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ABSTRACT
This paper presents an analysis of microarray gene expres-
sion data from patients with and without scleroderma skin
disease using computational intelligence and visual data min-
ing techniques. Virtual reality spaces are used for providing
unsupervised insight about the information content of the
original set of genes describing the objects. These spaces
are constructed by hybrid optimization algorithms based
on a combination of Differential Evolution (DE) and Par-
ticle Swarm Optimization respectively, with deterministic
Fletcher-Reeves optimization. A distributed-pipelined data
mining algorithm composed of clustering and cross-validated
rough sets analysis is applied in order to find subsets of rele-
vant attributes with high classification capabilities. Finally,
genetic programming (GP) is applied in order to find ex-
plicit analytic expressions for the characteristic functions of
the scleroderma and the normal classes. The virtual reality
spaces associated with the set of function arguments (genes)
are also computed. Several small subsets of genes are discov-
ered which are capable of classifying the data with complete
accuracy. They represent genes potentially relevant to the
understanding of the scleroderma disease.
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1. INTRODUCTION
Scleroderma is a complex and sometimes fatal disease.

Its pathogenesis is poorly understood and the development
of the disease is known to involve the immune system, the
vasculature, and extracellular matrix deposition. Unfortu-
nately, there are no definitive markers or curative treatments
[23]. Scleroderma can occur in a localized form confined to
the skin or a systemic form referred to as systemic sclerosis
(SSc), which involves internal organs and the skin. When
the disease affects critical internal organs it may lead to
death. In more than 90% of the patients the skin is affected
and cutaneous involvement closely correlates with internal
organ pathology. The disease is most prevalent in women
with a median age. Symptoms develop symmetrically and
include swelling in the hands and Raynauds phenomenon.
The skin becomes tense, shiny, and painful. Skin changes
progress and may involve the face, trunk, and lower extrem-
ities. The edematous skin becomes fibrotic and hardens.
These distressing skin changes are generally accompanied
by internal organ involvement. Studies of gene expression
in the skin of individuals affected with diffuse scleroderma
and their comparison with a similar characterization made
on biopsies from normal, unaffected individuals have been
conducted. The goal is to find markers for the disease and
in this paper a knowledge discovery approach using evolu-
tionary computation and other techniques is presented.

First, visual data mining with virtual reality (VR) spaces
are used for representing the original set of genes describing
the objects (in an unsupervised manner). Their construction
uses hybrid optimization algorithms combining Differential
Evolution (DE) and Particle Swarm Optimization (PSO)
with classical deterministic Fletcher-Reeves optimization.
Then, a distributed-pipelined data mining algorithm (DP-
DM) is applied in order to find subsets of relevant attributes
with high classification capabilities. VR spaces are com-
puted for selected subsets of genes and their structure is
analyzed in comparison with the scleroderma and normal
class distributions. Finally, genetic programming (GP) is
applied in order to find explicit analytic expressions for com-
puting the characteristic functions of the scleroderma and
the normal classes. The VR spaces associated with the set
of function arguments (genes) are also computed.

2. VISUAL DATA MINING
The role of visualization techniques in the knowledge dis-

covery process is well known. Several reasons make VR a

2580



suitable paradigm: It is flexible, allows immersion, creates a
living experience and is broad and deep (the user may see the
VR world as a whole, and/or concentrate the attention on
specific details). Of no less importance is the fact that in or-
der to interact with a virtual world, no specialized technical
expertise is required. A virtual reality technique for visual
data mining on heterogeneous, imprecise and incomplete in-
formation systems extending the concept of 3D modelling
to relational structures was introduced in [21], [22].

A virtual reality space can be defined as a tuple
Υ =< O, G, B,<m, go, ϕ, gr, b, r >, where O is a relational
structure (O =< O, Γv >, O is a finite set of objects, and
Γv is a set of relations); G is a non-empty set of geometries
representing the different objects and relations; B is a non-
empty set of behaviors of the objects in the virtual world;
<m ⊂ Rm is a metric space of dimension m (euclidean or
not) which will be the actual virtual reality geometric space.
The other elements are mappings: go : O → G, ϕ : O → <m,
gr : Γv → G, b : O → B.

