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1. INTRODUCTION 
One of the most difficult challenges in human genetics is the 
identification and characterization of susceptibility genes for 
common complex human diseases.  The presence of gene-gene 
and gene-environment interactions comprising the genetic 
architecture of these diseases presents a substantial statistical 
challenge.  As the field pushes toward genome-wide association 
studies with hundreds of thousands, or even millions, of 
variables, the development of novel statistical and 
computational methods is a necessity. Previously, we introduced 
a grammatical evolution optimized NN (GENN) to improve 
upon the trial-and-error process of choosing an optimal 
architecture for a pure feed-forward back propagation neural 
network.  GENN optimizes the inputs from a large pool of 
variables, the weights, and the connectivity of the network - 
including the number of hidden layers and the number of nodes 
in the hidden layer.  Thus, the algorithm automatically generates 
optimal neural network architecture for a given data set.  

Like all evolutionary computing algorithms, grammatical 
evolution relies on evolutionary operators like crossover and 
selection to learn the best solution for a given dataset.  We 

wanted to understand the effect of fitness proportionate versus 
ordinal selection schemes, and the effect of standard and novel 
crossover strategies on the performance of GENN. 

2.  METHODS  

2.1 Grammatical Evolution Neural Networks 
(GENN) 
Details of the GENN method has previously been described in 
detail in Motsinger et al 2006 [1]. 

2.2 Selection Techniques 
There are two main classes of selection techniques: fitness 
proportionate and ordinal selection.  For this study, we wanted 
to test the impact these two types of selection have on the 
performance of GENN.  To compare fitness based selection to 
ordinal based, tournament selection was tested and compared to 
roulette wheel selection for its effect on the performance of 
GENN.  

2.3 Crossover Strategies 
One criticism of GE is the use of a seemingly destructive 
single-point crossover operator. To address this concern, our 
group has developed two alternative crossover strategies that 
more strictly maintain building blocks than standard one-point 
GA crossover.   

Typically in a GA, a simple one-point crossover is used, 
where a crossover point is chosen on two binary strings 
(between codons), and corresponding segments of the string are 
swapped between the two parent strings. GENN was initially 
implemented using a standard two-point crossover during the 
GA.  This method will be referred to as a “standard” crossover 
(Std.).  The first new crossover strategy, “linear homology 
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crossover” (L.H.) looks for matching (as defined functionally by 
the grammar) codons in the grammar.  In the first step of this 
crossover, a site along the linear chromosome of Parent #1 is 
randomly selected and the codon at that site is translated by the 
grammar.  A random point along the chromosome of Parent #2 
is selected, and then the chromosome is scanned (randomly 
either left to right or right to left) and the codon transcribed by 
the grammar until a match is found for the codon on Parent #1.  
After a match is found, crossover occurs between these two 
matching codons. The second new method, in theory, preserves 
the building blocks more than either standard or linear 
homology crossover.  This second new method, called “tree-
based” crossover (T.B.), swaps functionally analogous trees. 
The linear genome is transcribed by the grammar, and the 
grammar is then translated into functional trees.  Then 
functionally analogous branches (subtrees with identical root 
nodes) are identified, and crossover occurs between whole 
branches.  

2.4 Data Simulation 
The intention of the data simulations for this power study was to 
mimic gene-gene interaction, or epistasis, in case-control genetic 
data to evaluate GENN using penetrance functions. Penetrance 
defines the probability of disease given a particular genotype 
combination by modeling the relationship between genetic 
variations and disease risk. We simulated case-control data 
using models exhibiting interaction effects in the absence of 
main effects.  Two different allele frequencies were chosen for 
our simulations (0.8/0.2 and 0.6/0.4).  For each dataset, 100 
SNPs were generated per individual, with 500 cases and 500 
controls per dataset.  A range of heritability (proportion of the 
total phenotype that is due to genetic effects) values was 
selected including 5%, 10%, 15%, 20%, and 25%.  Datasets 
were simulated using software described by Moore et al 2002 
[2]. All possible combinations of allele frequencies and 
heritability values were simulated, resulting in ten models.  The 
penetrance functions used in this study are available from the 
authors upon request.  One hundred datasets were generated per 
model. Dummy variable encoding was used for each dataset, 
where n-1 dummy variables were used for n levels.  

2.5 Data Analysis 
The selection techniques and crossover strategy options were 
incorporated into GENN as options in the configuration file.  
GENN was then used to analyze all 10 epistasis models with all 
combinations of the two selection techniques and three 
crossover options.  The other configuration parameter settings 
remained identical between the analyses and included: 10 
demes, migration every 25 generations, population size of 200 
per deme, 50 generations, crossover rate of 0.9, and a 
reproduction rate of 0.1.   

3.  RESULTS 
Table 1 lists the power results for all ten epistasis models under 
the six different configuration combinations. Power was 
estimated as the percentage of times GENN correctly identified 
the correct model (with no false positive loci) over the hundred 
datasets per model. An ANOVA analysis comparing the results 

of the six different configuration indicated there is not a 
significant difference between the analyses (p=0.9853).  
 

Table 1. Power (%) of GENN Analyses 
Model Configuration Parameters 

Roulette Wheel 
Selection 

Tournament 
Selection 

Minor 
Allele 
Freq. 

Heritability 
Std L.H. T.B. Std L.H. T.B. 

0.2 5% 99 99 99 98 99 99 

0.2 10% 77 93 82 84 87 79 

0.2 15% 55 53 62 66 66 64 

0.2 20% 91 93 93 89 95 94 

0.2 25% 84 85 74 77 88 76 

0.4 5% 90 97 93 94 98 95 

0.4 10% 98 100 99 97 99 100 

0.4 15% 99 100 99 96 100 99 

0.4 20% 94 92 95 98 94 99 

0.4 25% 98 99 98 100 100 99 

4.  DISCUSSION 
These results show that the performance of GENN is not 
significantly affected by the implementation of different 
crossover strategies or selection techniques.  The relative 
equivalence of these results implies that even though the single-
point standard crossover is frequently criticized for not 
maintaining building blocks during the evolutionary process, the 
characteristic is not a detriment to its performance.  By forcing 
the maintenance of building blocks through different types of 
crossover strategies, no significant gain in performance is seen 
in this study.   
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