetic Algorithms.

The plan for the paper is as follows: Section 2 is an
overview of related work. In section 3 we describe ECGP
and compare it with CGP. The details of our experiments,
including descriptions of the lawnmower and H-IFF prob-
lems are shown in section 4 followed by the results and com-
parisons for both experiments in section 5. Section 6 gives
conclusions and some suggestions for future work.

2. MODULE ACQUISITION,
AUTOMATICALLY DEFINED
FUNCTIONS AND M-ACROS

Module Acquisition [1] adds two operators to the evolu-
tionary process, compress that selects a section of the geno-
type to make it immune to manipulation from operators
(the module) and expand which decompresses a module in
the genotype therefore allowing this section of the genotype
to be manipulated once more. The fitness of a genotype is
unaffected by these operators. Module Acquisition allows
the possibility of having modules within modules. These
techniques have been shown to decrease the time taken to
find a solution. Rosca’s method of Adaptive Representation
through Learning (ARL) [11] also extracted program seg-
ments that were encapsulated and used to augment the GP
function set. However, Dessi et al [3] showed that random
selection of program sub-code for re-use is more effective
than Roscas method across a range of problems. Once the
contents of modules are themselves allowed to evolve (as in
ECGP) they become a form of Automatically Defined Func-
tion, however in contrast to Koza’s form of Automatically
Defined Functions [6] and Spector’s Automatically Defined
Macros [13], there is no explicit specification of the number
of or the internal structure of such modules. This freedom
does exist in Spector’s PushGP [14].
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Figure 1: Examples of evolved CGP and ECGP
genotypes for H-IFF problem with an 8-bit string
(3 inputs, 1 output). For each node, the underlined
gene encodes the function and the node type (only
the function in CGP). The remaining genes encode
the node inputs. Every node encoded in the CGP
genotype represents a single output primitive func-
tion, therefore every node encoded in the ECGP
genotype is of node type 0, and the second integer
of each pair encoding the node inputs is always 0.
The node index is underneath each node.

3. EMBEDDED CARTESIAN GENETIC
PROGRAMMING (ECGP)

3.1 Representation
ECGP and CGP share the same structure and represent a

program as a directed graph (that for feed-forward functions
is acyclic). The benefit of this type of representation is the
implicit re-use of nodes in the directed graph.

The genotype is a list of integers that encode the con-
nections and functions of each node of the directed graph.
CGP used a program topology defined by a rectangular grid
of nodes with a user defined number of rows and columns.
However, later work in CGP always chose the number of
rows to be one, thus giving a one-dimensional topology.
This is always used in ECGP. In CGP, the genotype is a
fixed length representation (in terms of nodes and genes).
However, in ECGP the genotype is a variable length repre-
sentation (in terms of nodes and genes), in which the number
of nodes and genes in the graph can vary but is bounded.
The number of nodes in the ECGP genotype vary as a re-
sult of the compression and expansion of modules. Also,
the number of genes vary as a result of the re-use of mod-
ules elsewhere in the genotype, and the module mutation
operators changing the number of node inputs. Despite the
differences, both genotypes decode into a bounded variable-
length directed graph (phenotype), as not all of the nodes
encoded in the genotype have to be connected. This allows
areas of the genotype to be inactive and have no influence
on the phenotype, leading to a neutral effect on genotype
fitness called neutrality. This unique type of neutrality has
been investigated in detail [7] and found to be extremely
beneficial to the evolutionary process on the problems stud-
ied. In Figure 1 an example of the differences between a
CGP and an ECGP genotype are shown. All of the ECGP
genotypes in the initial population have the same number
of nodes and genes, and every node represents a primitive
function (no modules are present).

