
Cluster-based Evolutionary Design of Digital Circuits
using Improved Multi-Expression Programming

Fatima Zohra Hadjam
Dept. Comp. Science,

University of Djillali Liabes
BP 89, 22000 Sidi Bel Abbes Algeria

00213 48577750
fatima.hadjam@uni-dortmund.de

Claudio Moraga
European Centre for Soft Computing

33600 Mieres, Spain
University of Dortmund, Germany

0034 985456545
mail@claudio-moraga.eu

Mohamed Benmohamed
Dept. Comp. Science,
University of Mentouri

BP 325, Constantine 25017. Algeria
00213 31614348
ibnm@yahoo.fr

ABSTRACT
Evolutionary Electronics (EE) is a research area which involves
application of Evolutionary Computation in the domain of
electronics. EE algorithms are generally able to find good
solutions to rather small problems in a reasonable amount of time,
but the need for solving more and more complex problems
increases the time required to find adequate solutions. This is due
to the large number of individuals to be evaluated and to the large
number of generations required until the convergence process
leads to the solution. As a consequence, there have been multiple
efforts to make EE faster, and one of the most promising choices
is to use distributed implementations. In this paper, we propose a
cluster-based evolutionary design of digital circuits using a
distributed improved multi expression programming method
(DIMEP). DIMEP keeps, in parallel, several sub-populations that
are processed by Impoved Multi-Expression Programming
algorithms, with each one being independent from the others. A
migration mechanism produces a chromosome exchange between
the subpopulations using MPI (Message Passing Interface) on a
dedicated cluster of workstations (Lido Cluster, Dortmund
University). This paper presents the main ideas and shows
preliminary experimental results.

Categories and Subject Descriptors
B.6.1 [Design Styles]: Hardware, Logic Design – Combinational
logic.

General Terms
Algorithms, Design, Experimentation, Performance.

Keywords
Genetic Programming, Improved Multi-Expression Programming,
Islands Model, Combinational Circuits, Computational Effort.

1. INTRODUCTION
Since the introduction of standard GP by Koza (1992) in the early
90’s, numerous GP paradigms have been proposed by the
community, which include linear structured GP (linear GP)
(Banzhaf et al., 1998), graph-based GP (Poli, 1999; Teller and
Veloso, 1996), stack-based GP (Perkis, 1994; Stoffel and Spector,
1996), Cartesian GP (Miller and Thomson, 2000), concurrent GP
(Trenaman, 1999), grammar-based GP (Wong and Leung, 2000),
etc.
There are two main streams in GP, standard GP [14] and Linear
structure GP (LGP) [2]. In standard GP, a genetic program is
represented in a tree structure, similar to the S-expression
structure used in LISP. Running a program tree on a classical von
Neumann machine involves stack operations, recursive function
calls, and program tree interpretation. In LGP, a genetic program
is represented in a linear list of machine code instructions or high-
level language statements.
Several linear variants of LGP have recently been proposed.
Some of them are: multi-expression programming (MEP) [18],
grammatical evolution (GE) [23], gene expression programming
(GEP) [10], cartesian genetic programming (CGP) [15], genetic
algorithm for deriving software (GADS) [22] and infix form
genetic programming (IFGP) [19]. In [20] the authors provide a
comparison of several Linear Genetic Programming Techniques:
MEP, GEP, GE, and LGP. Several numerical experiments using
five benchmarking problems are carried out. The results reveal
that multi-expression programming has the best overall behavior
for some well-known problems such as symbolic regression and
even-parity.
The idea of using the Improved Multi Expression Programming
(IMEP) in designing Digital Circuit was proposed in a previous
study [11]. Despite the success of this technique, the obvious
drawback is the substantial amount of processing time. However,
the IMEP process can be easily implemented as a distributed
algorithm since the fitness evaluation of a population of candidate
solutions can be performed independently. The population-based
nature of IMEP (GP) makes it easy to be distributed with a
suitable architecture, because the genetic programs in a
population are independent. Multiple genetic programs can be
evolved in parallel in multiple engines (processors). These
observations give rise to the most commonly used approach to
“parallelization” –(actually, distribution)– of genetic program-
ming, namely the asynchronous islands.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-698-1/07/0007...$5.00.

