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ABSTRACT

Genetic Programming (GP) is an automated computational
programming methodology, inspired by the workings of nat-
ural evolution techniques. It has been applied to solve com-
plex problems in multiple domains including finance. This
paper illustrates the application of an adaptive form of GP,
where the probability of crossover and mutation is adapted
dynamically during the GP run, to the important real-world
problem of options pricing. The tests are carried out using
market option price data and the results illustrate that the
new method yields better results than are obtained from
GP with fixed crossover and mutation rates. The developed
method has potential for implementation across a range of
dynamic problem environments.

Categories and Subject Descriptors

J.m [Miscellaneous]: Finance; 1.2.6 [Artificial Intelli-
gencel: Parameter learning

General Terms

Economics
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1. INTRODUCTION

Recent years have seen the application of multiple biologically-
inspired algorithms for the purposes of financial modeling
[1]. A number of these algorithms draw metaphorical in-
spiration from processes of natural evolution. One of the
most studied evolutionary methodologies is that of genetic
programming (GP) [12]. GP is a population-based search
algorithm. It starts from a high-level statement of what is
required and automatically creates a computer programme
to solve the problem. GP belongs to the field of Evolution-
ary Automatic Programming. The term is used to refer to
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systems that adopt evolutionary computation to automat-
ically generate computer programmes. More generally, a
computer programme can be considered as a list of rules or
as a model. In this study, we initially review the application
of genetic programming (GP) for options pricing and pro-
pose a new adaptive method to improve the results of GP
for this problem.

1.1 Exchange Traded Options

Exchange traded options have been actively traded on stocks,
stock indices, foreign currencies and futures contracts by
hedgers, speculators and arbitrageurs since the 1970s [4].
An option can be defined as the right but not the obligation
to buy or sell a financial asset at a stated price at or dur-
ing a specified time window. Option prices are affected by
multiple factors. The first and most well known option pric-
ing model is the Black-Scholes model. This model assumes
the underlying asset returns follow an arithmetic Brown-
ian motion which results in normally distributed returns at
every horizon. The Black-Scholes model is a simplified ver-
sion of reality and when used to fit market options data it
performs relatively poorly because of its underlying assump-
tions. These assumptions include: that asset prices follow
geometric Brownian motion; that asset prices cannot experi-
ence discontinuous jumps; that the volatility of asset prices
is constant; and that one can trade the financial asset con-
tinuously and therefore that options can be perfectly hedged
by trading in the underlying asset and a risk-free bond.

The flaws in the Black-Scholes model have encouraged the
development of multiple new approaches to options pricing.
Due to the complexity in developing closed form theoret-
ical models for options pricing, the domain is particularly
amenable to techniques such as GP.

One of the early applications of GP to the option pric-
ing problem is provided by [19]. Since then there have been
many improvements such as seeding the initial population
with elements drawn from the Black-Scholes option pricing
formula, and the combination of other domain knowledge
into the GP set of terminals / functions[21]. In this paper
a new adaptive GP method is proposed where the probabil-
ity of crossover and mutation is dynamically altered during
the GP run. The method is benchmarked against a fixed
parameter GP system using market option prices.

1.2 Motivation

The problem of options pricing is a particularly suitable do-
main for the application of GP. GP is especially useful in
data rich environments; where the search space is large and
highly complex; where conventional mathematical analysis



cannot provide analytic solutions; and where the interre-
lationships among the relevant variables are poorly under-
stood. In options pricing there are multiple factors that
effect the option price thus the search space is large. The
interrelationships of these factors are also complex and non-
linear. Current option pricing theory has obvious biases that
usually lead to model option prices that can differ system-
atically from market option prices. Certain options such as
exotic option have no exact pricing formula thus GP has
obvious utility in these situations. Compared with recent
applications of GP to options pricing, this paper focuses on
how to apply GP in a more efficient way not only by embed-
ding domain knowledge of option price characteristics in the
GP but also by allowing parameter settings to adapt during
the GP run.

1.3 Structure of Paper

The first two sections of this paper provide an introduction
to options pricing and describe previous work in applying
GP to options pricing. The adaptive GP methodology used
in this paper is then introduced. Next, the experimental
design and key results are outlined. The final section of the
paper contains conclusions and suggestions for future work.

