
Cluster-based Evolutionary Design of Digital Circuits 
using  Improved Multi-Expression Programming

Fatima Zohra Hadjam 
Dept. Comp. Science,             

University of Djillali Liabes                                      
BP 89, 22000 Sidi Bel Abbes Algeria 

00213 48577750 
fatima.hadjam@uni-dortmund.de 

Claudio Moraga 
European Centre for Soft Computing 

33600 Mieres, Spain 
University of Dortmund, Germany  

0034 985456545 
mail@claudio-moraga.eu 

Mohamed Benmohamed 
Dept. Comp. Science,            
University of Mentouri 

BP 325,  Constantine 25017. Algeria     
00213 31614348 
ibnm@yahoo.fr 

 
 

ABSTRACT 
Evolutionary Electronics (EE) is a research area which involves 
application of Evolutionary Computation in the domain of 
electronics. EE algorithms are generally able to find good 
solutions to rather small problems in a reasonable amount of time, 
but the need for solving more and more complex problems 
increases the time required to find adequate solutions. This is due 
to the large number of individuals to be evaluated and to the large 
number of generations required until the convergence process 
leads to the solution. As a consequence, there have been multiple 
efforts to make EE faster, and one of the most promising choices 
is to use distributed implementations. In this paper, we propose a 
cluster-based evolutionary design of digital circuits using a 
distributed improved multi expression programming method 
(DIMEP). DIMEP keeps, in parallel, several sub-populations that 
are processed by Impoved Multi-Expression Programming 
algorithms, with each one being independent from the others. A 
migration mechanism produces a chromosome exchange between 
the subpopulations using MPI (Message Passing Interface) on a 
dedicated cluster of workstations (Lido Cluster, Dortmund 
University). This paper presents the main ideas and shows 
preliminary experimental results. 

Categories and Subject Descriptors 
B.6.1 [Design Styles]: Hardware, Logic Design – Combinational 
logic.  

General Terms 
Algorithms, Design, Experimentation, Performance. 

Keywords 
Genetic Programming, Improved Multi-Expression Programming, 
Islands Model, Combinational Circuits, Computational Effort. 

1. INTRODUCTION 
Since the introduction of standard GP by Koza (1992) in the early 
90’s, numerous GP paradigms have been proposed by the 
community, which include linear structured GP (linear GP) 
(Banzhaf et al., 1998), graph-based GP (Poli, 1999; Teller and 
Veloso, 1996), stack-based GP (Perkis, 1994; Stoffel and Spector, 
1996), Cartesian GP (Miller and Thomson, 2000), concurrent GP 
(Trenaman, 1999), grammar-based GP (Wong and Leung, 2000), 
etc. 
There are two main streams in GP, standard GP [14] and Linear 
structure GP (LGP) [2]. In standard GP, a genetic program is 
represented in a tree structure, similar to the S-expression 
structure used in LISP. Running a program tree on a classical von 
Neumann machine involves stack operations, recursive function 
calls, and program tree interpretation. In LGP, a genetic program 
is represented in a linear list of machine code instructions or high-
level language statements. 
Several linear variants of LGP have recently been proposed. 
Some of them are: multi-expression programming (MEP) [18], 
grammatical evolution (GE) [23], gene expression programming 
(GEP) [10], cartesian genetic programming (CGP) [15], genetic 
algorithm for deriving software (GADS) [22] and infix form 
genetic programming (IFGP) [19]. In [20] the authors provide a 
comparison of several Linear Genetic Programming Techniques: 
MEP, GEP, GE, and LGP. Several numerical experiments using 
five benchmarking problems are carried out. The results reveal 
that multi-expression programming has the best overall behavior 
for some well-known problems such as symbolic regression and 
even-parity.  
The idea of using the Improved Multi Expression Programming 
(IMEP) in designing Digital Circuit was proposed in a previous 
study [11]. Despite the success of this technique, the obvious 
drawback is the substantial amount of processing time. However, 
the IMEP process can be easily implemented as a distributed 
algorithm since the fitness evaluation of a population of candidate 
solutions can be performed independently. The population-based 
nature of IMEP (GP) makes it easy to be distributed with a 
suitable architecture, because the genetic programs in a 
population are independent. Multiple genetic programs can be 
evolved in parallel in multiple engines (processors).  These 
observations give rise to the most commonly used approach to 
“parallelization” –(actually, distribution)– of genetic program-
ming, namely the asynchronous islands.  
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To this end, different approaches to distribute genetic program-
ming have been studied. Extensive surveys on the subject can be 
found in [1], [3],[5], [6], [7], [8], [9], [13] and [24]. It should be 
mentioned that the use of “parallel” in the EA community is not 
sharp as in the Computer architecture community, where 
parallelism leads to vector machines like the Cray computer. 