2475

To this end, different approaches to distribute genetic program-
ming have been studied. Extensive surveys on the subject can be
found in [1], [3],[5], [6], [7], [8], [9], [13] and [24]. It should be
mentioned that the use of “parallel” in the EA community is not
sharp as in the Computer architecture community, where
parallelism leads to vector machines like the Cray computer.

2. PROBLEM STATEMENT
The problem that we are trying to solve may be briefly stated as
follows: Designing Digital Circuits using Distributed IMEP
(Improved Multi-Expression Programming) under the structural
model of “Islands”. Multi-Expression Programming (MEP) [20],
[21] is a Genetic Programming (GP) variant that uses linear
chromosomes for solution encoding. A unique MEP feature is its
ability of encoding multiple solutions of a problem in a single
chromosome. These solutions are handled in the same time
complexity as other techniques that encode a single solution in a
chromosome.
IMEP is a modified MEP which outperforms MEP in different
Benchmarks problems studied in [11]. The main introduced
changes are on the way the individuals are encoded and also in
the mutation process. To parallelize IMEP, a coarse-grained
model called also Islands model was adopted. It keeps, in parallel,
several subpopulations that are processed by multi-expression
programming algorithms, with each one being independent from
the others. A migration mechanism produces a chromosome
exchange between the subpopulations using MPI (Message
Passing Interface) on a dedicated cluster of workstations (The
Lido Cluster at the University of Dortmund, Germany).

3. IMPROVED MULTI -EXPRESSION
PROGRAMMING (MEP)
In this section, we give a summary on the main features of the
improved MEP. All terminals are kept in the first positions
(genes) of a chromosome and no other genes containing terminals
are allowed in the rest of the chromosome. This improves
efficiency, particularly since the generation of redundant
individuals through mutation has a lower probability as compared
with the original MEP.

3.1. IMEP Algorithm
S1. Randomly create the initial population P(0); // keeping all
terminals in the first positions.
S2. for t = 1 to Max Generations do
S3. for k = 1 to |P(t)| / 2 do
S4. p1 = Select(P(t)); // select one individual from the current
. population
S5. p2 = Select(P(t)); // select the second individual
S6. Crossover (p1, p2, o1, o2); // crossover the parents p1 and p2
. // the offsprings o1 and o2 are obtained
S7. Mutation (o1); // mutate the offspring o1

S8. Mutation (o2); // mutate the offspring o2

S9. Select best 2 individuals from {p1,p2, o1,o2} based on the
. fitness
S10. endfor
S11. Mutate a copy of the Best Individual

S12. Replace randomly an individual, except for the best one,
. with the mutated copy // avoid to lose the fittest
S13. Mutation (Worst Individual)
S14. Replace the worst individual with the worst mutated
S15. endfor

3.2. Fitness computation
Each circuit has one or more inputs (denoted by NI) and one or
more outputs (denoted by NO). When multiple genes are required
as outputs we have to select those output genes which minimize
the difference between the obtained results and the expected
output. Each of the IMEP chromosome expressions is considered
as being a potential solution of the problem. Partial results are
computed by Dynamic Programming [3]. A terminal symbol
specifies a simple expression (a variable: circuit input). A function
symbol specifies a complex expression obtained by connecting
the operands specified by the argument positions with the current
function symbol. The fitness of each sub-expression (gene) is
calculated by computing this sub-expression for each fitness case
(truth table input combinations) and then compared to the
corresponding target value (truth table outputs): the fitness value
is given by the number of not matching values. The chromosome
fitness is defined as the fitness of the best expression(s) encoded
by that chromosome. Fitness = 0 means that 100% of target values
match with the values given by this (these) sub-expression(s). For
more details, see [11];

3.3. The evolution operators
The evolution operators used within IMEP algorithm are
Selection, Crossover and Mutation. They preserve the
chromosome structure (see [11]) thus, all offspring are
syntactically correct expressions.