Each of the nodes consist of a number of genes. In ECGP,
each gene consists of a pair of integers, as opposed to a sin-
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Figure 2: An ECGP genotype and corresponding
phenotype for the 8-bit H-IFF problem. The un-
derlined genes encode the function and node type
of each node. The function lookup table is: v8a(0),
frog(1), progn(2). See section 4.2 for details. The
index labels are shown underneath each program
input and node in the genotype and phenotype.
Module 6 represents a possible structure for a sub-
routine constructed from the function set. The inac-
tive areas of the genotype and phenotype are shown
in grey dashes (nodes 4 and 6).

gle integer in CGP. The first integer pair of each ECGP
node encodes the primitive function (as in CGP) or module
(by their unique identifier) that the node represents and the
node type (introduced in ECGP). Node types allow the iden-
tification of nodes encoded in the genotype which represent:
primitive functions (node type 0), modules that contain an
original section of the genotype (node type I) and modules
that contain a re-used section of the genotype (node type
II). Different node types need to be identified, as operators
act differently on the nodes encoded in the genotype de-
pending on their node type (further details are explained
in section 3.3). The remaining integer pairs in each ECGP
node encode the node inputs. The first integer in each pair
encodes the node index in the genotype or program input
(terminal), whilst the second integer encodes the output of
the node (nodes can have multiple outputs in ECGP). The
number of inputs and outputs that a node has is dictated
by the arity of its function.

The nodes take their inputs in a feed forward manner from
either the output of a previous node or from a program
inputs (terminals). The program inputs are labelled from
0 to n-1 where n is the number of program inputs. The
nodes in the genotype are also labelled sequentially starting
from n to n+m-1 where m is the user-determined upper
bound of the number of nodes. If the problem requires k
program outputs then k integers are added to the end of the
genotype, each one encoding a pointer to the output of a
node in the graph where the program output is taken from.
These k integers are initially set as pointers to the outputs of
the last k nodes in the genotype. Figure 2 shows an ECGP
genotype and its corresponding phenotype (a 8-bit H-IFF
problem), whilst Figure 3 illustrates the decoding process of
the genotype.

Both CGP and ECGP use a (1 + 4) evolutionary strategy
as defined below:
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Figure 3: Decoding the ECGP genotype from Figure
2. Step 1: Output A (oA) connects to the output of
node 8, move to node 8. Step 2: Node 8 connects to
the output of nodes 3 and 7, move to nodes 3 and
7. Step 3: Nodes 3 and 7 connect to the output of
nodes 3 and 5, and program input 0, move to node
5 (as node 3 has already been processed). Step 4:
Node 5 only connects to program input 0, therefore
the genotype is now decoded.

1. Randomly generate an initial population of 5 geno-
types and select the fittest.

2. Carry out point-wise mutation on the winning parent
to generate 4 offspring.

3. Construct a new generation with the winner and its
offspring.

4. Select a winner from the current population using the
following rules:

(a) If any offspring has a better fitness; the best be-
comes the winner.

(b) Otherwise, an offspring with the same fitness as
the best is randomly selected.

(c) Otherwise, the parent remains as the winner.

5. Go to step 2 unless the maximum number of genera-
tions is reached or a solution is found.

3.2 Module Representation
A module is represented as a bounded variable length

genotype that has the same characteristics of a ECGP geno-
type. The module genotype consists of a list of integers and
is split into two parts: the module header and the mod-
ule body. The module header contains four integers and
stores information about the module. Each of the four in-
tegers encodes the module identifier, the number of module
inputs, the number of nodes contained in the module and
the number of module outputs respectively. The module
body encodes the connections and functions of the nodes
contained in the module and the module outputs (similar to
program outputs), in the same way as any ECGP genotype.
An example of a module genotype showing the separate com-
ponents is shown in Figure 4, where the first block of the
module genotype consisting of four numbers represents the
module header. The nodes are represented in the same man-
ner as ECGP and the module outputs encode which nodes
in the module the outputs are taken from.

