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ABSTRACT
This paper is concerned with the learning of dynamic models
of compartmental systems visualized as networks of inter-
connected tanks. This is intended as an intermediary step
to learn more complex dynamic biological systems such as
metabolic pathways. Our present aim is to learn systems of
differential equations from time series data to capture physi-
cal models of increasing complexity (u-tube, cascaded tanks,
and coupled tanks). To do so, we use Symbolic Regression
in Genetic Programming and combine it with a fuzzy repre-
sentation which has inherent differential capabilities (Fuzzy
Vector Envisionment). We use the ECJ1 framework to im-
plement the learner. Present results show that the system
can approximate the target models and that the use of a
weighted fitness function seems to accelerate the learning
process.

Categories and Subject Descriptors
I.2.1 [Pattern Recognition]: Models—Fuzzy Set ; I.2.6
[Artificial Intelligence]: Learning—Induction, Parameter
Learning

General Terms
Algorithms, Measurement, Performance, Experimentation,
Theory

Keywords
Fuzzy Vector Envisionment, Symbolic Regression, Genetic
Programming, semi-quantitative modeling, dynamic com-
partmental model, u-tube, dynamic biological model, SSys-
tems, metabolic pathways
1A Java-based Evolutionary Computation Research System
available at http://cs.gmu.edu/ eclab/projects/ecj
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1. INTRODUCTION
The motivation behind this paper is the desire to learn,

in the near future, complex dynamic biological systems from
time series data. Compartmental systems can be used as a
metaphor to approach metabolic pathways. We therefore
focus on learning dynamic models of compartmental sys-
tems, visualized as networks of interconnected tanks (see
Section 4.1 for a more detailed description). Such a task
poses two problems; how to represent this type of system,
and how to learn the correct model in the most efficient
way. Regarding the first problem, we require a formalism
that conciliates differential capabilities and fuzzy represen-
tation. We need differential capabilities because, in a dy-
namic environment, models not only focus on the range of
variables (e.g. the concentration of a chemical), but also
the rate of change of these variables (e.g. the speed with
which the concentration of a chemical increases), and even
the curvature of this rate of change. Thus, the ability to
manipulate derivatives improves the chance of finding the
potential hidden variables that influence the dynamics of
the system. Numerous dynamic modeling examples make
use of differential representation: gene regulatory networks
[4] [10] [20], ecosystem modeling [30] [18] etc. The need for
a fuzzy representation arises from the specificities of the do-
main considered. Biological data sets are generally difficult
to work with as they exhibit a certain inherent resilience to
pure numerical analysis, are noisy, and are quite often in-
complete. They also sometimes distinguish themselves by
an overwhelming level of complexity that impairs human
readability. In this context, some form of fuzzy represen-
tation becomes a necessity [31] [17]. Fuzzy Vector Envi-
sionment (FVE) [6] answers these two requirements (differ-
ential capabilities and fuzzy representation) extremely well
compared to another fully established fuzzy system such as
QSIM[16] (see detailed explanation in section 2.2). It is also
worth noticing that FVE is based on fuzzy values rather
than symbolic ones. When adding these elements, we ob-
tain a formalism which is quite unique in the area of Fuzzy
modeling, and that has not realized its potential yet. Re-
garding the problem of choosing a learning algorithm; the
size of the search space in complex biological systems is of-
ten too large for systematic exploration; we therefore plan
to use Symbolic Regression in Genetic Programming (GP)
as a nonsystematic learning algorithm. As we now enter
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a post-Darwinian era of AI [27], the combined use of Evo-
lutionary Algorithms (EA) with other techniques in model
learning is getting more frequent. So far, most of the closely
related work makes use of a different representation. In a
purely quantitative context, Koza tried to learn metabolic
pathways [15], and others used EA in conjunction with sta-
tistical methods [20] [25] or with neural networks [22]. On
the opposite side of the scale, Varsek [28] used a purely sym-
bolic qualitative representation to learn such models. Evo-
lutionary fuzzy systems, closer to our type of representation,
did show some promising results [9]. Still, these papers have
a significantly different and specialized focus: either the de-
sign of Fuzzy Logic Controllers [1] [12] or the problematic
of Fuzzy Rule Based classifiers [5] [21][11]. One fact re-
mains: at the present moment, evolutionary fuzzy systems
have not yet been tested for learning complex dynamic bio-
logical models. The “post-genomic era” is fuelling the need
to model genetic networks. The exponential growth of data
is calling for new types of model learners. In this context,
the unique combination of GP and Fuzzy Vector Envision-
ment is an original approach. We detail in section 2 the
semi-quantitative representation. In section 3, we describe
the implementation of the model learner. Section 4 contains
experiments and results. Section 5 describes the focus of
future work: learning metabolic pathways.