2. OPTIONS PRICING

An option contract gives the holder the right to buy or sell
a certain amount of the underlying asset by a certain date
(maturity date) for a certain price known as the strike price.
The option price is sensitive to a number of factors. The
non-linear relation between the option price and these fac-
tors further contributes to the complexity of options pricing.
For example, in the Black-Scholes setting for a non-dividend
paying European call option there are five factors that affect
the price of the option. These are the:

1. current stock price So

2. strike price K

3. volatility of the stock return, o
4. risk-free rate r

5

. time to maturity T’

As briefly mentioned in section 1, the Black-Scholes model
embeds several key assumptions. The stock price undergoes
a diffusion process thus is log normally distributed with an
instantaneous drift and volatility given by p and o respec-
tively. The volatility o and the risk-free rate r are constant
during option life. This implies:

st
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This assumption leads to the following:
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1 is the instantaneous expected return on the stock
o is the instantaneous volatility of stock price return
St is the stock price at a future time T’
So is the stock price at time zero
n(m, s) denotes the normal density function with
mean m and standard deviation s
7 is defined as the continuously compounded rate of return
per annum realized between time zero and T

St = Soe” T, ~n[(p— (2)
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The Black-Scholes formula for the price at time zero of an
European call option on a non-dividend paying stock is:

c¢=SoN(d1) — Ke "' N(da) (3)
_ In(So/K) + (r +0°/2)T
= pex

d2:d1—aﬁ

da (4)

()

N(x)is the cumulative normal probability distribution
function for a standardized normal distribution

K is the strike price

r is risk-free interest rate

c is the European call option price

The key assumption in the Black-Scholes model is that the
underlying stock price is log normally distributed and the
volatility is constant. These assumptions do not hold true
in reality as the distribution of price changes has fatter tails
than those implied by a log normal distribution, and the
volatility changes over time. Thus serious biases show up in
the Black-Scholes model when it is used to price options that
trade in markets. This is reflected when one calculates the
volatility that is substituted into the Black-Scholes pricing
formula so that the BS option price is equal to the market
price. This is called the Black-Scholes implied volatility.
If the assumptions underlying the BS option pricing model
were correct, the BS implied volatilities for options on the
same underlying asset would be constant for different strike
prices and maturities. However in practice the BS implied
volatilities are varying over strike price and maturity. Given
that the options are written on a single underlying asset this
result seems at first paradoxical, i.e. we have a number of
different implied volatilities for a single asset which should
only have one measure for its volatility. Yet if we relax
some of the assumptions in the BS model, such as allowing
for a more complex data generating process for the asset
price than the log normal stochastic process, and if we take
into account the resulting complications, this result begins
to make sense. It highlights the erroneous assumptions that
underpin the BS model.

3. GP AND OPTIONS PRICING

In applications of GP to options pricing, the objective is
to uncover the Black-Scholes option pricing formula, using
market data. The utility of the formula is typically tested by
comparing the quality of its predictions against real market
option prices.

In this study, data is drawn from market option prices on
the FTSE 100 on the 17th March 2006. The options used
are call and put options on the FTSE 100 futures index.
The data supplied was in the form of implied volatilities.
There 187 different end-of-day settlement implied volatilities
quoted for various strike prices and maturities. The option
moneyness (defined as the the underlying asset price divided
by the strike price) in our 187 data points varies from 0.77
to 1.4 and the time-to-maturity varies from 35 days to 5754
days. Market call option prices are calculated by substitut-
ing the implied volatilities into the Black-Scholes formula.
The object of the GP application therefore, is to try and
recover the Black-Scholes formula for call options that will



Table 1: Terminal set

ExpressionSign ” Ezxpression

Definiton

r*T

X1 So/K
X2
X3 o*x VT

Asset price / Strike price

time to maturity times risk free rate

implied asset price volatility during option’s life

Table 2: Non-terminal set

Expression Sign Definiton

+ Addition
- Subtraction
* Multiplication

x/y Protected division, if y=0 then x/y= x, if y # 0 then x/y=x/y
z? Square

N(x) Accumulated normal distribution
e’ Exponential Function

reproduce the entire set of the 187 option prices given the
explanatory variables.

3.1 Terminal and Function Set Selection

In selecting terminals and functions for the experiments,
explanatory variables that might affect the option prices
should be included in the terminal set. The function set
should include all the potential mathematical or logic func-
tions that could be used in options pricing formula. In se-
lecting variables for inclusion as terminals, we used domain
knowledge [21] to include option moneyness, the risk-free
rate scaled by maturity (defined as the time to maturity mul-
tiplied by the risk free rate of return) and implied volatility
during the life of the option (see table 1). The non-terminal
set is as listed in table 2.