2. PROBLEM STATEMENT 
The problem that we are trying to solve may be briefly stated as 
follows: Designing Digital Circuits using Distributed IMEP 
(Improved Multi-Expression Programming) under the structural 
model of “Islands”. Multi-Expression Programming (MEP) [20], 
[21] is a Genetic Programming (GP) variant that uses linear 
chromosomes for solution encoding. A unique MEP feature is its 
ability of encoding multiple solutions of a problem in a single 
chromosome. These solutions are handled in the same time 
complexity as other techniques that encode a single solution in a 
chromosome.   
IMEP is a modified MEP which outperforms MEP in different 
Benchmarks problems studied in [11]. The main introduced 
changes are on the way the individuals are encoded and also in 
the mutation process. To parallelize IMEP, a coarse-grained 
model called also Islands model was adopted. It keeps, in parallel, 
several subpopulations that are processed by multi-expression 
programming algorithms, with each one being independent from 
the others. A migration mechanism produces a chromosome 
exchange between the subpopulations using MPI (Message 
Passing Interface) on a dedicated cluster of workstations (The 
Lido Cluster at the University of Dortmund, Germany). 

3. IMPROVED MULTI -EXPRESSION  
PROGRAMMING (MEP) 
In this section, we give a summary on the main features of the 
improved MEP. All terminals are kept in the first positions 
(genes) of a chromosome and no other genes containing terminals 
are allowed in the rest of the chromosome. This improves 
efficiency, particularly since the generation of redundant 
individuals through mutation has a lower probability as compared 
with the original MEP. 

3.1. IMEP Algorithm  
S1. Randomly create the initial population P(0); //  keeping all 
terminals in the first positions. 
S2. for t = 1 to Max Generations do 
S3. for k = 1 to  |P(t)| / 2 do 
S4. p1 = Select(P(t)); // select one individual from the current        
.     population 
S5. p2 = Select(P(t)); // select the second individual 
S6. Crossover (p1, p2, o1, o2); // crossover the parents p1 and p2      
.     // the offsprings o1 and o2 are obtained 
S7. Mutation (o1); // mutate the offspring o1 

S8. Mutation (o2); // mutate the offspring o2 

S9. Select best 2 individuals from {p1,p2, o1,o2} based on the         
.     fitness 
S10. endfor 
S11. Mutate a copy of the Best Individual 

S12. Replace randomly an individual, except for the best one,       
.       with the mutated copy    // avoid to lose the fittest  
S13. Mutation (Worst Individual) 
S14. Replace the worst individual with the worst mutated    
S15. endfor 

3.2. Fitness computation 
Each circuit has one or more inputs (denoted by NI) and one or 
more outputs (denoted by NO). When multiple genes are required 
as outputs we have to select those output genes which minimize 
the difference between the obtained results and the expected 
output. Each of the IMEP chromosome expressions is considered 
as being a potential solution of the problem. Partial results are 
computed by Dynamic Programming [3]. A terminal symbol 
specifies a simple expression (a variable: circuit input). A function 
symbol specifies a complex expression obtained by connecting 
the operands specified by the argument positions with the current 
function symbol.  The fitness of each sub-expression (gene) is 
calculated by computing this sub-expression for each fitness case 
(truth table input combinations) and then compared to the 
corresponding target value (truth table outputs): the fitness value 
is given by the number of not matching values. The chromosome 
fitness is defined as the fitness of the best expression(s) encoded 
by that chromosome. Fitness = 0 means that 100% of target values 
match with the values given by this (these) sub-expression(s). For 
more details, see [11]; 

3.3. The evolution operators 
The evolution operators used within IMEP algorithm are 
Selection, Crossover and Mutation. They preserve the 
chromosome structure (see [11]) thus, all offspring are 
syntactically correct expressions.  

