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ABSTRACT
In this paper we demonstrate that pressure for robustness
combined with function sets containing redundant genes can
cause an evolutionary system to avoid a more fit solution in
favor of a more robust solution. It is also shown that this
trend depends significantly on the mutation rate used.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming—
program synthesis

General Terms
Genetic robustness

Keywords
Bloat, code bloat, robustness, redundant genes

1. INTRODUCTION
Genetic robustness is a measure of the invariance of fit-

ness when an individual undergoes genetic changes [1]. In-
dividuals with a smaller expected variance are more robust
than individuals with a larger expected variance. Research
has shown that there is significant evolutionary pressure to
evolve genetically robust solutions and that this pressure has
a significant effect on the course and trajectory of evolution.

In this paper we examine the inclusion of redundant genes
in the initial function set. We define redundant genes as two
or more sections of an individual that have the same affect
on the individual’s fitness. We hypothesize that the evolu-
tionary trajectory of an evolving population will be deflected
towards solutions that incorporate redundant genes.

2. EXPERIMENTAL MODEL
In these experiments individuals are linear, fixed length

strings composed of four characters [A, X, Y, Z]. Fitness
is determined by counting the number of A’s and the com-
bined number of X, Y and Z’s. If the A count is larger,
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then the fitness is equal to the A count divided by the total
length of the individual, multiplied by a weight coefficient.
These solutions are defined as type-A solutions. If the XYZ
count is larger, then the fitness is the XYZ count divided by
the length of the individual with no weight coefficient used.
These solutions are defined as type-XYZ solutions.

The goal is to create a string of either all A’s or all X,
Y and Z’s. A solution composed entirely of A’s is called an
optimal type-A solution and a solution composed entirely of
X, Y and Z’s is called an optimal type-XYZ solution. Thus,
this problem is similar to the max ones problem often seen
in GA research. The X, Y and Z’s act as the redundant
genes in the initial set of primitives.

The weight coefficients tested are [1.00 1.01 1.03 1.05 1.10
1.15 1.20 1.25]. The first weight means that type-A solutions
and type-XYZ solutions are evaluated equally. Each trial is
run until an optimal solution is found. When this happens,
the solution type of the optimal solution and the generation
number are recorded. In each initial individual the number
of A’s exactly matches the combined number of X, Y and
Z’s and are distributed randomly. Thus, all individuals start
with the worst possible fitness (0.5) because the A count and
the XYZ count are equal.

3. EVOLUTIONARY ALGORITHM
For these experiments a steady state evolutionary algo-

rithm is used. The population size is 100 individuals and
each individual is a string of 100 characters. The algorithm
is run for 500 trials on each combination of a mutation rate
and a weight coefficient. Two point crossover is used. Par-
ents are selected via tournament selection with a tourna-
ment size of three. Two offspring are created by crossover,
mutation is applied, and the two least fit individuals in the
population are replaced. Note that mutation includes the
possibility of mutating a character into its original value.
The mutation rates that are tested range from 0.005 to 0.10
in increments of 0.005.

4. EXPERIMENT
In this experiment the weight coefficients attempt to bal-

ance the preference for robustness versus fitness by increas-
ing the value of the less robust type-A solutions. Figure 1
shows the number of trials that found optimal type-A solu-
tions. Each line represents a different weight coefficient that
is tested with each mutation rate.

Figure 1 shows that for low mutation rates, higher weight
coefficients increase the number of trials that find optimal
type-A solutions. As the mutation rate increases to a modest
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Figure 1: Number of trials that found optimal type-
A solutions for different weight coefficients and dif-
ferent mutation rates.
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Figure 2: Average number of generations to find the
first optimal solution (of either type) as a function
of mutation rate and weight coefficient.

0.03, solutions that are 5% more valuable (weight coefficient
= 1.05) are only found 14% of the time. At a mutation rate
of 0.04, solutions worth 5% more are found only 2.4% of the
time. We can control how many trials find type-A solutions
by adjusting either the mutation rate or the weight coeffi-
cient. Even solutions that are 10% more valuable are still
only found 3% of the time with a mutation rate of 0.06. Fi-
nally, for the rather high mutation rate of 0.10 the algorithm
finds solutions that are 25% more valuable only 7.6% of the
time and never finds solutions that are 20% more valuable.
This shows strong pressure for the more robust type-XYZ
solutions.

Figure 2 shows the average number of generations required
for each trial to find the first optimal solution. For weight
coefficients 1.05 and below the solutions quickly converge
to almost all type-XYZ solutions, which mutation is more
likely to produce anyway. The average number of genera-
tions required to find a solution decreases as the mutation
rate increases, because individuals are more quickly changed
into type-XYZ solutions. However, for the larger weight co-

efficients (above 1.05) the number of generations required
to find the first optimal solution increases because the value
of type-A solutions improves sufficiently that they become
a significant, and eventually a predominant, percentage of
the final solutions. When this happens, the average number
of generations it takes to converge increases. This shows
that there is a constant tension between higher fitness and
higher robustness and the population takes longer to find an
optimal solution of either type.

Note that the highest peak for each weight coefficient,
which is the weight coefficient where it takes longest to find
the first optimal solution, occurs at or around the mutation
rate where the ratio of trials finding type-A to type-XYZ
solutions is roughly 1 to 1. For example, Figure 1 shows
that the line representing weight coefficient 1.25 created 278
type-A solutions (55.6% of the total trials) at a mutation
rate of 0.07 and Figure 2 shows that the mutation rate that
took the longest time to converge is 0.07. Similarly, the line
representing weight coefficient 1.20 peaks around a mutation
rate of 0.06 where 245 of the trials found type-A solutions
(49% of the total trials) and in Figure 2 the line representing
weight coefficient 1.15 peaks around a mutation rate of 0.045
which is where it produced 284 type-A solutions (56.8% of
the total trials).

5. CONCLUSION
Our results show that the trajectory of evolution is heav-

ily biased towards finding more robust solutions. Even when
the less robust solutions are significantly more fit, by 10 to
25 percent, populations are still much more likely to con-
verge on the less fit, but more robust solutions, for high
mutation rates. In general, we found that there is a clear
relationship between the mutation rate and the evolutionary
pressure for robustness; as the mutation rate increases the
probability that the population will converge on the more
robust solution also increases.

These results do not support the hypothesis that neu-
trality (or neutral networks in the search space) automat-
ically improve search performance. In these experiments
the opposite result was found; neutral networks directed the
trajectory of evolution away from the optimal solution. It
appears that this redirection of the trajectory of evolution
has two causes. The neutral networks, introduced in this
research with redundant genes, represent plateaus in the
search space. These plateaus consist of multiple, equivalent
solutions, for example, a solutions where an X is replaced by
a Y, etc. Because these plateaus consist of more than one
solution they are both easier to find and harder to leave.
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