• Selection: we use the Tournament with variable size. The size
is dependent on the population size.

• Crossover: two parents are selected and recombined to
produce offsprings. In our experiments, we have considered
the multi-cut crossover, where several cuts are chosen
randomly.

• Mutation: The first genes representing the problem variables
are immune against probable changes. Function arguments
always have indices of lower values than the position of that
function in the chromosome. The function symbols can be
mutated in only other function symbols and the links
(function arguments) can also be mutated into only other links
respectively. This reduces the probability of generating
redundant individuals.

4. DISTRIBUTED IMEP FOR EVOLVING
DIGITAL CIRCUITS
Biological evolution works in parallel. If we want to imitate the
way nature works, evolutionary algorithms should be parallel and
distributed. A more practical reason for using parallel EAs is the
need for a large amount of computing power (large number of
individuals to be evaluated and large number of generations
required until the convergence process leads to a solution) when
hard problems are tackled. Our objective is to reduce the

2476

computational effort (see below), by distributing the task of the
serial IMEPs to different processors on a dedicated cluster of
workstations (Lido Cluster, University of Dortmund, Germany).
Parallel evolutionary algorithms may be classified into three main
models: Global, Cellular and Islands models:

• Global model: uses parallelism to speed up the sequential GA.
It uses a global shared population and the fitness evaluation is
done on different processors.

• Cellular model: the population is separated into a large
number of very small subpopulations which are maintained
by different processors.

• Islands model: In general, the population is divided into a few
large subpopulations called demes. The subpopulations are
maintained by different processors. When the algorithm starts,
all processors create their own random subpopulations with
different random seeds. Each processor is responsible for
selecting and mating in its own subpopulation. Every
predetermined interval, some selected individuals are
exchanged via a migration operator. Besides using similar
parameters on each node, an island model allows the
subpopulations to use different genetic parameters, coding,
operators and objective functions to eventually increase
diversity since each subpopulation evolves independently
from the others. This model is called a heterogeneous islands
model.

As mentioned in section 2, the third Model was adopted and the
connection between the different nodes (processors) is a ring
topology (see figure1).

An Islands Model requires an identification of the migration
policy:

1. What is the neighborhood? In the present case the
topology as mentioned above, is a ring.

2. How and when do migrations occur? The period of
migration is proportional to the number of generations. If one
waits enough before migrating, the global diversity remains
large. This means that different islands converge to different
peaks. Exchange of individuals at this point results in a better
average fitness.

3. How many solutions (Individuals) have to be sent? This
parameter is very sensitive since a big number of migrated
individuals may cause one island to dominate others and lose
global diversity. On the other hand, a small number of
migrated individuals causes slow convergence of the evolution
process.

4. How to select migrating solutions? The best individual
is selected (the best fitness).

5. Which solutions have to be replaced by the received
solutions? In the present case the worst individuals are
replaced by those received.

5. NUMERICAL EXPERIMENTS
In this section, numerical experiments with distributed IMEP for
evolving digital circuits, are performed. For this purpose several
well-known test problems [16], [17] are used.
A comparative study between sequential and distributed IMEP in
the design of digital circuits and particularly in the considered test
problems is done..
To assess the performance of the both algorithms, three statistics
are considered: the maximum number of generations, the success
rate and the computational effort:
Success Rate = Number of successful runs / the total number of
runs.
Computational Effort: in [14] Koza describes a method to
compare the results of different evolutionary methods. The so
called Computational Effort is calculated as the number of fitness
evaluations needed to find a solution of a problem with a
probability of success z of at least z = 99%. One first calculates
P(M,i), the probability of success by the i-th generation using a
population of size M. For each generation i this is simply the total
number of runs that succeeded on or before the i-th generation,
divided by the total number of runs conducted. One then
calculates I(M,i,z), the number of individuals that must be
processed to produce a solution by generation i with probability
greater than z (where z is usually 99%). The minimum of I(M,i,z)
over the range of i is defined as the “computational effort”
required to solve the problem.
Koza defined the following equation:

 () () () ()()[]i,MPln/zlnceiliMminz,MI
i

−−= 11 (1)