• Selection: we use the Tournament with variable size. The size 
is dependent on the population size. 

• Crossover: two parents are selected and recombined to 
produce offsprings. In our experiments, we have considered  
the multi-cut crossover, where several cuts are chosen 
randomly. 

• Mutation: The first genes representing the problem variables 
are immune against probable changes. Function arguments 
always have indices of lower values than the position of that 
function in the chromosome. The function symbols can be 
mutated in only other function symbols and the links 
(function arguments) can also be mutated into only other links 
respectively. This reduces the probability of generating 
redundant individuals.  

 

4. DISTRIBUTED IMEP FOR EVOLVING 
DIGITAL CIRCUITS  
Biological evolution works in parallel. If we want to imitate the 
way nature works, evolutionary algorithms should be parallel and 
distributed. A more practical reason for using parallel EAs is the 
need for a large amount of computing power (large number of 
individuals to be evaluated and large number of generations 
required until the convergence process leads to a solution) when 
hard problems are tackled. Our objective is to reduce the 
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computational effort (see below), by distributing the task of the 
serial IMEPs to different processors on a dedicated cluster of 
workstations (Lido Cluster, University of Dortmund, Germany). 
Parallel evolutionary algorithms may be classified into three main 
models: Global, Cellular and Islands models: 

• Global model: uses parallelism to speed up the sequential GA. 
It uses a global shared population and the fitness evaluation is 
done on different processors. 

• Cellular model: the population is separated into a large 
number of very small subpopulations  which are maintained 
by different processors. 

• Islands model: In general, the population is divided into a few 
large subpopulations called demes. The subpopulations are 
maintained by different processors. When the algorithm starts, 
all processors create their own random subpopulations with 
different random seeds. Each processor is responsible for 
selecting and mating in its own subpopulation. Every 
predetermined interval, some selected individuals are 
exchanged via a migration operator. Besides using similar 
parameters on each node, an island model allows the 
subpopulations to use different genetic parameters, coding, 
operators and objective functions to eventually increase 
diversity since each subpopulation evolves independently 
from the others. This model is called a heterogeneous islands 
model. 

As mentioned in section 2, the third Model was adopted and the 
connection between the different nodes (processors) is a ring 
topology (see figure1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
An Islands Model requires an identification of the migration 
policy: 

1. What is the neighborhood? In the present case the 
topology as mentioned above, is a ring. 

2. How and when do migrations occur? The period of 
migration is proportional to the number of generations. If one 
waits enough before migrating, the global diversity remains 
large. This means that different islands converge to different 
peaks. Exchange of individuals at this point results in a better 
average fitness. 

3. How many solutions (Individuals) have to be sent? This 
parameter is very sensitive since a big number of migrated 
individuals may cause one island to dominate others and lose 
global diversity. On the other hand, a small number of 
migrated individuals causes slow convergence of the evolution 
process. 

4. How to select migrating solutions? The best individual 
is selected (the best fitness). 

5. Which solutions have to be replaced by the received 
solutions? In the present case the worst individuals are 
replaced by those received. 

5. NUMERICAL EXPERIMENTS 
In this section, numerical experiments with distributed IMEP for 
evolving digital circuits, are performed. For this purpose several 
well-known test problems [16], [17] are used. 
A comparative study between sequential and distributed IMEP in 
the design of digital circuits and particularly in the considered test 
problems is done.. 
To assess the performance of the both algorithms, three statistics 
are considered: the maximum number of generations, the success 
rate  and the computational effort: 
Success Rate = Number of successful runs / the total number of 
runs. 
Computational Effort: in [14] Koza describes a method to 
compare the results of different evolutionary methods. The so 
called Computational Effort is calculated as the number of fitness 
evaluations needed to find a solution of a problem with a 
probability of success z of at least z = 99%.  One first calculates 
P(M,i), the  probability of success by the i-th generation using a 
population of size M. For each generation i this is simply the total 
number of runs that succeeded on or before the i-th generation, 
divided by the total number of runs conducted. One then 
calculates I(M,i,z), the number of individuals that must be 
processed to produce a solution by generation i with probability 
greater than z (where z is usually 99%). The minimum of I(M,i,z) 
over the range of i is defined as the “computational effort” 
required to solve the problem.  
Koza defined the following equation: 