2. THE SEMI QUANTITATIVE
REPRESENTATION

A model can be broadly defined as a set of constraints
describing the relationships linking dependent and indepen-
dent variables. As we are in the context of a dynamic sys-
tem, this leads to a system of differential equations. Remem-
bering that our goal is to work with biological data, there
is a need to deal with imprecision and ambiguity. This is
why, in practice, our model will look like a system of differ-
ential equations engineered to support fuzzy representation.
Different fuzzy representation techniques are combined to
satisfy the specific requirements we have here. We make use
of a fuzzy 4-tuple parametric representation to deal with
imprecise data and limit the size of the search space when
generating constants. We add differential planes with Fuzzy
Vector Envisionment[7] (by using vectors composed of mul-
tiple fuzzy 4-tuple). We manipulate these “fuzzy vectors”
with specific operators originating from the Fusim[26] type
of fuzzy arithmetic.

2.1 Fuzzy 4-Tuple Parametric Representation
The Fuzzy 4-Tuple Parametric Representation is a for-

malism that comes from Fusim[26]. It approximates fuzzy
number curves while allowing the concept of degree of mem-
bership. This is very useful as it allows us to force down im-
precise numerical input data into more manageable fuzzy in-
tervals. This is also invaluable to limit the size of the search
space as, when we generate constants, we do not generate
any real numbers, but fuzzy values belonging to a specific
fuzzy space. This way, instead of having potentially any real
number representing the level of water in a tank, we can gen-
erate a limited number of constants expressed along a fuzzy
scale (for example very low, low , intermediate, high, very
high). A 4-tuple is described using four values a, b, α and
β which define the fuzzy number “low” as shown graphically
in Figure 1 ([3], page 53).

Figure 1: Fuzzy 4-tuple parametric representation.

2.2 Fuzzy Vector Envisionment and
Differential Planes

Widely used qualitative model systems such as QSIM are
generally limited to representing monotonic functions. The
system Morgan [6] introduced multiple derivatives for vari-
ables. This allows us to not only observe the rate of change
of a variable, but also its curvature. This amount of infor-
mation would also be available with QSIM [16], but only
after explicitly defining which variable is the derivative of
another. This is an automated process in Fuzzy Vector En-
visionment [6][3] and there is no limitation on the number
of degrees of derivation one can examine. If a variable is
defined by a vector of length three, it implies that the vari-
able is defined by its magnitude and first and second deriva-
tives. In terms of models of simple physical system, this
gives information not only about magnitude, but also about
speed and acceleration. The concept of Vector envision-
ment was extended to the fuzzy domain by Morven[7][8].
There are multiple derivatives per variable, but these are
fuzzy values. The combination of Fuzzy Vector Envision-
ment and Differential Planes gives us the ability to use a
powerful Qualitative formalism. We can control the number
of derivatives for each variable, and thus simplify equations
involving these derivatives. So, in term of symbolic Vector
Envisionment, an observable purely qualitative data would
be: (+,+,−) where the first variable represents a positive
level of water in a tank, the second variable tells us that
this level is increasing (positive flow), and the third vari-
able would indicate a decreasing flow. A set of similar data
can be used to learn the qualitative dynamic model describ-
ing the behaviour of a system like the u-tube (detailed in
a more quantitative way in section 4.3). In terms of Fuzzy
Vector Envisionment, pure symbolic qualitative data would
be replaced by fuzzy 4-tuples. This is to say that one fuzzy
data set would consist in a fuzzy tuple representing the level,
another one representing the flow and a last one represent-
ing the curvature of the flow. Quantitative measurements
which could be seen as unreliable would be forced down into
different fuzzy 4-tuples.