If the objects are in a heterogeneous space, ϕ : Ĥn → <m.
Several desiderata can be considered for building a VR-
space. One may be to preserve one or more properties
from the original space as much as possible (for example,
the similarity structure of the data [4]). From an unsu-
pervised perspective, the role of ϕ could be to maximize
some metric/non-metric structure preservation criteria [2],
or minimize some measure of information loss. From a su-
pervised point of view ϕ could be chosen as to emphasize
some measure of class separability over the objects in O [22].
In particular, if δij is a dissimilarity measure between any
two i, j ∈ U (i, j ∈ [1, N ], where n is the number of ob-
jects), and ζivjv is another dissimilarity measure defined on
objects iv, jv ∈ O from Υ (iv = ξ(i), jv = ξ(j), they are
in one-to-one correspondence), an error measure frequently
used is Sammon error [18]:

Sammon error =
1∑

i<j δij

∑
i<j (δij − ζij)

2

δij
(1)

3. EVOLUTIONARY ALGORITHMS

3.1 Differential Evolution
Differential Evolution [19], [17], [9] is a kind of evolution-

ary algorithm working with real-valued vectors, and it is rel-
atively less popular than genetic algorithms (GA). Like GA,
evolution strategies and other EC algorithms, it works with
populations of individual vectors (real-valued), and evolves
them. Many variants have been introduced (called strate-
gies), but the general scheme is as follows:

Algorithm 1. General Differential Evolution Scheme

(0) Initialization: Create a population P of random vec-
tors in <n, and choose an objective function f : <n →
< and a strategy S, involving vector differentials.

(1) Choose a target vector from the population ~xt ∈ P.
(2) Randomly choose a set of other population vectors V =

{~x1, ~x2, . . .} with a cardinality determined by S.
(3) Apply strategy S to the set of vectors V∪{~xt} yielding

a new vector ~xt′ .
(4) Add ~xt or ~xt′ to the new population according to the

value of the objective function f and the type of prob-
lem (minimization or maximization).

(5) Repeat steps 1-4 to form a new population until ter-
mination conditions are satisfied.

— End of Algorithm —

3.2 Particle Swarm Optimization
Particle swarm optimization (PSO) is a population-based

stochastic search process, modeled after the social behavior
of bird flocks and similar animal collectives [10][11]. The al-
gorithm maintains a population of particles, where each par-
ticle represents a potential solution to an optimization prob-
lem. In the context of PSO, a swarm refers to a number of
potential solutions to the optimization problem, where each
potential solution is referred to as a particle. Each particle
i maintains information concerning its current position and
velocity, as well as its best location overall. These elements
are modified as the process evolves, and different strategies
have been proposed for updating them, which consider a va-
riety of elements like the intrinsic information (history) of
the particle, cognitive and social factors, the effect of the
neighborhood, etc, formalized in different ways. The swarm
model used has the form proposed in [13]

νk+1
id = ω · νk

id + φ1 · (pk
id − xk

id) + φ2 · (pk
gd − xk

id)

xk+1
id = xk

id + νk+1
id

φi = bi · ri + di, i = 1, 2

(2)

where νk+1
id is the velocity component along dimension d

for particle i at iteration k + 1, and xk+1
id is its location;

b1 and b2 are positive constants equal to 1.5; r1 and r2 are
random numbers uniformly distributed in the range (0, 1);
d1 and d2 are positive constants equal to 0.5, to cooperate
with b1 and b2 in order to confine φ1 and φ1 within the
interval (0.5, 2); ω is an inertia weight.

3.3 Genetic Programming
Analytic functions are among the most important build-

ing blocks for modeling, and are a classical form of knowl-
edge. Direct discovery of general analytic functions can be
approached from a computational intelligence perspective
via evolutionary computation. Genetic programming tech-
niques aim at evolving computer programs, which ultimately
are functions. Genetic Programming is an extension of the
Genetic Algorithm introduced in [12].

