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ABSTRACT
The brain has long been seen as a powerful analogy from
which novel computational techniques could be devised. How-
ever, most artificial neural network approaches have ignored
the genetic basis of neural functions. In this paper we de-
scribe a radically different approach. We have devised a
compartmental model of a neuron as a collection of seven
chromosomes encoding distinct computational functions rep-
resenting aspects of real neurons. This model allows neu-
rons, dendrites, and axon branches to grow, die and change
while solving a computational problem. This also causes the
synaptic morphology to change and affect the information
processing. Since the appropriate computational equivalent
functions of neural computation are unknown, we have used
a form of genetic programming known as Cartesian Genetic
Programming (CGP) to obtain these functions. We have
evaluated the learning potential of this system in the con-
text of solving a well known agent based learning scenario,
known as wumpus world and obtained promising results.

Categories and Subject Descriptors
I.2.2 [ARTIFICIAL INTELLIGENCE]: Automatic Pro-
gramming—Program synthesis; I.2.6 [ARTIFICIAL IN-
TELLIGENCE]: Learning—Connectionism and neural nets

General Terms
Algorithms, Design, Performance

Keywords
Genetic Programming, Brain, Artificial Neural Networks

1. INTRODUCTION
In this work, a type of developmental brain-inspired com-

putational network is presented and evaluated. It is based
on the idea of evolving programs that build a computational
neural structure.
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In spite of the success of Artificial Neural Networks (ANNs),
there are many aspects of biological neural systems that have
been largely ignored. Marcus argues convincingly about
the importance of development in the understanding of the
brain, ”mechanisms that build brains are just extensions of
those that build the body” [32]. Despite this, there are vir-
tually no evolved artificial developmental neural approaches
in the research literature. The only work we could find was
that of Rust et al who evolved the parameters in rule-based
developmental neural model to grow dendritic trees and ar-
tificial retina [31], [30] and Federici who evolved develop-
mental spiking neural networks [33].

There is now abundant evidence that sub-processes of neu-
rons are highly time-dependent so that many structures are
in a constant state of being re-built and changed [26]. In
addition, memory is not a static process and the location
and mechanisms responsible for remembered information is
in constant (though, largely gradual) change. The act of re-
membering is a process of reconstructing and changing the
original structure that was associated with the original event
[27].

The physical topology of the neural structures in the brain
is constantly changing and is an integral part of its learning
capability [21]. Koch argues that ”Dendritic trees enhance
computational power” [1]. Dendrites themselves should not
be regarded as passive entities that simply collect and pass
synaptic inputs to the soma. In most cases they shape and
integrate these signals in complex ways[2]. Neurons commu-
nicate through synapses. Synapses are not simply the point
of connection, they change the strength and shape of the sig-
nal either for short time [6], [8] or long time [7]. Thus, the
physical architecture of the neuron is important. Inspired
by this our network is allowed to change its morphology.
The branches can self-prune [4], [5], and can produce new
branches to get an optimized network that depend on the
complexity of the problem. In the model, a neuron con-
sists of a soma, dendrites [10], and axons with branches and
dynamic synapses [9] and synaptic communication. Neu-
rons are placed in a grid to give branches a sense of virtual
proximity. Branches are allowed to grow and shrink, and
communicate with each other.

The internal dynamics of the neuron is too complicated
to be modeled using conventional programming design tech-
niques. However, our view is that the biology of neurons is
sufficiently well understood [24], [22] so that we can identify
essential sub-systems that we must attempt to evolve in or-
der to achieve a computational equivalent.
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Here, we used a Genetic Programming (GP) approach to
this problem. GP has been shown to be able to solve prob-
lems of this type in the absence of a fixed model [3] and often
these solutions are not fragile and show unexpected emer-
gent behaviours such as self-assembly and self-repairability
[13], [14] which are natural properties of living systems.
Thus GP, in principle, provides us with a means to represent
complex neuron ’engines’ that can be evolved to exhibit the
properties of real neural systems, without the restrictions of
a theoretical model of these systems.

In this paper we used Cartesian Genetic Programming
[12] to construct the computational network. Each neu-
ron is considered as a computational device with each sub-
processing part represented by a chromosome. The genotype
of a neuron consists of a collection of chromosomes repre-
senting the sub-components of the neuron. The chromo-
somes are subjected to evolution until the desired intelligent
behaviour is obtained.