2.3 Use of Fuzzy Arithmetic
The model itself is a system of differential equations. As

such it implies the presence of arithmetic operators. Stan-
dard arithmetic operators are applied to fuzzy tuples in the
way of Fusim. Table 1 shows an example of basic arithmetic
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Table 1: FuSim fuzzy arithmetic - the multiplication operator
Operation Result Conditions

m × n ac, bd, aγ + cτ − τγ, bδ + dβ + βδ m >0 0 and n >0 0
ad, bc, dτ − aδ + τδ,−bγ + cβ − βγ m <0 0 and n >0 0
bc, ad, bγ − cβ + βγ,−dτ + aδ − τδ m >0 0 and n <0 0

bd, ac,−bδ − dβ − βδ,−aγ − cτ + τγ m <0 0 and n <0 0
m = 〈a, b, τ, β〉 and n = 〈c, d, γ, δ〉

operator[3] applied to Fuzzy 4-tuple parametric representa-
tion. Multiplying fuzzy numbers is non-trivial, and is in-
cluded here for completeness, but it is not a contribution
of this work, and the reader may simply view it as a black
box for the purpose of understanding this paper. As we use
FVE, we need to insert derivation into the standard Fusim
arithmetic. One example is the multiplication operator. It
is applied to the magnitudes of the variables, but also their
derivatives. Therefore, if tuples A and B each have two
derivatives such that their vectors are:

A = [a, ȧ, ä]

and B =
h
b, ḃ, b̈

i
, then

AB =
h
(ab), (ȧb + ḃa), (äb + 2ȧḃ + b̈a)

i
.

2.4 Evaluating the Distance between Two
Variable Vectors

As we use Fuzzy Vector Envisionment, we need to calcu-
late the distance between 2 such vectors [26] when evaluating
the fitness of a model (see section 3.2). The purpose of this
odd bit of fuzzy arithmetic is to measure the distance be-
tween a generated fuzzy variable and a target fuzzy variable.
For every fuzzy 4-tuple ai in the Variable Vector A, there is
a corresponding fuzzy tuple bi in the Variable Vector B. If
none of them is unknown, we can add the sum of the squares
of the difference between the centers of ai and bi, and the
area of ai and bi. Let n be the number of tuples in the Vari-
able Vectors A and B.
If x is a 4-tuple such that:

x = [α, β, γ, δ]

xcenter =

„
α + β

2
+

γ + δ

2

«
/2

xarea =
γ + δ

2
− α + β

2

Then, the distance between A and B is:

δ(a1, ..., an; b1, ..., bn) =
nX

i=1

»q
(acenter

i − bcenter
i )2 + (aarea

i − barea
i )2

–

We also take into consideration the possibility that some of
the derivatives in the data sets are unknown. If i > 1 and
ai or bi is unknown, then, the distance between ai and bi is
considered to be null.

3. SETUP OF THE GENETIC
PROGRAMMING MODEL LEARNER

The choice was made not to create the GP learner from
scratch, but rather to use an open source package already
available. The ECJ platform version 15 using the Java pro-
gramming language was selected. The main problems en-
countered were more a matter of choice than programming
design: the choice of the function and terminal sets, the
fitness function, and the generic parameters.

3.1 Choice of the Function and Terminal Sets
The terminal set contains all the types of leaves of the GP

tree and the function set contains all the different types of
nodes.

3.1.1 The Function Set
There are two types of functions: arithmetic operators

and the ADF’s function defining branch.

• The arithmetic operators are: + , −, ×, ÷, and the
unary operators inverse and minus.

• The ADF’s function defining branch: there is one ADF
main function which accepts as many terminal argu-
ments as there are constraints. These constraints can
be reused as building blocks to build subsequent and
more complex constraints. If there are n constraints,
then the ADF function will accept as arguments sub-
trees named from X1 to Xn.

3.1.2 The Function Set
The terminal set contains the leaves of the tree. There

are three types of terminals in our learner:

• An Ephemeral Random Constant (ERC). It generates
constants at random.

• The variables: each variable is in fact a Vector Variable
as previously defined by Fuzzy Vector Envisionment,
and therefore consists of a set of 4-tuples fuzzy sub-
sets. The first fuzzy tuple represents the qualitative
magnitude of the variable, and the next tuples its dif-
ferent orders of derivatives. The number of degrees of
derivatives can be set up by the user, but may drasti-
cally influence the number of computations.