Those programs which represent functions are of partic-
ular interest and can be modeled as y = F (x1, · · · , xn),
where (x1, · · · , xn) is the set of independent or predictor
variables, and y the dependent or predicted variable, so that
x1, · · · , xn, y ∈ R, where R are the reals. The function F is
built by assembling functional subtrees using a set of prede-
fined primitive functions (the function set), defined before-
hand. In general terms, the model describing the program
is given by y = F (~x), where y ∈ R and ~x ∈ Rn. Classical
implementations of genetic programming for modeling use
a tree representation for the expressions along with their
associated tree operations (GPStudio (GPS) [3]). Others,
like gene expression programming (GEP) [6] encode expres-
sions as strings of fixed length. For the interplay of the
chromosomes and the expression trees (ET), GEP uses a
translation system to transfer the chromosomes into expres-
sion trees and vice versa [6]. The set of genetic operators
applied to chromosomes always produces valid ETs.

The chromosomes in GEP itself are composed of genes
structurally organized in a head and a tail [5]. The head
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contains symbols that represent both functions (from a func-
tion set F) and terminals (from a terminal set T), whereas
the tail contains only terminals. Two different alphabets
occur at different regions within a gene. For each problem,
the length of the head h is chosen, whereas the length of the
tail t is a function of h and the number of arguments of the
function with the largest arity. Both the classical and GEP
approaches to genetic programming are investigated.

4. CLASSICAL OPTIMIZATION
The Fletcher-Reeves method is a well known technique

used in deterministic optimization [16]. It assumes that
the function f is roughly approximated as a quadratic form
in the neighborhood of a N dimensional point P. f(~x) ≈
c − ~b · ~x + 1

2
~x · A · ~x, where c ≡ f(P), b ≡ −∇f |P and

[A]ij ≡ ∂2f
∂xi∂xj

|P The matrix A whose components are the

second partial derivatives of the function is called the Hes-
sian matrix of the function at P. Starting with an arbitrary

initial vector ~g0 and letting ~h0 = ~g0, the conjugate gradient
method constructs two sequences of vectors from the recur-

rence ~gi+1 = ~gi − λi A ·~hi, ~hi+1 = ~gi+1 − γi A ·~hi, where
i = 0, 1, 2, . . . The vectors satisfy the orthogonality and con-

jugacy conditions ~gi · ~gj = 0, ~hi ·A · ~hj = 0, ~gi · ~hj = 0,

j < i and λi, γi are given by λi =
~gi·~gj

~hi·A·~hi
, γi =

~gi+1·~gi+1
~gi·~gi

.

It can be proven [16] that if ~hi is the direction from point
Pi to the minimum of f located at Pi+1, then ~gi+1 =
−∇f(Pi+1), therefore, not requiring the Hessian matrix.

5. HYBRID OPTIMIZATION
Evolutionary algorithms are global optimizers and in gen-

eral explore broad areas of the search space, whereas clas-
sical deterministic optimization techniques are more pow-
erful at local search, exploiting the knowledge of the par-
tial derivatives of the function. It is a common practice to
combine them in hybrid algorithms which benefit from the
good properties of both approaches. A first hybrid algorithm
(DE-FR) was constructed by applying DE until convergence
and then using the final solution as initial approximation for
the Fletcher-Reeves algorithm. A second hybrid algorithm
(PSO-FR) was constructed in the same way, but using PSO,
instead of DE. These hybrid algorithms were used for the
implicit computation of the l mapping required by the VR
spaces (minimization of the Sammon error in Eq-1).

6. DISTRIBUTED PIPELINE DATA MINING
A data mining methodology based on a distributed

pipeline of algorithms for finding relevant subsets of at-
tributes in highly-dimensional information systems was in-
troduced in [20]. The general idea is to construct subsets
of relatively similar attributes, such that a simplified repre-
sentation of the data objects is obtained by using the cor-
responding attribute subset representatives. The attributes
of these simplified information systems are explored from a
rough set perspective [15], [14] by computing their reducts
(subsets of the original attributes with the same classi-
fication capability as the whole set). From them, rules
are learned and applied systematically to testing data sub-
sets not involved in the learning process following a cross-
validation scheme (Fig-1), in order to better characterize the

classification ability of the retained attributes. The whole
procedure can be seen as a pipeline.