2. CARTESIAN GP
Cartesian Genetic Programming (CGP) was developed

from the work of Miller and Thomson [11, 12] for the evolu-
tionary design of feed forward digital circuits. In CGP pro-
grams are represented by directed acyclic graphs. Graphs
have advantages in that they allow implicit re-use of sub-
graphs. In its original form CGP used a rectangular grid of
computational nodes (in which nodes were not allowed to
take their inputs from a node in the same column). How-
ever, later work relaxed this restriction by always choosing
the number of rows to be one (as used in this paper). The
genotype in CGP has a fixed length. The genes are integers
which encode the function and connections of each node in
the directed graph. However, the phenotype is obtained via
following referenced links in the graph and this can mean
that some genes are not referenced in the path from program
inputs to outputs. This results in a bounded phenotype of
variable length. As a consequence there can be non-coding
genes that have no influence on the phenotype, leading to
a neutral effect on genotype fitness. The characteristics of
this type genotypic redundancy have been investigated in
detail [12, 15, 16, 17, 18] and found to be very beneficial to
the evolutionary process on the problems studied.

Each node in the directed graph represents a particular
function and is encoded by a number of genes. The first gene
encodes the function that the node represents, and the re-
maining genes encode where the node takes its inputs from.
The nodes take their inputs from either the output of a pre-
vious node or from a program input (terminal). The number
of inputs that a node has is dictated by the number of inputs
that are required by the function it represents.

Recent work has introduced module acquisition and evo-
lution into CGP [19] and shown that these techniques are
more scalable on harder problems. However the work pre-
sented in this paper doesn’t yet utilize these methods. In
addition a form of CGP in which there are separate chromo-
somes encoding independent output however sharing mod-
ules has been introduced, and shown to improve problem
solving ability considerably [20].

3. NEURON MODEL USED
This section describes the neuron model incorporated into

the network, along with the biological inspiration. Neurons
are the main cells responsible for information processing in
the brain. They produce adaptibility, learning and intelli-
gent behavior because of their specialized biophysical struc-
ture. Neurons have specialized extensions called dendrites
and axons [21]. Dendrites bring information to the cell body
and axons take information away from the cell body. Neu-
rons communicate with each other through electrochemical
processes called synapses. They take inputs from the neigh-
bouring neurons and decide whether to transfer this infor-
mation in a forward direction, by firing an action potential if
the cumulative affect of the inputs is greater than the firing
threshold. Neurons have a number of dendrites and a single
axon. Each dendrite can have a branching tree-like struc-
ture. Axons also have branches at the end to communicate
with other neurons in their vicinity.

Neurons receive signals at the dendrite branches. The
signals are processed locally due to interactions between
neighbouring dendrite branches, and is further processed
along the dendrite due to leaky channels (reduction in sig-
nal magnitude) and voltage gated channels (amplification
of the signal). The soma receives all the signals from den-
drites and decides whether to fire an action potential or not.
If the soma fires, the action potential is transferred to the
axon[23]. The axon takes the signal and transfers it to all
the neighbouring neurons through its branches and synap-
tic connections. Neurons are highly dynamic: new branches
may be produced in the axon and dendrites, old branches
may vanish, branches grow and shrink, new neurons may
be produced and old neurons may die (see section 4.4). We
have idealized the behaviour of neuron in terms of seven
processing compartments (see section 4.4):

• Local interaction among the neighbouring branches of
the same dendrite.

• Production of new branches, removing old branches,
branch growth.

• Processing signals received from dendrites at the soma,
and deciding whether to fire an action potential.

• Creation or destruction of neurons, and modulation of
the firing rate.

• Transfer of potential through axon branches to the
neighbouring dendrite branches.

• Updating the weights (and consequently the capability
to make a synapse) of neighbouring dendrite branches
and the axon branch.

• Axon branch growth, possibility of new branches, or
removal of old branches.