• The ADF terminals referring to constraints. A model
containing three constraints with the following func-
tion and terminal sets will be represented as a GP tree
similar to the randomly selected sample in Figure 2.

3.2 Choice of the Fitness Function
We have two sets of variables: the positive data used in the

learning examples, and the data produced by the newly gen-
erated model. We first introduce the input variables from

2771



Figure 2: A model made of 3 constraints.

the positive examples in the newly generated model, and
then calculate what endogenous variables it creates. We
then measure the distance between learning data and gen-
erated variables. The distance between fuzzy variables used
in fitness evaluation is calculated following the method de-
scribed in section 2.4. We also introduce fitness calculation
with incomplete data by considering that the distance be-
tween two variables of unknown magnitude or between a
known and unknown magnitude is zero. This works the
same way for derivatives. The best fitness is zero, and the
worst, infinity. Two different cases of fitness evaluation are
examined in this paper:

• The non-weighted fitness evaluation where the overall
sum of the distances for all learning examples is used
to evaluate the raw fitness.

• The weighted fitness function where the raw fitness is
not just the linear sum of distances, but is weighted by
the number of correct constraints found in the system.
For n examples to learn from, on the first n− 1 exam-
ples, we take away from the base fitness the proportion
of constraints satisfied in the generated model. On the
last example n, we use the non-weighted fitness eval-
uation. Not doing so seems to over-score the fitness,
meaning that incorrect individuals would be evaluated
as perfectly fit. In the end, the learner manages to
find a satisfying solution with a gain of performance
(see experiment results section 4.2). Our model has
a raw fitness α (a positive number), and satisfies δ
constraints over μ. We learn over n examples. The
weighted fitness φ will be:

φ = α −
n−1X
i=1

[α × (δ/μ)]

3.3 Generic GP Parameters
All experiments were run on one machine (a Pentium 3

GHz with 2GB of RAM). The system first evaluates the in-
dividuals using the Koza Standardised Fitness. The results
are then displayed using Adjusted Fitness on a scale from
0.0 exclusive (worst) to 1.0 inclusive (best) in order to facil-
itate the reading and emphasize the differences between the

very good individuals. The top part of the individuals are
generated using the “full” method while the constraints are
generated using the “Ramped half-and-half” method. There
is no elitism. The method of selection in use is tournament
selection, and the default tournament size is 7. Initially
most of the experiments were done without mutation with
a population from 20000 to 40000 individuals, these num-
bers being found at first pragmatically sufficient to solve
problems such as our models at every attempt. The maxi-
mum number of generations was fixed to 200. Probability of
crossover is 90%, and probability of reproduction is 10%. A
second set of parameters was used using mutation: proba-
bility of crossover 90%, mutation 9%, and reproduction 1%.
As it seems more convincing and computationally efficient
to obtain results with a small population over lot of gener-
ations, we started to use a population of 4000 individuals
over 1000 generations. With mutation, better results were
obtained with such smaller population sizes.

4. EXPERIMENTS AND RESULTS
We will first describe the models used in the experiments

by order of complexity (u-tube, cascaded tanks and cou-
pled tanks). Then, using easy-to-learn simplified models,
we will compare the number of generations needed to learn
a model while using a normal and a weighted fitness func-
tion. We will also measure the average time per generation
as a function of several parameters. Finally, we will analyze
the performance of the system when trying to find the three
models while varying the population size.

4.1 Description of the models
A model is a set of constraints defining the relationships

between measured variables. In the simple physical systems
we are examining, these variables (starting with the letter
X) are either the levels of water measured, or the flows of
water between one place and another place. Generated con-
stants are linked to a level (starting with a letter l), and flow
regulators (starting with a letter k) of water. The u-tube
model is shown in Figure 3. In this example: X0 is the level
of water on the left side (our input value), X1 is the level of
water on the right side, X2 is the flow of water from left to
right (so, strictly speaking, it is a derivative), X3 is the flow
of water from right to left (a derivative too), l is a constant
expressing the level of water when there is equilibrium, and
k is a constant influencing the flow between both sides of the
tube (for example the diameter of the pipe). Similarly, the
slightly more complex models of cascaded tanks and coupled
tanks are shown respectively in Figure 4 and 5.