      ( ) ( ) ( ) ( )( )[ ]i,MPln/zlnceiliMminz,MI
i

−−= 11                     (1) 

P(M,i) = Ns(i) / Ntotal, where Ns(i) represents the number of 
successful runs at generation i and Ntotal represents the total 
number of runs.   
There is not known definition of computational effort in the case 
of a distributed evolutionary algorithm. Different points of view 
may be possible. In the present paper, the computational effort of 
an islands model will be calculated in analogy to the computing 
time of a parallel system, to illustrate the obtained speed-up. The 
computational effort of every single process will be calculated 
independently and, for the whole process, the computational effort 
of the process obtaining the most successful runs will be 
considered as the computational effort of the distributed system. 
(Should several processes reach the same number of successful 
runs, then the lowest computational effort will be taken.) 
 

5.1.  Experiment Details 
The performance of the DIMEP was tested on two different 
classes of problems shown in Table 1: multipliers and even parity 
problems. 
 

1 

2 

3 

4 

5 

6 
Deme 

Migration Direction 

Figure 1 : Ring Topology 
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Table 1. The experimental problems used to test the 
performance of  DIMEP 

 
Problem Inputs Outputs Description 
3x3-bit 

Multiplier 6 6 The Product of  two 3–bit number  
to produce a  6–bit number 

3x2-bit 
Multiplier 5 5 

The Product of a  3-bit number and 
a 2-bit number to produce a  5-bit 

number 

N-bit Even 
Parity 

problem 
N=6,7 1 

The function returns True if an 
even number or none of its 

arguments are True. 
 

5.2.  Results 
The study aims to analyze the performance of DIMEP in term of 

• Improvement of the problem solving process. 

• Improvement of the speedup of the evolutionary 
process. 

• Reduction of the computational effort. 
The parameters setting used in all of the experiments, is given in 
Table 2. 
 
 
 

Table 2.  The parameters setting used in all experiments 
 

Parameters Range of Values 
Number of  Runs 50 
Number of  Islands 1 - 10 
Migration Period 20 - 500 
Number of Migrated 
Individuals One Individual (Fittest) 

Maximum Number of 
Generations 5,000 -100,000 

Chromosome Length 100 - 300 (Gates +  Problem inputs) 
Population Size 5 - 100 
Selection Tournament: Size 2 - 6   
Crossover multi-cut crossover 
Crossover Probability 0.9 
Mutation Probability 0.02 - 0.03 
Functions Set 1 A AND B, A AND NOT B, A XOR B 
Functions Set 2 A AND B,  A OR B, A NOR B 

 
 
 
 
 
 
 
 
 
 
 
 
 

5.2.1. Multipliers 
 
 
• 3x2–bit multiplier : 

 
Table 3.   3x2–bit Multiplier : Chromosome length 100, 

Population size 5, Tournament size 2,                            
Maximum runs 50 using Function Set 1. 

Parameters Values 
Number of  
Islands 1 5 10 

Maximum 
Number of 
Generations 

60,000 10,000 5,000 

Migration 
Period - 50 20 

Mutation 
probability 0.03 0.03 0.03 

Successful 
Runs 50 50 50 

Computation
al Effort 69,000 12,900 6,080 

 
 
 
 
• 3x3–bit multiplier : 

 
Table 4.   3x3–bit Multiplier : Chromosome length 300, 

Population size 50, Tournament size 2,                         
Maximum runs 50 using Function Set 1. 