3.2 Fitness Function

The evolved models are designed to predict market option
prices across a range of strike prices and time-to-maturity
periods. The most common fitness functions for options
pricing are the mean squared, average absolute, and per-
centage error. It should be noted that when the option is
deep in the money the absolute error is large compared with
the percentage error, but when the option is out of money
the option value is very small and near zero. The absolute
error is typically much smaller compared with the percent-
age error. The fitness function in eq. 6 ensures that the
model works well for both in the money and out of money
options.

Rap—Py )2
Par

(6)

where Rgp is the result evaluated from the function tree
(each individual in a population) created in GP, Py is the
market option price divided by its corresponding strike price,
and N is the number of the data observations which in this
case is 187.

ness — \/Z(RGP—PM)2+2(
fitness = X N

3.3 Error Measurement

Our target set here is the Black-Scholes call option price di-
vided by the strike price. Ultimately with a view to trading
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options, it is hard to directly infer the financial utility of a
GP evolved formula with the fitness metric used in the GP
application. To make the results more intuitive we calcu-
late and report two error measures for the GP runs, namely
average absolute error and percentage absolute error.

1. Absolute Error Measurement

AE — >/ (Pap — Pu)?
E. = i

2. Percentage Error Measurement

\/Por=Fa)?

PE. N

(8)

where Pgp = Rgp * K i.e. Pgp is the GP option price and
Py is the market option price.

4. PARAMETER VALUES FOR CROSSOVER

AND MUTATION

A practical issue when applying GP to real-world problems
is making good parameter choices for the GP. Many options
are open to the modeller including the:

e form and rate of mutation

e form and rate of crossover

e form and pressure of selection mechanism
e form of replacement mechanism

e size of population

Even when attention is restricted to the choice of good
crossover and mutation rates, the modeller faces a non-
trivial problem. A common approach in tuning GP is to un-
dertake a series of trial and error experiments, before making
parameter choices for the final GP runs. However, this ap-
proach is highly problematic as it can be time consuming
and it is impractical to test all parameter choices. Another
issue is that good choices for parameters such as crossover
and mutation rates are unlikely to remain constant over the
entire run. Rather than selecting static parameter values,



Table 3:

The error results from the

constant parameter GP

Run 1 2 3 4 5 6 7 8 9 10 Average
P.E. (%) 18.7 22 144 28.3 35.1 485 32.7 29.1 482 323 43.9
AE. 87.8 99 151 170 178 178 186 189 197 204 163.9
Table 4: The error results from the adaptive parameter GP
Run 11 12 13 14 15 16 17 18 19 20 Average
PE. (%) 142 169 21.1 17.1 223 429 34.7 244 281 3138 25.3
AE. 429 555 84.7 951 99 133 137 147 157 189 114
another approach is to co-evolve the parameters during the 18 ‘
run. Three broad methods of such adaptation exist (see Fig. ol °
1) [3]. In this study we adopt the second approach. 2
Control S ° o
I T 1 2 101
[ Deterministic } [ Feedback Adaptive } [ Evolvethe } g ° ° e
Parameters § 8r © . © OO .
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Figure 1: Taxonomy of adaptive parameter control g . o ‘ ° S o
Deterministic methods of parameter control vary parameter @ @ 0 @ee @0 °o®e e

settings during the GP run, without using any feedback from
the search process. A simple example of a deterministic rule
for a mutation value would be:

a(t) 9)

where ¢t (0 < ¢ < T') denotes the current generation and
a(t%) is a fixed value. This rule will reduce the value of the
mutation rate during the run.

Under a feedback adaption process, the parameter val-
ues are adapted based on feedback from the algorithm. For
example, if the intent was to increase the level of diversity
generation once the population has converged to a threshold
level (perhaps measured using the entropy of the population
of binary strings), once such convergence is detected, the
mutation rate could be increased by x%. Another possibil-
ity is to evolve good choices for its parameters dynamically
during the run.