4. CGP COMPUTATIONAL NETWORK
The CGP Computational Network (CGPCN) is organized

in such a way that neurons are placed randomly in a two di-
mensional grid so that they are only aware of their spatial
neighbours. The number of neurons are specified by the
user. Each neuron is initially allocated a random number of
dendrites, dendrite branches and axon branches. Neurons
take information through dendrite branches and transfer it
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through axon branches to the neighbouring neurons. The
dynamics of the network also changes during this process,
the branches may grow or shrink and move from one grid
point to another, can produce new branches, and can disap-
pear, the neurons may die or produce new neurons. Axon
branches transfer information only to the dendrite branches
in their proximity.

A Statefactor is used as a parameter to reduce the com-
putational burden, by keeping some of the neurons and
branches inactive for a number of cycles. When the state-
factor is zero the neurons and branches are considered to be
active and their corresponding program is run. The value of
the Statefactor is affected by genetic processes. The network
consists of:

- Neurons with a number of dendrites, with each dendrite
having a number of branches and an axon having a number
of axon branches.

- A genotype representing the genetic code of the neurons.
Each genotype consists of seven chromosomes (see Section-
4.4), each representing a digital circuitry. These chromo-
somes in turn represent the functionality of different parts
of the neuron.

4.1 Information Processing in the Network
Information processing in the network starts by selecting

the list of active neurons in the network and process them in
a random sequence. The processing of neural components
is carried out in time-slices so as to emulate parallel pro-
cessing. Each neuron take the signal from the dendrites by
running the electrical processing in dendrites. The signals
from dendrites are averaged and applied to soma program
along with the soma potential. The soma program is run
to get the final value of soma potential, which decides for
a neuron whether to fire an action potential or not. If an
action potential is fired the signal is transferred to other
neurons through axosynaptic branches. The same process is
repeated in all neurons. After each cycle of neural network
the potential and state factor of the soma and the branches
are reduced by certain factor. So it will provide a sense of
real time voltage and make inactive branches and neuron
to move towards activity step by step. After five cycles of
network or one step of the agent, the health and weights of
neurons and branches are reduced by certain factor, in order
to get ride of unimportant neurons and branches.

4.2 Evolutionary Strategy
The evolutionary strategy utilised is of the form 1 + λ,

with λ set to 4 [17], i.e. one parent with 4 offspring (popu-
lation size 5). The parent, or elite, is preserved unaltered,
whilst the offspring are generated by mutation of the par-
ent. The best chromosome is always promoted to the next
generation, however, if two or more are equally good then
newest(genetically) is chosen[15].

4.3 CGP Chromosome
The CGP function nodes used here consists of multiplexer-

like operations [15]. The number of inputs per node is three.
The operations on chromosomes are of two types: Scalar
Processing and Vector Processing. In the scalar case, the
inputs and outputs are integers. In the vector case, the
inputs are arranged in the form of an array. The number of
integers per vector is variable, in this way CGP can handle
an arbitrary number of inputs.

Electrical Processing in
 Dendrite Branch

Updated Potential of all the active branches connected to the dendrite

 

 

Potential of all the active branches connected to the dendrite
Potential of Soma

 

Figure 1: Electrical processing in the dendrite

Life Cycle of
 Dendrite Branch

Health of Dendrite Branch Resistance of Dendrite Branch
Weight of Dendrite Branch

Updated Health of Dendrite Branch Updated Resistance of Dendrite Branch

 

  

  

Figure 2: Life cycle of dendrite branch

4.4 CGP Model of Neuron
This model is inspired from the biological neuron. It con-

sists of seven main processes:
-Electrical Processing in Dendrite
-Life Cycle of Dendrite Branch
-Electrical Processing in Soma
-Life Cycle of Soma
-Electrical Processing in Axo-Synaptic Branch
-Weight Processing in Axo-Synaptic Branch
-Life Cycle of Axo-Synapse Branch
Each of these processes are individually represented by a

CGP chromosome. A detailed explanation of the processes
follows.

4.4.1 Electrical Processing in Dendrite
This chromosome handles the interaction between poten-

tials of dendrite branches. Figure 1 shows the inputs and
outputs to the Electrical Processing in dendrite chromo-
some. Input consists of potentials of all the active branches
connected to the dendrite and the soma potential. Since
there are many dendrite branch potentials and one soma
potential, we increase the importance of the soma potential
by creating multiple entries (in this case 10) of it (in the
input vector) before applying. This CGP program produces
the updated values of the dendrite branch potentials as out-
put. The potential of each branch is processed by adding
weighted values of Resistance, Health, and Weight of the
branch. The Statefactor of branches are adjusted based on
the updated value of branch potential. If any of the branch
is active, its life cycle CGP program is run, otherwise con-
tinue processing the other dendrites.