P(M,i) = Ns(i) / Ntotal, where Ns(i) represents the number of
successful runs at generation i and Ntotal represents the total
number of runs.
There is not known definition of computational effort in the case
of a distributed evolutionary algorithm. Different points of view
may be possible. In the present paper, the computational effort of
an islands model will be calculated in analogy to the computing
time of a parallel system, to illustrate the obtained speed-up. The
computational effort of every single process will be calculated
independently and, for the whole process, the computational effort
of the process obtaining the most successful runs will be
considered as the computational effort of the distributed system.
(Should several processes reach the same number of successful
runs, then the lowest computational effort will be taken.)

5.1. Experiment Details
The performance of the DIMEP was tested on two different
classes of problems shown in Table 1: multipliers and even parity
problems.

1

2

3

4

5

6
Deme

Migration Direction

Figure 1 : Ring Topology

2477

Table 1. The experimental problems used to test the
performance of DIMEP

Problem Inputs Outputs Description
3x3-bit

Multiplier 6 6 The Product of two 3–bit number
to produce a 6–bit number

3x2-bit
Multiplier 5 5

The Product of a 3-bit number and
a 2-bit number to produce a 5-bit

number

N-bit Even
Parity

problem
N=6,7 1

The function returns True if an
even number or none of its

arguments are True.

5.2. Results
The study aims to analyze the performance of DIMEP in term of

• Improvement of the problem solving process.

• Improvement of the speedup of the evolutionary
process.

• Reduction of the computational effort.
The parameters setting used in all of the experiments, is given in
Table 2.

Table 2. The parameters setting used in all experiments

Parameters Range of Values
Number of Runs 50
Number of Islands 1 - 10
Migration Period 20 - 500
Number of Migrated
Individuals One Individual (Fittest)

Maximum Number of
Generations 5,000 -100,000

Chromosome Length 100 - 300 (Gates + Problem inputs)
Population Size 5 - 100
Selection Tournament: Size 2 - 6
Crossover multi-cut crossover
Crossover Probability 0.9
Mutation Probability 0.02 - 0.03
Functions Set 1 A AND B, A AND NOT B, A XOR B
Functions Set 2 A AND B, A OR B, A NOR B

5.2.1. Multipliers

• 3x2–bit multiplier :

Table 3. 3x2–bit Multiplier : Chromosome length 100,

Population size 5, Tournament size 2,
Maximum runs 50 using Function Set 1.

Parameters Values
Number of
Islands 1 5 10

Maximum
Number of
Generations

60,000 10,000 5,000

Migration
Period - 50 20

Mutation
probability 0.03 0.03 0.03

Successful
Runs 50 50 50

Computation
al Effort 69,000 12,900 6,080

• 3x3–bit multiplier :

Table 4. 3x3–bit Multiplier : Chromosome length 300,

Population size 50, Tournament size 2,
Maximum runs 50 using Function Set 1.

Parameters Values
Number of
Islands 1 5 10

Maximum Nr.
of
Generations

500,000 50,000 20,000

Migration
Period - 100 100

Mutation
probability 0.01 0.02 0.02

Successful
Runs 50 50 50

Computation
al Effort 1,864,450 400,950 311,850

2478

5.2.2. Parity problem
• 6–bit parity problem

Table 5. 6–bit Parity problem : Chromosome length 150,
Population size 100, Tournament size 4,
Maximum runs 50 using Function Set 2.

Parameters Values
Number of Islands 1 5 10
Maximum Nr. of
Generations 100,000 100,000 100,000

Migration Period - 500 500
Mutation
probability 0.03 0.03 0.03

Successful Runs 27 45 50
Computational
Effort 18,734,200 2,622,000 1,796,400

• 7–bit parity problem

Table 6. 7–bit Parity problem : Chromosome length 200,

Population size 100, Tournament size 6,
Maximum runs 50 using Function Set 2.

