
Genetically Programmed Learning Classifier System
Description and Results

Gregory A. Harrison
Lockheed Martin Corp.

12506 Lake Underhill Rd. MP-823
Orlando, FL 32825-5002

+1 407 306 6580

gregory.a.harrison@lmco.com

Eric W. Worden
Gestalt, LLC

3505 Lake Lynda Drive, Suite 115
Orlando, FL 32817
+1 407 581 6390

eworden@gestalt-llc.com

ABSTRACT
An agent population can be evolved in a complex environment to
perform various tasks and optimize its job performance using
Learning Classifier System (LCS) technology. Due to the
complexity and knowledge content of some real-world systems,
having the ability to use genetic programming, GP, to represent
the LCS rules provides a great benefit. Methods have been
created to extend LCS theory into operation across the power-set
of GP-enabled rule content. This system uses a full bucket-
brigade system for GP-LCS learning. Using GP in the LCS
system allows the functions and terminals of the actual problem
environment to be used internally directly in the rule set, enabling
more direct interpretation of the operation of the LCS system.
The system was designed and built, and underwent independent
testing at an advanced technology research laboratory. This paper
describes the top-level operation of the system, and includes some
of the results of the testing effort, and performance figures.

Categories and Subject Descriptors
I.2.4 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods – representations

I.2.6 [Artificial Intelligence]: Learning
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence
– intelligent agents

General Terms
Algorithms, Design, Experimentation, and Theory.

Keywords
Genetic Programming, Learning Classifier System, intelligent
agent, bucket brigade, reinforcement learning, evolutionary
computation, genetics-based machine learning (GBML),
autonomous agent, agent learning, complex adaptive system.

1. INTRODUCTION
The use of Genetic Programming (GP) in a Learning Classifier
System (LCS) allows flexibility and automatic tailoring of the
rule set to operate in a given environment by using the function
calls available in that environment. There are added complexities
involved in implementing some of the LCS theory in a GP-
oriented system. These include the bidding, specificity, bucket
brigade, and rule structure, for instance. A technique to
accomplish the crowding algorithm in GP is also described here,
which is also useful for GP processing outside of an LCS system.
A general description will be supplied, and detailed to describe
the elements of the technology.

Other LCS systems were researched before deciding on using GP
in a full bucket-brigade implementation. These include LCS with
GP as described in [1], as well as the classifier system works of
[2], [3], [4], [5], [6], [7], [8] and many others. The GP-LCS
system was constructed using a mobile agent-based architecture,
to better enable it to operate in a Complex Adaptive System
(CAS) type of environment [9]. This system was a multiyear
development, and completed the initial phase of implementation
and development by the year 2001. This system provides one
more facet of LCS implementation techniques with GP rules.

It was originally designed as an intelligent agent learning and
performance system to support worldwide maintenance of the
Joint Strike Fighter (JSF) aircraft, then in design by the Lockheed
Martin Corp. The constructed system was tested by the General
Electric Global Research team, and by Lockheed Martin, for
performance on sets of abbreviated jobs. These tasks included
inventory purchase, adaptation to environmental changes, mobile
agent functionality, and tasks exhibiting non-Markovian learning.
This testing is described in the Results section. It has been shown
to perform learning, in a non-Markovian sense, to optimize its
results with respect to fitness and exogenous reinforcement, and
to respond to changes in the environment, while creating rule
chains for execution of problems in a multi-computer agent-based
architecture. If new information becomes available, the system
incorporates this information. If a performance dip occurs, the
system will try other avenues of system operation to attempt to
increase performance.

2. STRUCTURE OF THE SYSTEM
The operation of “rule-firing based upon message matching”, and
performance of the “bucket-brigade” method [10] of rule-chain
learning, has proven to be a difficult conceptual task to re-create
with genetic programming, because the genetic programs are of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-698-1/07/0007...$5.00.

2729

varied shapes, and may individually consist of a single rooted
program tree [11], and the implementation of messaging requires
changes to adapt to the GP paradigm. The rule has thus been
structured to implement this concept, with the system creating a
segmented, multi-part rule. Just like the ternary LCS, the GP-
LCS rule has an ‘if’, or antecedent, part and a ‘then’, or
consequent, part. Messages are implemented using matching
techniques, such as fuzzy message matching for numerical
messages. At least one message must be won in order for the rule
to be able to fire. The GP-LCS rules can require multiple
message matches to fire, and may post multiple messages.

The specificity characterization of the binary LCS is also
provided by the GP-LCS through structural and mechanical
specificity. This is discussed in the section on the Fully
Expanded Hyperdimensional Notation (FEHN) concept.