The parameter choices for crossover and mutation are
clearly critical in ensuring a successful GP application. It
impacts on populational diversity and the ability of GP to
escape from local optima. Optimal parameter setting is also
linked to the complexity of the problem and to the size of the
population. If the search space is large and/or the popula-
tion size is relatively small, then the mutation rate will need
to increase. In previous applications of GP to options pric-
ing, the probabilities of crossover and mutation were typi-
cally kept constant. For example, in [19] mutation is applied
at a rate of 0.0033 with a level of 0.001 being applied by [15]
and [20]. Chidambaran [14] investigated the utility of var-
ious mutation rates between 0.1 to 0.5 (each of which was
constant in a single run).

a(t°)(1 — 0.8%)
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Figure 2: Generation Gaps Between Successive Best
Individuals

As already noted, in this study we employ three explana-
tory variables, stock price divided by strike price, risk free
rate times options’ time to maturity, underlying variance,
and there are seven functions in the non-terminal set. Based
on initial experiments, it was found that the best individ-
ual changes frequently in early generations, with the rate
of change slowing down later in the run. Generation gaps
between new best individuals are plotted in figure 4. The
points above the line in the graph indicate the generation
gap between subsequent best individuals are more than 10
generations. Based on these results we set a window size of
10 generations. In future applications, window size could be
determined dynamically during the GP run.

In adapting the mutation parameter, we steadily increase
its value whenever the best individual is unchanged over
several generations. The parameter then reverts to its initial
level a new best individual is uncovered by GP. This allows
the search process to adapt to escape local optima, whilst
permitting local improvement around just discovered new
solutions. In the experiments, the width of the window is set
at ten generations. In other words, the mutation parameter
is fixed for the ten generations following the uncovering of a
new best solution. After ten generations without finding a
new best individual, the mutation probability increased until
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Figure 3: Crossover and Mutation parameters from
run 1 and 11

either it reaches 0.9 or alternatively, a new best solution is
uncovered. Figures 3(a) and 3(b) illustrate the adaption of
crossover and mutation rates during a sample GP run.
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5. EXPERIMENTAL DESIGN

A total of twenty GP runs were undertaken, ten of which
were fixed parameter GPs and ten were dynamic parame-
ter GPs. The fixed parameters for crossover and mutation
were 0.4 and 0.6 respectively, set after some initial trial and
error experiments. In the adaptive experiments, the param-
eters for crossover and mutation are initially set to 0.4 and
0.6. If ten generations have elapsed and the best individual
has not changed this means the population is perhaps too
concentrated, hence the mutation rate is ncreased by 0.02
per generation, with crossover decreasing by 0.02 each time
until limits of 0.9 and 0.1 are reached. Once a new best
individual appears the mutation and crossover rates are put
back to their initial values of 0.6 and 0.4.

For all experimental runs, ramped half-half initialization
is employed. A roulette parental selection with a replace-
ment strategy of half elitism, which means half of the new
population will be filled by the best from both parent and
children and the remaining places will be left to the best
children, is also employed. The population size is fixed at
300. The GP run is terminated either when there has been
no performance improvement for 40 generations, with the
maximum number set to 800 generations.

6. RESULTS

The results from the twenty GP runs are provided in ta-
bles 3 and 4. The average absolute error from the constant
parameter GP is 44% higher than the dynamic parameter
GP counterpart, and the average percentage error is 73%
higher. These results suggest that significant improvements
are made with the use of a dynamic parameter GP.

It can be seen from the population diversity graphs, figures
4(a) and 4(a), generated in the GP run, that the popula-
tion in the dynamic parameter GP is quiet diversified in the
middle of the run compared to the constant parameter GP
where the population setting decreases monotonically.
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Figure 4: Population Diversity from run 1 and 11
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7. CONCLUSIONS

This paper illustrates the application of an novel adaptive
form of GP, where the probability of crossover and mutation
is adapted dynamically during the GP run, to the important
real-world problem of options pricing. The tests are carried
out using market option price data and the results illustrate
that the new method yields better results than are obtained
from GP with fixed crossover and mutation rates.

Future work includes correcting the biases in the Black-
Scholes options pricing model by applying GP to recover
market option prices across a range of strike prices and ma-
turities without using every implied volatilitiy in the sample
and thereby examining the interrelationships among option
prices that goes beyond the Black-Scholes pricing formula.
It is also noted that the adaptive GP method has potential
for implementation across a wide range of dynamic problem
environments and it is intended to test the utility of the
methodology on a variety of non-financial dynamic prob-
lems.
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