In a first step, the objects in the dataset are shuffled using
a randomized approach in order to reduce the possible bi-
ases introduced within the learning process by data chunks
sharing the same decision attribute. Then, the attributes of
the shuffled dataset are clustered using two families of clus-
tering procedures: i) three variants of the leader algorithm
[8] (forward, reverse and absolute best), and four variants
of k-means [1] (Forgy, Jancey, convergent and MacQueen).
The leader and the k-means algorithms were used with a
similarity measure rather than with a distance; in particu-
lar Gower’s general coefficient was used [7].

Each of the formed clusters of attributes is represented by
exactly one of the original data attributes. By the nature of
the leader algorithm, the representative is the leader (called
an l-leader), whereas for a k-means algorithm, a cluster is
represented by the most similar object w.r.t. the centroid of
the corresponding cluster (the k-leader). As a next step, a
new information system is built from the original by retain-
ing the l-leaders (or the k-leaders). The filtered informa-
tion system undergoes a segmentation with the purpose of
learning classification rules, and testing their generalization
ability in a cross-validation framework. N-folds are used as
training sets; where the numeric attributes present are con-
verted into nominal attributes via a discretization process,
and from them, reducts are constructed. Finally, classifi-
cation rules are built from the reducts, and applied to a
discretized version of the test fold (according to the cuts ob-
tained previously), from which the generalization ability of
the generated rules is evaluated. Each stage feeds its results
to the next stage of processing, yielding a pipelined data
analysis stream. This methodology had been used success-
fully in the analysis of gene expression data [20].

Distributed and Grid computing is an obvious choice for
many data mining tasks within the knowledge discovery pro-
cess. For this study, Condor (http://www.cs.wisc.edu/
condor/), which is a specialized workload management sys-
tem for compute-intensive jobs in a distributed comput-
ing environment, developed at the University of Wisconsin-
Madison (UW-Madison) was used.

7. EXPERIMENTAL SETTINGS
The data used in the study was the human scleroderma

microarray dataset consisting of 27 samples coming from
normal patients and patients affected by scleroderma. A set
of 7777 genes characterizes each sample. See [23] for details.

In order to make a preliminary assessment about the rela-
tion between the data structure as conditioned by the 7777
genes and the class distribution, unsupervised virtual reality
spaces for visual data mining were computed. Two kinds of
experiments were made: i) the DE and PSO methods were
applied separately and ii) the two hybrid algorithms (DE-
FR and PSO-FR) were applied.

In the case of DE, vectors of dimension equal to 27x3 = 81
were used in order to make their elements be the coor-
dinates of the objects in the VR space. The popula-
tion size was fixed as 500 such vectors, and the num-
ber of generations was set to 500 as well. The fol-
lowing DE strategies were applied: {DE/rand/1/exp,
DE/rand-to-best/1/exp, DE/best/2/exp, DE/rand/2/exp,
DE/best/1/bin, DE/rand/1/bin, DE/rand-to-best/1/bin,
DE/best/2/bin DE/rand/2/bin}. The set of scaling factors
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Figure 1: Data processing strategy combining clustering, Rough Sets analysis and crossvalidation.

F spanned the range [0.1, 1] with 0.1 intervals, the crossover
ratio covered the same set of values and five seeds were used
for creating the sets of random numbers used by the proce-
dure {−101, 8943, 98438, 84376, 539}.

For PSO, the dimension of the particles was set equal
to that of the DE vectors. The number of particles and
the number of generations were equal to the DE population
size and the number of generations respectively. The ini-
tial and final weights values were {0.1, 0.2, 0.4, 0.6, 0.8, 0.9}
respectively and the particle maximum velocity values were
{0.1, 0.15, 0.20, 0.25, 0.30}. The set of seeds was the same
as the one used in DE in order to ensure comparability of
the results. The objective function was Eq-1 using Gower’s
similarity [7] in the space of the original attributes (genes)
and Euclidean distance in the VR space.

The pipeline (Fig. 1) was investigated through the gener-
ation of 2880 k-leader and 1320 l-leader for a total of 4200
experiments (Table 1). The discretization, reduct compu-
tation and rule generation algorithms are those included in
the Rosetta system [14].