6:3:4:2 0:0 0:0 1:0 1:0 1:0 1:0 3:0 3:0 6:0

3 4 oA oB

0:0 3:0 2:0

65

Module 
Output B

Module 
Input A

0
Module 
Input B

1

Module 
Output A

4

Frog

6

V8AModule 
Input C

2

3

V8A

5

Frog

Figure 4: The genotype and corresponding pheno-
type of a module 6 from Figure 2. The first sec-
tion of the genotype is the module header. For each
node, the underlined genes encode the function, the
remaining genes encode the node inputs. The func-
tion lookup table is: v8a(0), frog(1), progn(2). The
index labels are shown underneath each module in-
put and node in the genotype and phenotype.The
inactive areas of the genotype and phenotype are
shown in grey dashes. The dotted box represents
the edges of the module.

The size of a module genotype is determined by the num-
ber of nodes and module outputs that it encodes. The num-
ber of nodes encoded in the module genotype is bounded
between a minimum limit of two (any fewer and it would
either be an empty module or a primitive function) and a
maximum limit that is set by the user. Likewise, the num-
ber of module outputs encoded in the module genotype is
also bounded between a minimum limit of one (otherwise
there would be no way to connect to the module and access
its result to the given inputs) and a maximum of p module
outputs, where p is equal to the number of nodes contained
in the module (one module output per node). The number
of module inputs that a module is allowed to have is also
restricted between a minimum of two and a maximum of
2p module inputs. However, the number of module inputs
allowed does not affect the size of the module genotype, as
they are not encoded in the module genotype. In its current
form, ECGP only allows modules to contain nodes repre-
senting primitive functions rather than nodes representing
other modules.

Once a module is created, the module genotype is stored
in the module list, which is an extension of the primitive
function list. This allows any node in the genotype of an
individual to be mutated into any module or primitive func-
tion present in either of these lists for that generation. The
module list is dynamic and has no restrictions on its maxi-
mum size and is updated every generation when the fittest
individual (chosen in accordance with the evolutionary strat-
egy used in Section 3.1) in the generation is promoted to the
next generation (i.e. the next generation inherits the module
list of the fittest individual in the previous generation). This
creates a regulatory control of the size of the module list,
so that it does not grow beyond a certain size. The nodes
contained inside the module are not necessarily connected
and are immune from the main genotype point mutation op-
erator. However, the module itself is allowed to be mutated
by the module mutation operators (see Section 3.3).
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3.3 Operators
ECGP extends CGP by allowing the use of dynamic acqui-

sition, evolution and the re-use of modules. This is achieved
through extra mutation operators, which are used in con-
junction with the genotype point mutation of CGP. The
compress operator constructs modules by selecting two ran-
dom points in the genotype (in accordance with the rules for
the module size restrictions) and encapsulates all the nodes
(of type 0) between these two points into a new module,
which is encoded into a module genotype as described ear-
lier. Note, that if there any nodes of type I or II between
the two selected points, the compress operator does not take
place (this is because at present we do not allow modules
within modules). The number of module inputs a module is
initialized with, is determined by the number of connections
between the inputs of the nodes that are going to be en-
capsulated into a module, and the outputs of any previous
nodes or program inputs (terminals) in the genotype, when
the module is created. Likewise, the number of module out-
puts possessed by a module is determined by the number
of connections between the inputs of the latter nodes in the
genotype and the outputs of the nodes that are going to be
encapsulated in the module, when it is created. Any module
created by the compress operator is represented in the geno-
type as a type I node. The gene representing the function
and node type in any type I node is immune from the geno-
type point mutation operator therefore allowing the type I
node to remain in the genotype of an individual until it is
removed by the expand operator.

The expand operator destroys a type I node by replacing
it in the genotype with the nodes contained in the module,
which the type I node represented. The inputs of the lat-
ter nodes in the genotype are updated in the final stage of
both the compress and expand operators, so all the connec-
tions remain intact. The compress and expand operators
only make a structural change to the genotype and have no
affect on genotype fitness, as the genotype before and after
the action of these operators represent the same directed
graph. The expand operator has twice the probability of
being applied to the genotype than the compress operator.
We found that this introduces a pressure for good modules
to replicate quickly in the genotype of an individual in or-
der to survive. This can be seen as survival-of-the-fittest
modules within the genotype itself.