4.2 Comparing Normal Fitness with Weighted
Fitness

Models which do not reuse constraints (ADFs are not
reused) seem easier to find for the learner as they generally
take fewer generations. A possible explanation may be that
the models being simpler, it is easier to generate a matching
tree. Whatever the reason, these “dummy” models are ideal
for testing. The following graph describes the average num-
ber of generations needed over five runs to find a dummy
model depending on the chosen fitness function. The mod-
els have from four to nine constraints. We compare results
obtained with a normal fitness function and with a weighted
fitness function (see Figure 6). The weighted fitness function
seems to enhance performance compared to normal fitness
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Figure 3: U-tube and Target Model.

8>><
>>:

X0 = inputvalue
X1 = (2 × l) − X0
X2 = dX0

dt
= k × (X0 − X1)

X3 = dX1
dt

= minus(X2)

Figure 4: Cascaded Tanks and Target Model.

8>>>>>>><
>>>>>>>:

X0 = inputvalue1
X1 = inputvalue2
X2 = inputvalue3
X3 = k1 × (X1)
X4 = dX1

dt
= X0 − X3

X5 = k2 × (X2)
X6 = dX2

dt
= X4 − X5

Figure 5: Coupled Tanks and Target Model.

8>>>>>>><
>>>>>>>:

X0 = inputvalue1,
X1 = inputvalue2,
X2 = inputvalue3,
X3 = k1 × (X2 − X1),
X4 = dX1

dt
= X0 − X3,

X5 = k2 × (X2),
X6 = dX2

dt
= X4 − X5
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Figure 6: Weighted fitness vs. Normal fitness.

as it reduces the number of generations by on average 46%
for a 4 to 7-constraints model. From this observation, we
advance the hypothesis that if we consider the fitness of a
model as the linear sum of the fitnesses of its components
(here, the constraints), then the convergence to a solution is
slower than if the fitness is the weighted sum of the fitness
of its components (detail of weighted fitness is described in
Section 3.2).

4.3 Time Analysis
Figure 7 shows the average time per generation it takes

to find a dummy model, depending on two parameters: the
size of the learning set, and the number of constraints. This
might suggest that time is not an exponential but rather a
polynomial if not linear function of the size of the learning
set, and of the number of constraints present in the target
model. This was done without mutation.

4.4 Performances while learning the U-tube,
Cascaded Tanks and Coupled Tanks

When not using mutation, depending on the complexity of
the target model, the size of the population was sometimes
insufficient to find a solution in the given number of gener-
ations. This drove us to increase the population size when
no solution was found after five runs. The Table 2 describes
each model, and gives the population size and number of
generations required to converge to a solution.

This result could suggest that the minimum population
size required is particularly dependant on the number of
variables reused in each system. When using mutation with
a population of size 4000, it took on average around 29
generations to find the model of the u-tube, 45 generations
for the cascaded tanks, and 80 generations for the coupled
tanks. Independently from the use of mutation, during the
experiments, the learner did sometimes find the exact tar-
get model (constants included), but mostly approximations
to it (in the case of the Utube, generally one constraint in
four is slightly deviant). Here is one example of a u-tube

Figure 7: Time in function of two parameters.

approximation:8>><
>>:

X0 = inputvalue
X1 = (2 × l) − X0
X2 = dX0

dt
= X1 − ((2 × k) − X0)2

X3 = dX1
dt

= minus(X2)

We see two possible explanations for this oddity:

• The use of a limited number of examples might enlarge
the space of possible solutions. In this experiment, we
learnt from a set of only ten fuzzy “data points”. The
obtained model might be perfectly adapted for these
examples, but it also might not work if we add other
data.

• There might be a problem with the fitness function
which would over-evaluate the fitness of some models.
Strangely, if that is the case, it should show less regu-
larity in the results.

4.5 Possible improvements
We have observed how factors such as the number of con-

straints, the size of the learning set, and the population size
parameters could influence the performance of the model
learner. We are also driven to look for different ways to op-
timize the learner. GP may explore a broad search space
more efficiently, but it remains a costly method from the
point of view of computational resources. Further work is
needed to find ways to minimize such costs.