GPS was used with the following settings: function set
{+,−, ∗, /, exp}, random constants in the range [0, 100], pop-
ulation size = 100, 000, reproduction probability = 0.05, mu-
tation probability = 0.1, crossover probability = 0.85 and
tree depth = 6. The fitness function was defined as the mean
absolute error. GEP was applied in all cases by allowing the
generation of random constants in the range [−10, 10] with
population size = 30, the use of a non-terminal function set
{+,−, ∗, /, exp,

√
, ln}, and 4 genes linked with addition.

The fitness function was defined as the classification error.

8. RESULTS
The distributions of Sammon errors for the VR spaces

computed with DE and PSO exclusively are shown in Fig. 2(a)
and Fig. 2(b). They are both highly skewed towards the
lower error end, but the DE covers a broader error range

w.r.t the PSO and also is multimodal. This is related with
the variability introduced by the large set of different DE
strategies used, some of which have large interquartile ranges.

Clearly, it is impossible to represent virtual reality spaces
on a static medium. A comparative composition of snap-
shots of the VR spaces using the best solutions found by the
DE and PSO (independently) and combined with Fletcher-
Reeves is shown in Figs. 2(c), 2(d), 2(e), 2(f). Dark spheres
were used to indicate the location of scleroderma samples
and light ones represent those of the normal class. Also,
convex hulls are included as aids for visualizing the class dis-
tribution, but this information is only of comparative value,
as the class information was not used in the computation of
the VR space. Fig. 2(c) shows that 3 nonlinear new features
computed out of the 7777 original genes by DE alone are
capable of reasonably distinguish the two classes, although
with an important overlap. When this solution is refined
by the deterministic, Fletcher-Reeves algorithm, the final
solution shown in Fig. 2(d) presents a very clear class dif-
ferentiability, as the classes are almost linearly separable (in
that particular nonlinear space). In the case of PSO, the im-
provement of its hybridization with the FR technique is even
larger than for the DE case (Figs. 2(e), 2(f)). The solution
of the hybrid algorithm presents a space in which the two
classes appear naturally separated (that is, using only the in-
formation contained in the original genes for computing the
3 nonlinear features and not the class attribute). The DE-
FR and PSO-FR results show that there are genes within
the 7777 original carrying discrimination information.

When the DP-DM technique was used for finding sub-
sets of relevant genes, the results shown in Table-2 and
Table-3 were obtained. Some of the subsets have high ac-
curacies when predicting the scleroderma and the normal
classes and among them three were selected for a detailed
analysis. Experiments 986, 2609 and 2054 (accuracy range
= [0.846, 0.857]) contain 58, 30 and 80 genes respectively. In
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(a) Sammon error distribution for unsupervised solutions
obtained with Differential Evolution (DE).

(b) Sammon error distribution for unsupervised solutions
obtained with Particle Swarm Optimization (PSO).

(c) Best space obtained by DE only. (Sammon error:
0.0666)

(d) Best space obtained by a hybrid algorithm (DE +
Fletcher-Reeves). (Sammon error: 0.0665)

(e) Best space obtained by PSO
only. (Sammon error: 0.0680)

(f) Best space obtained by a Hybrid algorithm (PSO + Fletcher-
Reeves). (Sammon error: 0.06625)

Figure 2: Distribution of Sammon errors and selected best virtual reality spaces representing the original 27
x 7777 data. Dark objects = samples from the scleroderma class. Light objects = normal samples.
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Table 1: The set of parameters and values used
in the 4200 experiments with the 27 by 7777 sclero-
derma skin data set using DP-DM. The Discretiza-
tion, Reduct Computation and Rule Generation al-
gorithms are from within the Rosetta system.