Modules can replicate within a genotype through the ac-
tion of the genotype point mutation operator. This is iden-
tical to the operator used in CGP, except it can mutate the
function of a node (of type 0 or II) to any of the primitive
functions or any available modules in the module list. If a
node is mutated to represent a module, it is classed as a
type II node. The genotype point mutation operator can
also mutate the function of a type II node to any of the pre-
defined functions or any available modules in the module
list. It can also mutate any of the inputs of a type II node
in the same way it would mutate the inputs of a type 0 node.
If the function of a type 0 or type II node is mutated, the
new node keeps however many of the original nodes inputs it
needs, and randomly generates any extra inputs it requires.
Type II nodes are also immune from the expand operator,
as this could cause excessive growth of the genotype that
could possibly lead to bloat.

To summarize the properties of node types 0, I and II are
shown in Table 1. A module can be represented by two node

Table 1: The three nodes types and how the opera-
tors effect each of them

Node Action of Action of Action of Genotype
Type Compress Expand Point Mutation

0
Compress

Immune
Changes function

into module or inputs

I Immune
Expand

Changes inputs
into nodes

II Immune Immune
Changes function

or inputs

types (node type I and II) in order to reduce the excessive
growth of the genotype and to induce a selection pressure
on the modules. Therefore, the modules have to replicate in
the genotype (make the transition from being represented
by a type I to a type II node) and be associated with a high
fitness genotype in order to survive. Once the module is
represented by a type II node it is harder for the module to
be removed from the module list, as it has a lower proba-
bility of being removed from the genotype (as it cannot be
expanded). This is advantageous as it allows good modules
to stay in the module list, but it is also disadvantageous
as it could possibly allow the evolution of the genotype to
progress at a slower rate.

The module genotypes contained in the module list can
also be evolved through the action of five different operators:
module point mutation, add-input, add-output, remove-input
and remove-output. The module point mutation operator is
a restricted version of the ECGP genotype point mutation
operator, as it can still mutate the inputs and function of any
node encoded in the module genotype, but it is not allowed
to introduce any type II nodes into the module genotype. It
can also mutate which node output each of the module out-
puts are connected to (similar to program outputs in CGP).
The add-input and add-output operators allow greater con-
nectivity to and from the contents of a module, by increasing
the number of module inputs or module outputs by one re-
spectively each time either operator is applied, making a
more generalized module. When the add-input operator is
applied to a module, the gene representing the number of
module inputs in the module header is incremented by one,
and an extra gene is inserted into all nodes (type I and type
II) representing the module in the genotype, as a randomly
chosen value for the new module input. Likewise, when the
add-output operator is applied to a module, the gene repre-
senting the number of module outputs in the module header
is incremented by one, and an extra gene is added to the
module output section of the module genotype, as randomly
chosen values for the node index and node output that the
new module output is connected to.

Alternatively, the remove-input and remove-output oper-
ators reduce the connectivity to and from the contents of
a module, by decreasing the number of module inputs or
module outputs by one respectively each time either opera-
tor is applied, therefore making a more specialized module.
When the remove-output operator is applied to a module,
the gene representing the number of module inputs in the
module header is decremented by one, and the gene corre-
sponding to the module input randomly chosen, is removed
from all nodes (type I and type II) representing the module
in the genotype. Likewise, when the remove-output opera-
tor is applied to a module, the gene representing the number
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of module outputs in the module header is decremented by
one, and the gene corresponding to the randomly chosen
module output is removed from the module output section
of the module genotype. All of the operators: add-input,
add-output, remove-input, and remove-output must comply
with the restrictions on the number of module inputs and
module outputs at all times. Further information about all
of the module operators (including figures explaining their
operation) is available in our previous work [15, 17, 16].

4. EXPERIMENT DETAILS
The parameters used for CGP and ECGP on both the

Lawnmower and H-IFF problems are shown in Table 2. The
probability values chosen for the ECGP operators were taken
from [16].

4.1 Lawnmower Problem
The Lawnmower Problem was first introduced by Koza in

his second book [6] to test the effectiveness of Automatically
Defined Functions by exploiting the modularity of the lawn-
mower problem. Since then it has been used as a benchmark
problem by many other researchers in the testing of new GP
techniques and representations [9].