4.4.2 Life Cycle of Dendrite Branch
This chromosome shows the CGP algorithm for the life

cycle of dendrite branches. Figure 2 shows inputs and out-
puts of the chromosome. Variation in Resistance of dendrite
branches is used to decide whether it will grow, shrink, or
stay at its current location. The updated value of dendrite
branch Health decides whether to produce offspring, to die,
or remain as it was with an updated Health value. Produc-
ing offspring results in a new branch at the same grid point
connected to the same dendrite.
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Electrical Processing in
 Soma

Output Soma Potential

 

Potential of Soma
  

Average potential of all the dendrites

Figure 3: Electrical processing in soma

Life Cycle of
 Soma

Soma Health

 

Soma WeightSoma Health
  

Soma Weight

 

Figure 4: Soma life cycle

4.4.3 Electrical Processing in Soma
This chromsome is responsible for determining the final

value of soma potential after receiving signals from all the
dendrites. All the dendrites potentials are averaged, which
in turn are the average of potentials of active branches at-
tached to them. This average potential along with the soma
potential is applied as input to the Electrical processing in
Soma chromosome as shown in Figure 3.

The chromosome produces an updated value of the soma
potential as output, which is further processed with a weight-
ed summation of Health and Weight of the soma. The pro-
cessed potential of the soma is then compared with the
threshold potential of the soma, and a decision is made
whether to fire an action potential or not. If the soma fires
it is kept inactive (refractory period) for a few cycles by
changing its Statefactor, the soma life cycle chromosome is
run, and the firing potential is sent to the other neurons by
running the axosynapse electrical processing chromosome.
The threshold potential of soma is also adjusted to a new
value if the soma fires.

4.4.4 Soma Life Cycle
Figure 4 shows inputs and outputs of the soma life cycle

chromosome. This chromosome is intended to evaluate the
life cycle of neuron. This chromosome produces updated
values of Health and Weight of the soma as output. The
updated value of the soma Health decides whether the soma
should produce offspring, should die or continue as it is. If it
produces offspring, then a new neuron is introduced into the
network with a random number of dendrites and branches
at the same location.

4.4.5 Electrical Processing in Axo-Synaptic Branch
The potential from the soma is transferred to other neu-

rons through axon branches. Both the axon and the synapse
are considered as a single entity with combined properties.
Figure 5 shows the inputs and outputs to the chromosome
responsible for the electrical processing in axosynaptic bra-
nch. As mentioned before, the soma potential is biased (

Electrical Processing in
 Axosynapse

Updated Potential of all the neighboring active dendrite branches 

 

 

Potential of all the neighboring active dendrite branchesPotential of Soma

 

Potential of synapse
 

Figure 5: Electrical processing in axosynaptic
branch

Weight processing 
of Branches

 

Weights of Neighboring dendrites branchesAxosynaptic weight
 

 

 

Updated Axosynaptic weight

Updated Weights of Neighboring dendrites branches

 

Figure 6: Axo-synaptic branch weight processing

Life Cycle of
 Axosynaptic Branch

Resistance of AxosynapseHealth of Axosynapse
 

 

 

Health of Axosynapse Resistance of Axosynapse
 

Figure 7: Axo-synaptic branch life cycle

see section 4.4.1). The chromosome produces the updated
values of dendrite branch potentials and the axo-synaptic
potential as output. The axo-synaptic potential is then
processed as a weighted summation of Health, Weight and
Resistance of the axon branch. The axo-synaptic branch
weight processing program (see figure 6) is run after the
above process and the processed axo-synaptic potential is
assigned to the dendrite branch having the highest updated
Weight. The Statefactor of the axosynaptic branch is also
updated. If the axo-synaptic branch is active its life cycle
program is executed.