Common DP-DM Parameters

Cross-validation n = 2, 3, 4 folds
Discretization BROrthogonalScaler, EntropyScaler,

NaiveScaler, RSESOrthogonalScaler,
SemiNaiveScaler

Reduct JohnsonReducer, Holte1RReducer,
Computation RSESExhaustiveReducer,

RSESJohnsonReducer
Rule Generation RSESRuleGenerator

k-leader Specific Parameters

K-means Algorithm Forgy (For), Jancey (Jan),
Variant Convergent (Con), MacQueen (Mac)

Number of Clusters K = 2, 5, 10, 20, 30, 40, 50,
60, 70, 80, 90, 100

l-leader Specific Parameters

Leader Criteria (Crit) center (c), reverse (r)
Similarity Threshold 0.7, 0.72, 0.74, 0.76, 0.78, 0.8,

(Thresh) 0.82, 0.84, 0.86, 0.88, 0.9

order to visualize the relation between their information con-
tent as revealed by their similarity structure and the class
distribution, VR spaces were computed Figs. 3(a), 3(c) and
3(e). They show clearly the differentiation of the sclero-
derma and the normal classes, but now based on a much
smaller set of genes. These subsets of genes were used in
genetic programming experiments with the GEP technique
for finding analytic expressions for the characteristic func-
tion of the classes using these subsets of genes as predictor
variables. In these experiments, 80% of the samples were
used for learning and the remaining 20% as independent
test. The resulting expressions are given by Eqs-4, 6, 5, to-
gether with the decision rule for classification. In all cases
the corresponding expressions discovered by GP performed
with 100% accuracy on both the learning and the test sets.
This result, although very positive, should be taken with
caution due to the limited number of samples available and
the fact that there is a high number of replicate samples
taken from an even smaller number of patients [23]. It is
interesting to observe that an even smaller number of genes
from each subset is necessary for constructing perfectly clas-
sifying functions in all cases. In a final experiment, the VR
spaces corresponding exclusively to those genes involved in
the characteristic functions were computed (Figs. 3(b), 3(d)
and 3(f)). The natural separation between the classes is
very clear in all cases, explaining why the found character-
istic functions present a very simple algebraic structure, in
spite of the broad set of terminal functions and constants
allowed during the search process.

The characteristic function found using gene expression
programming is of the following general form. Object class
membership will be determined by the function f(· · · ) as-
suming a value above or below the specified threshold.

Table 2: Selected pipeline l-leader n-fold cross-
validated experiments with maximum accuracy >
0.85 using the 27 by 7777 dataset. Sorted by decreas-
ing minimum accuracy. See Table-1 for abbreviation
definitions. See Table-3 for the k-leader results.

best l-leader experiments (max > 0.85)
Exp mean median std dev min max n-Folds Crit Thresh

986 0.82 0.78 0.14 0.71 1 4 r 0.86
985 0.82 0.78 0.14 0.71 1 4 c 0.86
981 0.82 0.84 0.07 0.71 0.86 4 c 0.82
982 0.82 0.84 0.07 0.71 0.86 4 r 0.82
964 0.81 0.78 0.17 0.67 1 3 r 0.86
963 0.81 0.78 0.17 0.67 1 3 c 0.86
583 0.81 0.78 0.15 0.67 1 4 c 0.8
584 0.81 0.78 0.15 0.67 1 4 r 0.8
365 0.78 0.78 0.11 0.67 0.89 3 c 0.82
366 0.78 0.78 0.11 0.67 0.89 3 r 0.82
1026 0.78 0.78 0.11 0.67 0.89 3 r 0.82
1025 0.78 0.78 0.11 0.67 0.89 3 c 0.82
36 0.78 0.78 0.11 0.67 0.89 3 r 0.82
629 0.78 0.78 0.11 0.67 0.89 3 c 0.82
630 0.78 0.78 0.11 0.67 0.89 3 r 0.82
35 0.78 0.78 0.11 0.67 0.89 3 c 0.82
515 0.74 0.71 0.08 0.67 0.86 4 c 0.78
516 0.74 0.71 0.08 0.67 0.86 4 r 0.78

Table 3: Selected pipeline k-leader n-fold cross-
validated experiments with maximum accuracy >
0.85 using the 27 by 7777 dataset. Sorted by decreas-
ing minimum accuracy. See Table-1 for abbreviation
definitions. See Table-2 for the l-leader results.

best k-leader experiments (max > 0.85)
Exp mean median std dev min max n-Folds Alg K