The concept of the lawnmower problem is to guide a lawn-
mower around a grass lawn, which consists of n x m squares
(where n and m are user defined parameters). The lawn-
mower moves around the lawn one square at a time, and
cuts all the grass in each square it visits. The lawnmower
is allowed to revisit a square of the lawn as many times
as it likes, but the grass in a square can only be cut by the
lawnmower once, therefore by revisiting squares of the lawn,
the lawnmower is using an inefficient approach to mowing
the lawn. However, the lawn is a ”magic” lawn, when the
lawnmower moves off a square on any side of the lawn, it re-
appears in the square on the opposite side of the lawn. The
lawnmower always starts in the centre square of the lawn
and starts off by facing in a northward direction. The lawn
is cut when every square has been visited by the lawnmower.

The movement of the lawnmower is controlled by a CGP
or ECGP program. The program has three inputs which
it can use: move, which moves the lawnmower one square
forward on the lawn in the direction the lawnmower is fac-
ing, and cuts all of the grass in that square, turn, which
rotates the lawnmower 90◦ clockwise in the current square
on the lawn and random constant, which stores a randomly
distributed vector for the entire run of the form [x, y ], where
0 <= x < n and 0 <= y < m. In conjunction with the oper-
ations just described, the move and turn inputs also return
the vectors [0, 0], so that mathematical operations can take
place on any combination of the inputs. For further details
see [6].

The function set for the program consists of: v8a, which
takes two vectors and returns the result from the addition of
these two vectors, frog, which takes a vector [x, y ] and jumps
the lawnmower to another square on the lawn, a distance of
x squares in the horizontal direction and y squares in the
vertical direction away, and returns the vector [x, y ], and
progn, which takes two inputs and executes everything from
the first input, and then everything from the second input,
before returning the resulting vector from the second input.

The fitness function for this problem is defined as the
number of squares on the lawn which are left uncut by the
lawnmower, after the evolved program has been run once.

1 1 0 00 1 - 1 0 1 - 1 1 1

1 1 0 1 - 1 0 0 0 1 - 1 1 1 1 1

1 1

1 1 0 1 - 1 0 0 0 1 - 1 1 1 1 1

1 1 0 1 - 1 0 0 0 1 - 1 1 1 1 1 16 x 0 = 0

8 x 0 = 0

4 x 1 = 4

2 x 4 = 8

1 1 0 1 - 1 0 0 0 1 - 1 1 1 11 1 x 14 =14

Total Fitness = 26

FB x NB

Figure 5: The H-IFF fitness function for a 16-bit
string containing 0’s, 1’s and blanks(-). FB repre-
sents the fitness bonus at each level of the hierarchy
for a correct block, and NB represents the number
of correct blocks in the current level of the hierar-
chy.

For this problem we are minimizing the fitness value, as a
lawn in which all the squares are cut would have a fitness
score of zero, and would be a solution to the problem.

4.2 Hierarchical If-and-Only-If (H-IFF)
The Hierarchical If-and-Only-If Problem was proposed by

Watson, Hornby and Pollack in the late nineties, as a more
suitable problem for testing the performance of Genetic Al-
gorithms using crossover. We suggest that this problem
might be considered as a benchmark for GP techniques. In
our case, we are using it to allow a comparison of CGP and
ECGP and their scalability. H-IFF is based on the Building
Block Hypothesis [4, 2] and groups bits into blocks, then
these blocks into larger blocks, and continues until a hier-
archy of blocks is formed. As you ascend the hierarchy, at
each level the number of blocks halve whilst the size of the
blocks double, until you reach the top block of the hierar-
chy which is the solution to the problem. There have been
many other problems (for example the Royal Road func-
tions [12, 8, 5]), which are constructed using the concepts
of building blocks and have been used for testing Genetic
Algorithms, but H-IFF differs from others by modelling the
building block interdependency in a consistent hierarchical
fashion. However, H-IFF has two possible solutions, a bit
string containing all 0’s and a bit string containing all 1’s
(therefore all building blocks also have two solutions). This
leads to a flatter fitness landscape with multiple local optima
and two global optima, which makes the problem much more
difficult. Watson has suggested the H-IFF problem is very
difficult to solve unless crossover is used [10]. Figure 5 de-
scribes the H-IFF fitness function in more detail, and the
associated fitness rewards with each level of the hierarchy.