4.4.6 Axo-synaptic Branch Weight Processing
The weight of axon branches affects its capability to mod-

ulate and transfer the information (signal) efficiently. The
weights are responsible for modulating the signal. They af-
fect almost all the neural processes either by virtue of being
an input to a chromosomal program or as a factor in post
processing of signals.

Figure 6 shows the inputs and the outputs to the axosy-
naptic weight processing chromosome. The CGP program
encoded in this chromosome takes as input the Weights of
the axo-synapse and the neighbouring dendrite branches and
produces their updated values as output.

4.4.7 Axo-Synaptic Branch Life Cycle
The role of this chromosome is similar to dendrite branch

life cycle chromosome. Figure 7 shows the inputs and out-
puts of axosynaptic branch life cycle chromosome. It takes
Health and Resistance of the axon branch as input, and pro-
duces the corresponding updated values as output.

The updated values of Resistance are used to decide whet-
her the axon branch should grow, shrink, or stay at its
current location. The Health of the axon branch decides
whether the branch will die, produce offspring, or merely
continue with an updated value of health.

4.5 Inputs and Outputs
The inputs are applied through virtual axon branches by

using axosynaptic electrical processing chromosomes. These
branches are distributed in the network in a similar way to
the axon branches of neurons. These branches are part of in-
put neurons, which are virtual neurons. They take the input
from the environment and transfer it through virtual axo-
synapse with out processing it. When inputs are applied to
the system, the program encoded in the axo-synaptic electri-
cal branch chromosome is executed, and the resulting signal
is transfered to its neighbouring active dendrite branches.

2538



Similarly we have output virtual neurons which read the
signal from the system through virtual dendrite branches.
These virtual dendrite branches are distributed across the
network. These branches are updated by the axo-synaptic
chromosomes of neurons in the same way as other dendrite
branches. The output from the output neuron is taken with-
out further processing.

5. EXPERIMENTAL SETUP

5.1 Wumpus World
The Wumpus World is an agent-based learning problem

used as a testbed for various learning techniques in Artifi-
cial Intelligence [25]. It consists of a two dimensional grid
containing a number of pits, a wumpus (monster) and an
agent[25]. The agent always starts from a unique square
(home) in a corner of the grid. The agent’s task is to avoid
the wumpus, find the gold, return to home. The agent can
perceive a breeze in squares adjacent to the pits and a stench
in the squares adjacent to the wumpus.

In most environments there is a way for the agent to safely
retrieve the gold. In some environments, the agent must
choose between going home empty-handed, taking a chance
that could lead to death, or finding the gold. In our exper-
iments we have slightly adapted the rules of the wumpus
world. Namely, the agent encountering pits or wumpus is
only weakened (thus reducing its life), it is not killed. These
changes are introduced to facilitate the capacity of the agent
to learn. The CGPCN learns everything from scratch and
builds its own memory (including the meaning of signals,
pits and the wumpus).

It is important to appreciate how difficult this problem is.
The agents starts with a few neurons with random connec-
tions. So, firstly, evolution must find a series of programs
that build a computational network that is stable (doesn’t
lose all neurons or branches etc.). Secondly, it must find a
way of processing infrequent environmental signals. Thirdly,
it must navigate in this environment using some form of
memory. Fourthly, it must confer goal-driven behaviour on
the agent. This makes the wumpus world problem a chal-
lenging problem.

The wumpus world used here is a two dimensional grid
(10x10), having ten pits, one wumpus and the gold. The
location of wumpus, gold and pits is chosen randomly. In the
square containing wumpus, gold, pits, and in directly (not
diagonally) adjacent square the agent can perceive stench,
glitter (near gold) and breeze respectively. Also we have
arranged it so that the agent will receive input signals of
different magnitudes depending on the direction that the
agent perceives the signal. The agent detects that it is on
the home square via a special input signal. All the locations
which are safe will provide no signal. The agent is assigned
an initial life of 200 units. If agent is caught by wumpus its
life is reduced by 60%, if caught by a pit its life is reduced
by 10 units, if it gets the gold its life is increased by 50 units,
on arriving home its life is over. For each single move the
agent’s life is reduced by 1 unit. The fitness of an agent is
accumulated (while its life is greater than zero) during its
lifetime in the following way:

• For each move, the fitness of the agent is increased by
one.

• If the agent returns home without the gold, its fitness
is increased by 200.