2609 0.92 0.92 0.004 0.92 0.93 2 For 30
2610 0.92 0.92 0.004 0.92 0.93 2 Jan 30
2657 0.92 0.89 0.064 0.89 1 3 For 30
2658 0.92 0.89 0.064 0.89 1 3 Jan 30
2081 0.92 0.89 0.064 0.89 1 3 For 30
2082 0.92 0.89 0.064 0.89 1 3 Jan 30
2130 0.93 0.93 0.082 0.86 1 4 Jan 30
2129 0.93 0.93 0.082 0.86 1 4 For 30
2705 0.93 0.93 0.082 0.86 1 4 For 30
2706 0.93 0.93 0.082 0.86 1 4 Jan 30

predictedClass =

{
scleroderma iff(· · · ) ≥ 0.5

normal otherwise

Three datasets were selected from the results of the DP-
DM processing by selecting the best l-leader and k-leader re-
sults and the first k-leader result that had a value of K differ-
ent from the best; namely experiments 2609, 986, and 2054
respectively (See Table-3 for the best k-leader results and
Table-2 for the best l-leader results). Each of the datasets
was partitioned into a training set (22) and a test set (5).

The best k-leader experiment, 2609, containing 30 at-
tributes was used for learning using two genetic program-
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ming algorithms. An experiment using GPStudio [3] yielded
100% accuracy on the training and test sets. Eq. 3 shows
the characteristic function for the two scleroderma classes.

f(v4802, v3015, v1026, v6215, v7396, v1787, v417, v220) =

exp(
(
(v1787 − v417) ∗ (k1/exp(v1026/(v220 + v7396)))

)∗(
(v1787∗v417)+(v3015/v4802)

)
/exp(exp(exp(exp(k2−v6215)))))

(3)

where k1 = 0.803200238292664 and k2 = 0.711840419895873.
While with GEP the characteristic function in Eq. 4 was

also able to achieve 100% accuracy on the training and test
sets, sharing a variable (v6215) with the GPStudio result.

f(v164, v459, v1692, v6215) = 2 · v6215 + v459 ∗ v1692 + exp (v164)

(4)

The best l-leader experiment, 986, containing 58 attributes
was used with the same ratio of training to test set objects
(80/20), which lead (by GEP) to the following characteristic
function that was able to achieve 100% accuracy on both the
training and test sets.

f(v666, v2026, v5333, v6443, v6665, v7125, v7300, v7334) =

2 ·v7300 +v6665 +v666−v5333 +v6443−v7334 +v7125 +v2026

(5)

One further k-leader experiment, 2054, was selected that
contained 80 attributes. The derived characteristic function
was also able to achieve 100% on both training and test sets.

f(v4, v400, v459, v1209, v1787, v2026, v2227, v4563, v5046,

v5868, v7177) =

2·v400

v4
+v1787−(v1209 − v4563)+v2026+v7177+v5868+v5046v459

(6)

9. CONCLUSION
An evolutionary computation based methodology using

clustering, rough sets analysis, genetic programming and
gene expression programming, differential evolution and par-
ticle swarm optimization with distributed computing has
been applied to scleroderma data leading to the identifica-
tion of subsets of genes that lead to separation of diseased
and normal samples. Further investigation of the biologi-
cal significance of such genes would need to be performed.
Other classifications of the data are also possible and they
could potentially lead to further insight into this disease.
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(a) k-leader Experiment 2054 with
80 genes. (Sammon error: 0.04485)

(b) k-leader Experiment 2054 with 11
genes appearing in Eq-6. (Sammon error:
0.0231)

(c) k-leader Experiment 2609
with 30 genes. (Sammon error:
0.03407)

(d) k-leader Experiment 2609 with 4
genes appearing in Eq-4. (Sammon er-
ror: 0.03102)

(e) l-leader Experiment 986 with 58 genes. (Sammon er-
ror: 0.04424)

(f) l-leader Experiment 986 with 8
genes appearing in Eq-5. (Sam-
mon error: 0.06038)

Figure 3: Selected best virtual reality spaces representing the original 27 x 7777 data. Dark objects =
samples from the scleroderma class. Light objects = normal samples.
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