One of the main issues we faced was deciding how to apply
CGP and ECGP to a problem which is designed for Genetic
Algorithms. A method was needed which would scale well
for different size bit-strings. The method eventually chosen
was heavily influenced by the Lawnmower Problem, which
was detailed in section 4.1. Instead of controlling the ac-
tions of a lawnmower on a two dimensional lawn, the CGP
program controls a tape head on a piece of one dimensional
tape, which is divided into n squares, where n is the length
of the bit-string. The initial value of all the squares on the
tape is blank, and the tape head starts in the centre of the
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Table 2: The parameter settings used for CGP and ECGP in all of the experiments (* indicates ECGP
only). The mutation rate is expressed as a percentage of the genotype length. All of the operator rates and
probabilities are per generation.

Parameter Value
Population size 5

Initial genotype size 200 nodes (600 genes)
Genotype point mutation rate 3% (18 Genes)

Genotype point mutation probability 1
Compress/Expand probability * 0.1/0.2

Module point mutation probability * 0.04
Add/Remove input probability * 0.01/0.02
Add/Remove output probability * 0.01/0.02

Maximum module size * 5 or 10 nodes
Module list initial state * Empty

tape. Similar to the lawnmower problem, the tape in the H-
IFF problem is a “magic” tape, when the tape head moves
off one end of the tape it reappears in the square at the op-
posite end of the tape. When the tape head visits a square,
it changes the squares value according to the rule:

if(x == blank), x = 0

if(x == 0), x = 1 (1)

if(x == 1), x = 0

where x is the value of the square. This operation is the
same as a bit flip operator once a square contains a value.
When the tape head has finished, it will have produced a
bit-string of length n containing the symbols: - (blank), 0
and 1, which can then be evaluated using the H-IFF function
and assigns a fitness value to the CGP program.

The CGP program which controls the tape head takes
three program inputs: move, which moves the tape head one
square in the direction it is facing, and changes the value of
the new square according to Equation 1, turn, which alters
the direction in which the tape head travels along the tape
from right to left or vice versa, and random constant, which
stores the value of a random number, r, chosen at the start
of each independent run, where 0 <= r < n. Both move
and turn also return the constant 0 so that mathematical
operations can be performed on the program inputs.

The function set used by CGP is also reminiscent of the
lawnmower problem as it uses the same functions: progn,
a program node which executes the graph connected to its
first input, followed by the graph connected to its second
input and returns the result of the second input, v8a, which
performs addition on the values of its two inputs and returns
the result and frog, which jumps the tape head to a new
square on the tape, a number of squares specified by its
input in the direction the tape head is facing, and alters the
value in the new square according the rule in Equation 1.

5. RESULTS
For all experiments, the computational effort was calcu-

lated using the formula in Equation 2 from [3] with z=99%.

P (M, i) =
Ns (i)

Ntotal
,

R (z) = ceil

�
log (1− z)

log (1− P (M, i))

�
, (2)

I (M, i, z) = MR (z) i + 1

The computational effort figures for CGP and ECGP ap-
plied to the lawnmower and H-IFF problems are shown
in Tables 4 and 3 respectively. In Table 4, the compu-
tational effort figures for Parallel Distributed GP (PDGP)
and GP (with and without Automatically Defined Functions
(ADFs)) were taken from [9] and [6] respectively. Statistics
for the average number of fitness evaluations and the stan-
dard deviation are also included in Table 3.

For both the lawnmower and H-IFF problems, all fifty
independent runs of CGP and ECGP produced 100% suc-
cessful solutions.