Parameters Values
Number of
Islands 1 5 10

Maximum Nr.
of Generations 100,000 100,000 100,000

Migration
Period - 500 200

Mutation
probability 0.03 0.03 0.03

Successful
Runs 15 30 49

Computational
Effort 45,696,400 15,522,000 5,321,400

5.2.3. Interpretation of the results
In the case of the multiplier, we started with performing the
sequential algorithm with different generation numbers,
with/without varying the chromosome length and population size
in order to reach 100% successful runs and also to optimize the
parameters to be used when working with islands. Then, the
number of islands was increased progressively.
In the case of the parity problem, the approach was different: the
maximum number of generations was fixed for both sequential
and parallel programs.
The motivation for using the islands model is twofold. First, one
wants to improve the speedup of the evolutionary process by
creating multiple independent populations of smaller size.
Second, one intends to improve the problem solving process by
increasing diversity. In both cases, one can easily deduce that
applying the islands model to the IMEP method, decreases
considerably the computational effort.
In the first case, our aim was to prove that even though a small
population size is considered, the speedup is reached by
decreasing the number of generations and by increasing the
number of islands.

In the second case, we show that the diversity created by the
migration phenomenon, increases the number of successful runs
when the number of islands is increasing.
Some of the evolved circuits relative to the examples given in this
paper are given by figures 2 through 5 (see appendix). Input or
output terminals marked with a black dot are meant to be holding
a logical 1; otherwise, a logical 0.

6. CONCLUSION AND FUTURE WORKS
In this paper, a distributed implementation of the Improved Multi
Expression Programming (DIMEP) was used to evolve well
known benchmark problems such as multipliers and parity
problems.
Different experiments were performed to compare the Distributed
IMEP and the Sequential one. The Islands model was considered
using a ring topology connection. The performance analysis of
the distributed algorithm was measured in terms of maximum
number of generations, successful runs, and computational effort.
Three aspects were considered :

• Improving the problem solving process by increasing
diversity in the population; the case of the parity
problem.

• Improving the speedup of the evolutionary process by
decreasing the number of generations; the case of
multiplier.

• Decreasing the computational effort; both cases.
As future work, the Influence of the migration policy on the
behavior of the island model applied to the evolution process as
well as the neighborhood structure and the number of migrated
individuals, will be studied. Furthermore other topologies, like the
hypercube or CCC [12] will be considered.

7. REFERENCES
[1] Alba, E. and Tomassini, M., Parallelism and evolutionary

algorithms. IEEE Trans. Evolutionary Computation, 6, 5,
(2002), 443-462.

[2] Banzhaf, W., Nordin, P., Keller, R.E. and Francone, F.D.,
Generic Programming: An Introduction on the Automatic
Evolution of Computer Programs and its Applications.
Morgan Kaufmann ,1998

[3] Bellman, R., Dynamic Programming, Princeton University
Press, New Jersey, 1957.

[4] Cantú-Paz, E., A survey of parallel genetic algorithms,
Calculateurs Paralleles, Reseaux et Systems Repartis, 10,
2, (1998), 141–171

[5] Cheang, S. M., Leung, K. S., and Lee, K. H., Genetic
Parallel Programming: Design and Implementation,
Evolutionary Computation, 14, 2, (2006), 129-156

[6] Coello, C.A.C., Alba, E. and Luque, G., Comparing
Different Serial and Parallel Heuristics to Design
Combinational Logic Circuits. In Proceedings of the 2003
NASA/DoD Conference on Evolvable Hardware, 2003, 3-
12.

[7] Corcoran, A. L. and Wainwright, R. L., A parallel island

2479

model genetic algorithm for the multiprocessor scheduling
problem. In Proceedings of the 1994 ACM/SIGAPP
Symposium on Applied Computing, 1994, 483-487.

[8] Fernandez, F. and Tomassini, M., Improving Parallel
Genetic Algorithm GA Performance by Means of Plagues,
Advances in Soft Computing 2, Springer Verlag, Berlin,
Heidelberg, (2005), 515-523,.

[9] Fernández, F., Tomassini, M. and Vanneschi, L., Studying
the influence of Communication Topology and Migration
on Distributed Genetic Programming, In J. Miller, M.
Tomassini, P.L. Lanzi, C. Ryan, A. G.B. Tettamanzi, W.
Landdon, LNCS 2038 Genetic Programming, 4th
European Conference, EuroGP 2001, Springer Verlag,
Berlin, (2001), 51-63.