• One interesting direction to investigate would be how
to reuse models already found into the learning process
by integrating them in the starting population.

• Plurality of models: for one set of data, several models
might apply depending on the circumstances. This em-
phasises the need for a hybrid system type of represen-
tation [2] [19] that can express the interaction between
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Table 2: Possible factors influencing the population size
Model Constraints Constants Input values Reused var. Pop size Generations
u-tube 4 2 1 4 20000 9

cascaded 7 2 3 6 30000 18
coupled 7 2 3 7 40000 39

the continuous time system and the discrete event sys-
tem.

• Rule-based representation: for one set of data, one
model might work in some circumstances, and another
one under different conditions. It is important to iden-
tify what triggers this change. The representation has
to articulate the links of causality between one state of
variables and one particular model. (e.g. by including
IF-THEN-ELSE statements).

• Complex mathematical operators: classic operators such
as addition, subtraction and multiplication are some-
times too crude to capture the complexity of a rela-
tionship between variables. There might be a need
for a representation that captures at least periodicity
(trigonometric functions) and natural oddities such as
exponential and logarithmic relationships.

• Complex behavioral operators: the behavior of a sys-
tem can for example be repetitive to a certain point.
To represent that, recursion and logical operators are
necessary [13] [14].

• General viability of generated models can be preserved
and improved by applying a strongly typed GP struc-
ture allowing only certain types of operators to be the
children nodes of others [1].

5. TOWARD LEARNING METABOLIC
PATHWAYS

After learning simple dynamic compartmental models, we
plan to learn simplified metabolic pathways from time series
data. Biochemical Systems Theory (BST) [23] [24][29] pro-
vides very promising representation tools for pathway iden-
tification tasks based on time series data. With the help of
these theoretical tools, a metabolic pathway can be repre-
sented as a system of differential equations with a specific
structure called an S-System. Every Constraint in the sys-
tem represents a flow of chemicals. Each flow is the dif-
ference between production and degradation of chemicals.
Figure 8 illustrates a simple branched pathway that we will
try to learn. It has a constant input X4 and feedback in-
hibitions, where the production of X1 is controlled by two
inhibitory mechanisms that are themselves affected by the
synthesis of X2 and X3. By observing the values of the flows
Ẋ1, Ẋ2, Ẋ3, and the different concentrations of chemicals
X1, X2, X3 and X4 across time, we can induce the follow-
ing S-System:

8>><
>>:

Ẋ1 = α1X2g12X3g13X4g14 − β1X1h11

Ẋ2 = α2X1g21 − β2X2h22

Ẋ3 = α3X1g31 − β3X3h33

X4 = constant

Figure 8: Branched pathway with 2 feedback inhi-
bitions.

Where we hope to induce which chemicals intervene in
which reaction, to estimate the kinetic orders g and h, and
the constant rates of reactions α and β as fuzzy numbers.
This is quite similar to one of Koza’s experiments [15] with
one major difference: we use fuzzy representation instead
of pure quantitative data. He was using a Beowulf clus-
ter of 1000 nodes to find the exact quantities in his model.
In our case, the use of fuzzy sets should limit the size of
the search space. Questioning a biologist about what were
the points of focus of an analysis of a S-System, we discov-
ered that for certain values such as chemical concentration,
indications about the magnitude (in 10 fold) were more im-
portant than pure quantitative evaluations. This seems to
indicate that fuzzy representation might be an appropriate
tool. No experiment was started yet, as work is in progress
to find plausible fuzzy scales for the values. We plan to first
learn basic branching models and then simplified versions
of anaerobic fermentation (Saccharomyces cerevisiae) and
purine metabolism [29].

6. CONCLUSION
It is worth noticing the positive impact of using a noncon-

ventional “weighted” fitness function during the evaluation.
Further research might be done to see if this result can be
generalized. At the moment, the learner manages to ap-
proximate compartmental models. More work still needs
to be done to determine the source of some imprecision that
sometimes prevents us from obtaining the exact target mod-
els. This is the biggest obstacle so far that separates us
from starting to learn biological models. We hope to start
learning S-Systems of basic branches soon enough, and in-
corporate them in a population of simplified models to start
learning more complex metabolic pathways.
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