• If the agent obtains the gold, its fitness is increased by
1000.

• If the agent returns home with the gold, its fitness is
increased by 2000.

When the experiment starts, the agent takes its input
from the grid square. This input is applied to the compu-
tational network of the agent through virtual axosynapses.
The network is then run for five cycles. During this process
it updates the potentials of the virtual dendrite branches
which act as output of the system. After the above pro-
cess the updated potentials of virtual dendrite branches are
noted and averaged. The value of this average potential de-
cides the direction of movement for the agent. The same
process is then repeated for the next grid square. The agent
is terminated if either its life become zero, or all its neurons
die, or all the dendrite or axon branches die, or if the agent
return home.

The network is tested on five different genotypes to pro-
duce different agent behaviors. The best agent genotype is
selected as the parent for a new population.

5.2 CGPCN Setup
The CGPCN is arranged in the following manner for this

experiment. The network is arranged in the form of a 3x4
grid. Inputs and outputs are applied at five different random
locations. Initial number of neurons is 5. Maximum number
of dendrites is 5. Maximum number of dendrite and axon
branches is 5. Maximum branch StateFactor is 7. Maximum
soma StateFactor is 3. Mutation rate is 5%. Maximum
number of nodes per chromosome is 100.

5.3 Results and Analysis
The agent performance is determind by its capability to

solve three kinds of tasks. The first task for the agent is to
learn how to come back to home, the second task is to find
the gold, and the third and the final task is to bring the gold
back to home. During this process the agent has to avoid
pits and wumpus in order to increase its life span. It also
needs to sustain the neural network to solve these problems.
Performances of the agents from independent evolutionary
runs with different initial population, but with the same
wumpus world is given in Table 1.

The first column of table 1 gives the run number. The
second column shows the number of generation taken by the
agent to learn how to come back to home, the third column
shows the number of generations taken to find the gold and
the last column shows the number of generation taken by
the agent to bring the gold back to home. Table 2 shows
the performance of different evolutionary runs starting from
the same initial population but where each run is evaluated
on a different Wumpus World.

The fitness function was devised in such a way that it
initially forces the agent to sustain its network and so in-
crease its life span. So in the initial generations evolution
tries to build a stable and sustainable computational net-
work. Once this is acheived, evolution starts to produce
agents that firstly learn how to come back home, then learn
how to find the gold and finally they bring the gold back
home. This is evident from results in table 1 and 2.
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Run Home Gold obtained Home
without Gold with Gold

1 - 5 12
2 5 14 267
3 1 95 120
4 - 3 649
5 - 3 119
6 - 7 186
7 1 8 88
8 - 2 14
9 15 18 304
10 9 14 987
11 - 2 93
12 5 19 762
13 - 3 256
14 - 3 380
15 5 10 280
16 3 4 1108
17 2 20 674
18 1 20 98
19 2 5 35
20 3 6 98

Table 1: The number of generations taken to per-
form various tasks in a fixed Wumpus World in in-
dependent evolutionary runs.

At the start, the agent does not know anything about gold,
home, wumpus, or pits and the signals that indicate the
presence of these objects nearby. As the system is evolved
the genetic code in the agent allows a computational struc-
ture to be built that holds a memory of the meaning of these
signals during the agents life cycle. This knowledge is built
from the initial genetic code when it is run on the initial
randomly wired network. When different runs of the exper-
iment are examined, it is found that in all cases the agent
learns to avoid the wumpus and pits and tries to get the
gold.

Conventional artificial neural networks work on the prin-
ciple of updating weights to aproximate the solution to a
problem. So for even a slightly changed nature of problem
you need to retrain the network to find the new weights
which allow the changed problem to be solved. Whereas, in

Wumpus World Home Gold Home and Gold
1 - 5 12
2 11 28 49
3 - 6 1079
4 7 79 1051
5 - 9 1769
6 3 6 161
7 3 4 379
8 2 20 92
9 - 2 738
10 2 41 203

Table 2: The number of generations taken by
the evolved computational networks to perform the
tasks on different Wumpus Worlds starting from the
with same initial population.