For all lawn sizes of the lawnmower problem, it can be
seen that the performance of CGP and ECGP starts off
fairly evenly for the smaller lawn sizes but as the lawn size
increases, ECGP starts to perform better than CGP. In
ECGP, the speedup grows with problem difficulty, suggest-
ing that ECGP could perform even better on larger prob-
lems. This speedup can be attributed to the discovery and
re-use of sub-routines, which allow the lawnmower to cut
multiple numbers of grass squares covering an area of the
lawn and then allowing the same pattern to be repeated
elsewhere on the lawn. This supports the previous findings
of ECGP in [15, 17, 16].

Comparing the computational effort figures for CGP with
Parallel Distributed GP (up to a lawn size of 128) and GP
without Automatically Defined Functions (up to a lawn size
of 96), it can clearly be seen that CGP performs better than
both techniques. CGP performs between 2.2 and 3.1 times
faster than Parallel Distributed GP and between 14.8 and
1831.4 times faster than GP without Automatically Defined
Functions. In fact, CGP even outperforms GP with Auto-
matically Defined Functions on this problem. This result
emphasises the performance gain of using a graph based
representation (as in CGP and Parallel Distributed GP),
rather than a tree based representation (as in GP). It can
also be seen from comparing the two techniques which are
capable of reusing sub-routines, ECGP and GP with Auto-
matically Defined Functions, that ECGP performs between
3.9 and 12.5 times faster than GP with Automatically De-
fined Functions. Notice also that the speedup grows with
the size of the lawn, indicating that ECGP may perform
even better than GP with Automatically Defined Functions
on larger problems.

For all lengths of bit-string in the H-IFF problem, CGP
performs better than ECGP. CGP also seems to scale bet-
ter than ECGP as the length of the bit-string increases,
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Table 3: The computational effort, average number of fitness evaluations (square brackets) and standard
deviation (round brackets) figures for CGP and ECGP (with a maximum module size of 3, 5 and 8) applied
to the H-IFF problem. All figures are in terms of thousands.

Length CGP ECGP-3 ECGP-5 ECGP-8
8 1.0 [0.2] (0.3) 1.1 [0.3] (0.4) 1.0 [0.2] (0.3) 1.1 [0.4] (0.8)
16 2.7 [4.0] (12.6) 1.9 [0.7] (0.8) 3.4 [4.8] (16.8) 2.9 [1.3] (2.4)
32 3.8 [76.3] (516.6) 4.3 [15.5] (70.3) 4.2 [138.4] (944.3) 4.2 [7.9] (25.8)
64 5.6 [4.7] (13.6) 6.7 [231.9] (1,612.5) 7.7 [57.6] (293.1) 7.7 [16.7] (91.3)
128 5.8 [2.4] (5.2) 7.0 [103.5] (719.6) 9.0 [5.0] (18.0) 8.8 [43.7] (292.4)
256 8.3 [2.3] (2.5) 11.5 [6.0] (14.9) 19.2 [25.0] (130.4) 15.8 [11.9] (34.7)

Table 4: The computational effort (in terms of thousands) and speedup figures for CGP, ECGP, PDGP and
GP for the Lawnmower problem.

Lawn Size CGP ECGP PDGP GP(No ADFs) GP(With ADFs) Speedup Speedup Speedup Speedup
(1) (2) (3) (4) (5) (1)&(2) (1)&(3) (1)&(4) (2)&(5)

32 1.3 1.3 4 19 5 1.0 3.1 14.8 3.9
48 1.6 1.6 5 56 9 1.0 3.1 35.0 5.6
64 2.4 1.6 5 100 11 1.5 2.1 41.6 6.9
80 1.9 1.9 5 561 17 1.0 2.6 291.9 8.8
96 2.6 1.6 6 4,692 20 1.6 2.3 1831.4 12.5
112 2.6 1.9 6 - - 1.3 2.3 - -
128 3.2 2.2 7 - - 1.4 2.2 - -
144 2.6 1.9 - - - 1.3 - - -
160 3.2 1.9 - - - 1.7 - - -
176 2.9 1.9 - - - 1.5 - - -
192 3.5 2.6 - - - 1.4 - - -
208 2.9 2.2 - - - 1.3 - - -
224 3.8 2.9 - - - 1.3 - - -
240 4.2 2.6 - - - 1.6 - - -
256 3.5 1.9 - - - 1.8 - - -