Parameters Values 
Number of  
Islands 1 5 10 

Maximum Nr. 
of  
Generations 

500,000 50,000 20,000 

Migration 
Period - 100 100 

Mutation 
probability 0.01 0.02 0.02 

Successful 
Runs 50 50 50 

Computation
al Effort 1,864,450 400,950 311,850 
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5.2.2. Parity problem 
• 6–bit parity problem 

 
 

Table 5.   6–bit Parity problem : Chromosome length 150, 
Population size 100, Tournament size 4,                               
Maximum runs 50 using Function Set 2. 

Parameters Values 
Number of  Islands 1 5 10 
Maximum Nr. of 
Generations 100,000 100,000 100,000 

Migration Period - 500 500 
Mutation 
probability 0.03 0.03 0.03 

Successful Runs 27 45 50 
Computational 
Effort 18,734,200 2,622,000 1,796,400 

• 7–bit parity problem 
 
Table 6.   7–bit Parity problem : Chromosome length 200, 

Population size 100, Tournament size 6,                                  
Maximum runs 50 using Function Set 2. 

Parameters Values 
Number of  
Islands 1 5 10 

Maximum Nr. 
of Generations 100,000 100,000 100,000 

Migration 
Period - 500 200 

Mutation 
probability 0.03 0.03 0.03 

Successful 
Runs 15 30 49 

Computational 
Effort 45,696,400 15,522,000 5,321,400 

 

5.2.3. Interpretation of the results  
In the case of the multiplier, we started with performing the 
sequential algorithm with different generation numbers, 
with/without varying the chromosome length and population size 
in order to reach 100% successful runs and also to optimize the  
parameters to be used when working with islands.  Then, the 
number of islands was increased progressively. 
In the case of the parity problem, the approach was different: the 
maximum number of generations was fixed for both sequential 
and parallel programs. 
The motivation for using the islands model is twofold. First, one 
wants to improve the speedup of the evolutionary process by 
creating multiple independent populations of smaller size. 
Second, one intends to improve the problem solving process by 
increasing diversity. In both cases, one can easily deduce that 
applying the islands model to the IMEP method, decreases 
considerably the computational effort. 
In the first case, our aim was to prove that even though a small 
population size is considered, the speedup is reached by 
decreasing the number of generations and by increasing the 
number of islands. 

In the second case, we show that the diversity created by the 
migration phenomenon, increases the number of successful runs 
when the number of islands is increasing.  
Some of the evolved circuits relative to the examples given in this 
paper are given by figures 2 through 5 (see appendix). Input or 
output terminals marked with a black dot are meant to be holding 
a logical 1; otherwise, a logical 0. 

6. CONCLUSION AND FUTURE WORKS 
In this paper, a distributed implementation of the Improved Multi 
Expression Programming (DIMEP) was  used to evolve well 
known benchmark problems such as multipliers and parity 
problems. 
Different experiments were performed to compare the Distributed 
IMEP and the Sequential one. The Islands model was considered 
using a ring topology connection.  The performance analysis of 
the distributed algorithm was measured in terms of maximum 
number of generations, successful runs, and computational effort.  
Three aspects were considered :  

• Improving the problem solving process by increasing 
diversity in the population; the case of the parity 
problem. 

• Improving the speedup of the evolutionary process by 
decreasing the number of generations; the case of 
multiplier. 

• Decreasing the computational effort; both cases. 
As future work, the Influence of the migration policy on the 
behavior of the island model applied to the evolution process as 
well as the neighborhood structure and the number of migrated 
individuals, will be studied. Furthermore other topologies, like the 
hypercube or CCC [12] will be considered. 
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Figure 2 : Evolved 3x2–bit multiplier : 13 gates with 4 levels, using  

{and, and with one input inverted, xor} 

Appendix: Circuits 

Figure 3 : Evolved 3x3–bit multiplier : 29 gates with 6 levels, using  

{and, and with one input inverted, xor} 
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Figure 5 :  Evolved 7–bit  parity problem : 18 gates using {and, or, nor}

Figure 4 :  Evolved 6–bit  parity problem : 15 gates using {and, or, nor}
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