[10] Ferreira, C., Gene Expression Programing: A New
Adaptive Algorithm for Solving Problems, Complex
Systems, 13, (2001), 87-129

[11] Hadjam F. Z., Moraga C., and Hildebrand L.:
Evolutionary design of digital circuits using Improved
Multi-Expression Programming. Research Report 812,
Faculty of Informatics, University of Dortmund, Germany,
2007. (Copy may be obtained from the authors)

[12] Herrera F, Lozano M, Moraga C.: Hybrid distributed real-
coded genetic algorithms. Lecture Notes in Computer
Science 1498, Springer Verlag, Berlin (1998), 603-612

[13] Koza, J.R. and Andre, D., Parallel genetic programming
on a network of transputers, Proc. of the Workshop on
Genetic Programming: From Theory to Real- World
Applications. University of Rochester. National Resource
Laboratory for the Study of Brain and Behavior. Technical
Report 95-2, 111–120, 1995

[14] Koza, J.R., Genetic Programming. On the Programming
of Computers by means of Natural Selection, MIT Press,
1992.

[15] Miller, J.F., and Thomson, P., Cartesian Genetic
Programming. In Proc. of the 3rd International Conference
on Genetic Programming (EuroGP2000), LNCS 1082,
SpringerVerlag, Berlin, (2000), 15-17

[16] Miller, J.F., Job. D. and Vassilev, V.K., Principles in the
Evolutionary Design of digitals circuits- Part I, Genetic
Programming and Evolvable Machines, 1, 1, (2000), 7-35.

[17] Oltean M., Solving Even-Parity Problems using Multi
Expression Programming, Proceedings of the 5th
International Workshop on Frontiers in Evolutionary
Algorithms, The 7th Joint Conference on Information
Sciences, (September 26-30, 2003, Research Triangle
Park, North Carolina), Edited by Ken Chen (et. al), 2003,
315-318.

[18] Oltean M., Multi-expression Programming, Technical
Report, Babes-Bolyai Univ, Romania, 2006.

[19] Oltean, M. and Grosan, C., Solving Classification
Problems using Infix Form Genetic Programming, The
Fifth International Symposium on Intelligent Data
Analysis, edited by M. Berthold (et. al), LNCS 2810,
Springer Verlag, Berlin, (2003), 242–252

[20] Oltean, M. and Grosan, C., A Comparison of Several
Linear Genetic Programming Techniques, Complex-
Systems, 14, 4, (2003), 282-311.

[21] Oltean, M. and Grosan, C., Evolving Digital Circuits
using Multi Expression Programming. NASA/DoD
Conference on Evolvable Hardware, (24-26 June, Seattle),
Edited by R. Zebulum (et. al), IEEE Press, NJ, 2004, 87-
90

[22] Patterson, N., Genetic Programming with Context-
Sensitive Grammars, Ph.D. Thesis, School of Computer
Science, University of Scotland, 2002

[23] Ryan, C., O'Neill, M., Grammatical Evolution : A Steady
State Approach, Late Breaking Paper, Genetic
Programing Edited by J.R. Koza (University of
Wisconsin, Madison, Wisconsin, 1998).

[24] Skolicki, Z., An Analysis of Island Models in
Evolutionary Computation. In Proceeding of the 2005
workshops on Genetic and evolutionary computation,
(Washington, D.C. June 2005), 2005, 25 - 26.

2480

Figure 2 : Evolved 3x2–bit multiplier : 13 gates with 4 levels, using

{and, and with one input inverted, xor}

Appendix: Circuits

Figure 3 : Evolved 3x3–bit multiplier : 29 gates with 6 levels, using

{and, and with one input inverted, xor}

2481

Figure 5 : Evolved 7–bit parity problem : 18 gates using {and, or, nor}

Figure 4 : Evolved 6–bit parity problem : 15 gates using {and, or, nor}

2482