suggesting that CGP may perform better than ECGP on
even longer bit-strings. The performance difference between
ECGP and CGP could be attributed to the overhead of mod-
ule acquisition, evolution and re-use in ECGP not being able
to find and exploit any modularity in the program, which
generates the bit-string. Alternately, the complexity of the
problem could be too low, suggesting ECGP requires more
time to discover and learn how to use good modules than
CGP does to find a solution.

The results in Table 3 only compare CGP and ECGP, as
no other GP technique has been applied to this problem.
The only published work with any results for the H-IFF
problem is by Watson et al [10], which states the results of
a Genetic Algorithm (GA) with 2-point crossover on the 64-
bit H-IFF problem. The GA with 2-point crossover applied
to the 64-bit H-IFF problem, only reached a fitness of 358
out of a possible 448 when it had reached 1000 generations.
It also used a population size of 1000 with elitism of 1%. The
results were averaged over ten runs. Using these figures it is
possible to calculate a rough computational effort figure for
the result using Equation 2. If we are really generous and
say that by generation 400 (as the fitness did not change
after this), the GA had actually solved the problem, and
give the computational effort calcualtion the best possible
R(z) value of 1, then we can calculate the computational
effort of the GA as shown in Equation 3, where the value of
990 is established from 1000 - 1% (10 generations).

CE = 1 ∗ 990 ∗ 400 = 396, 000 (3)

Comparing the computational effort figures for the GA
with those of CGP or ECGP for the 64-bit H-IFF problem,
it can clearly be seen that CGP and ECGP perform signifi-
cantly better (by a factor of approximately 71 or 59 respec-
tively) than the GA on the 64-bit H-IFF problem. Compar-
ing the average number of fitness evaluation statistics of all
three techniques also shows a similar trend. The results of
CGP and ECGP are contrary to the views expressed by Wat-
son et al [10]. Watson et al believe that crossover is required
to solve the H-IFF problem. Neither CGP or ECGP use any
form of crossover operator, they are both mutation based.
The implicit re-use of nodes in the graph-based representa-
tion of CGP and ECGP means a mutation in the genotype
can cause changes of varying magnitude in the phenotype.
We think that our favourable results are related to the ben-
eficial properties of the genotype-phenotype mapping used
in CGP and ECGP, particularly the use of neutrality.

6. CONCLUSION
In this paper, we have presented for the first time the

application of CGP and ECGP to two problems (the lawn-
mower and H-IFF problems) over a range of problem sizes.
On the lawnmower problem, both CGP and ECGP have
been shown to perform better than GP (with and without
Automatically Defined Functions) and Parallel Distributed
GP. ECGP is also shown to perform better than CGP and
the speedup grows with problem difficulty, indicating ECGP
may perform even better than CGP on larger, more diffi-
cult problems (a similar trend was also found when compar-
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ing ECGP with GP with Automatically Defined Functions).
This follows a very similar trend to the results found in the
previous work on ECGP [15, 17, 16].

On the H-IFF problem, CGP surprisingly outperforms
ECGP (with varying maximum module sizes) over all leng-
ths of bit-string tested. However, both CGP and ECGP sig-
nificantly outperform the GA with 2-point crossover from
[10], based on our approximate computational effort figures.

It was also found that the maximum module size chosen
for ECGP can drastically affect performance and will be in-
vestigated further in future investigations. Currently ECGP
does not allow modules within modules. However, we do
have a working version of ECGP that allows embedded sub-
modules but we are currently investigating the problem of
bloat within the embedded sub-modules found in the inac-
tive areas of the module genotype. When a solution is found,
we intend to allow embedded sub-modules in future work,
as this could lead to an even greater boost in performance.
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