Wumpus World Fitness
1 3103*
2 256
3 86
4 70
5 3051*
6 258
7 1068
8 1068
9 1170
10 1169

Table 3: The fitness achieved by the best evolved
agent on different wumpus world environments

the case of CGPCN, we are evolving programs that build
and change continuously a computational network within
an external environment. Naturally, we are interested in
whether these evolved programs could build a network that
could lead to successful agent behaviour in different wum-
pus worlds (i.e. behaviour that is general and not specific to
a particular wumpus world). To test this we took the pro-
grams for the best evolved agent on a particular Wumpus
World and tested its performance on other wumpus worlds
that had been generated at random. The performance of
this agent is presented in Table 3.

The first column gives the wumpus world identifier. The
second column shows the agent fitness on each wumpus
world. As explained earlier the fitness shows whether the
agent came back to home without gold, with the gold, or
whether it got the gold but did not go home. If the fitness
of agent is above 3000 it shows that it got the gold and
brought it to home. If the agent fitness is above 1000 it
means that it got the gold, and if the fitness of the agent
is above 200 it means that it came back to home without
any gold. From Table 3 it is evident that in two of the cases
when the gold is placed at the same location, but pits and
wumpus are located at different location, the agent was able
to get the gold and bring it to home (marked with an as-
terisk). In other cases, sometimes the agent gets the gold
but is unable to find its way to home, and sometimes it can-
not find the gold and returns home empty handed. There
are also cases when the agent cannot find the gold or get
home. Further observations during the experiment revealed
that the irrespective of the new environment the agent al-
ways first looks for the gold at the place where the gold was
when it was evolved. This is very interesting as it shows that
the evolved genetic codes are able to build a computational
network that holds information (how to find the gold).

5.4 Development of network over the lifetime
of the agent

While solving wumpus world the CGPCN changes sun-
stantially in its structure both in term of presence and ab-
sence of neurons and branches and whether they are active
or inactive. Figure 8 shows the variation in the life of the
agent while it is solving a task (getting gold and bringing it
back home). Close examination of this reveals that there are
mainly slow continuous changes but also there are sudden
changes in the agent’s life. If the agent does not acheive any
tasks its life continually decreases step by step. When it falls
into a pit its life is decreased by ten units. There is a large
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decrease in life when the agent encounters the wumpus. In
this particular case the agent falls into a pit five times and
meets the wumpus once. When the agent gets the gold one
can see a sudden increase in its life (by 50units). Finally
when agent return home its life is terminated as shown in
the righthand corner of the graph (Figure 8). This particular
case is selected just for demonstration. Figures 9 shows the
variation in number of neurons, dendrite branches and axon
branches during this agent’s life. Figures 10 shows the vari-
ation in the number of active neurons, dendrite branches
and axon branches at different stages of life of the agent.
Figures 9 and 10 shows interesting network dynamics. The
network dynamics is quite random at the start, but later it
stabilizes. Once a sustainable network is obtained then the
agent tries to find its goal. The agent take less time to get
to its second goal (home) than the first goal (gold), because
now it has a sustainable network and all it needs to do is
to get the gold back to home. In a way a single run of net-
work shows all the learning that is done during evolution.
e.g. getting a sustainable network and solving the problem.
Also, a study of the network behaviour over a number of
evolutionary runs, reveals that the agents avoid the rest of
the environment and go directly to the place where the gold
is located. This is reminiscent of instinctive behaviour.

6. CONCLUSION
We have presented a method for evolving programs that

construct a dynamic computatational network inspired by
the biological brain. We have evaluated this approach on a
classic AI problem called wumpus world. Results are very
promising and indicate that this system might be capable
of developing an ability to learn continuously within a task
environment. We found that a network tested on a different
wumpus world preserves the sustainability of the network
and the avoidance of pits and the wumpus. It is not pos-
sible, at present to compare directly the effectivness of this
approach with other artificial neural networks as others have
not worked in the wumpus world scenario.
In future work, we plan to examine whether the dynamic
computational network is able to solve problems faster and
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Figure 10: Agent Network Activity

more accurately merely by obtaining repeated experience
of its task environment (post evolution). Also, we plan
to investigate whether the computational networks can be
trained to solve a sequence of problems without forgetting
how to solve earlier problems (conventional artificial neural
networks suffer from a phenomenon known as ’catastrophic
forgetting’ [28][29])
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