The overall learning system is shown in Figure 1, where the
learning system is embedded in an intelligent agent infrastructure.
There are environmental interfaces that allow the agent to
encounter the external CAS, and exchange messages with the
external message lists. Exogenous rewards from the environment
enter through the environmental interfaces, and are provided to
the individual rule that posted the messages on the external
message lists that resulted in the reward. There is an internal
message list also, and when rules are created, they are forced to
reference at least one of the internal or the external message lists
in order to fire, and the rules are also forced to post at least one
message on either the internal and or the external message list.

The rules are contained in the Population, and are processed using
a Michigan-approach system, but involving Genetic Programming
(GP) instead of Genetic Algorithms (GA). A full bucket-brigade
fitness passing mechanism is used. The rules have associated
wallets, as represented by the $ sign next to each rule in the
population. Tags are also used, to provide the ability to develop
multiple task knowledge programs within a single population. A
generation gap is used to control the amount of the population to
be replaced.

The population contains a Crib, where newly constructed rules
(individuals, children) are placed before incorporating them into
the population, after being clone checked to prevent duplicate
rules from entering the population. Crowding is performed to
help maintain diversity. Children are compared to a set of the
most similar adults, and the least fit adult is replaced with the new
child. Migrants and mutants are handled in a similar fashion.

Implementing the crowding algorithm with a set of rules that are
created using genetic programming requires new techniques to
judge the similarity of one rule to another. In this regard, the
rules were considered to exist in a hyperspace of all possible
rules, with given rule gene graphs viewed as hypersurfaces within
the constrained hyperspace of all possible rules. Important alleles
were given more influence in the crowding comparison.

Rules that immigrated from other demes are stored in the
Immigration Depot until they can be integrated into the
population. This allows agents to learn and pass their intelligence
on to other agents also tasked with certain problems.

There is a Resource Reservoir that contains the internal fitness
function that provides endogenous rewards for the agent in the
learning of its job. One fitness function exists for each job to be

learned. The Resource Reservoir also contains the raw genetic
material consisting of functions and terminals that may be
combined into chromosomes, in definition. A function can accept
other functions or terminals as arguments, but a terminal takes no
arguments. The system uses strong typing, so that only certain
functions or terminals may be used as input to a given function.
The genetic material is composed of information pertinent to the
environment, and new information can be sent to the Resource
Reservoir for future incorporation into new rules. New
information is also integrated through covering operations, where
rules are created to match information on the message boards if
the message has not yet been matched with the given rule set.

Figure 1. GP-LCS intelligent agent learning system.

Money is used for many purposes in the system. It is used to buy
information from the message boards, it is increased when
payments are received from other individuals for messages they
purchased, it serves as a measure of the relative usefulness of this
individual to the society, and it is increased or decreased when
rewards or punishments are received during the process of
learning a job. The system also maintains a bank account, shown
in Figure 1, as an overall measure of the agent’s strength.

A Bank Account is allotted to the agent as a whole, to help
determine best agents to mate in a pseudo-Pittsburgh-type of
manner, in an overall multi-agent society. The system uses
differential-fitness to let the learning system detect improvements
and declines in fitness over a given run at accomplishing a job.
Differential-fitness starts at $0.00 at the beginning of a job, and is
adjusted by adding all the endogenous and exogenous fitness and
rewards, and subtracting the payments and taxes, that accrue
during the running of a given job. Differential fitness thus serves
as a way to grade the agent with respect to job performance, and
without dependence on the total amount of cash that the agent
has.

2730

The execution engine controls the operation of the entire agent
learning system, and controls when and how the genetic system
operates on the rule set. The genetic rule-discovery and evolution
subsystem operates on the population after a number of epochs of
rule set testing. It selects rules for mating using a form of
roulette-wheel selection for the parents, although the diversity is
influenced through sigma-truncation [12]. The oscillating sigma-
truncation algorithm used here allows the choice of parents to
come from mainly the more fit individuals or from a broader set
of the population, by adjusting derived fitness values of the
individuals based upon the standard deviation of fitness values in
the mating set.

2.1 Population
A GP-LCS agent contains a population of rules. These rules
operate through fitness sharing to create a set of rules that
cooperate to accomplish a task. The environment supplies
rewards or punishments for various agent actions, and these
payments or deductions get sent directly to the particular rule in
the particular agent that submitted the message to the external
message list, or that performed an operation.

2.2 The Rule Structure
There are four gene graphs in the rule, as shown in Figure 2,
comprising the internal and external antecedents and consequents.
The system grows the antecedent and consequent gene graphs
from different sets of genetic material and potential messages that
operate in the appropriate internal or external environment.

There must be at least one internal or external message in both the
antecedent and the consequent. These messages are chosen from
the most aged genetic material in the resource reservoir to help
clear messages from the message lists and to encompass the
genetic material related to the problem space.

To save processing power, and to make sure that the whole
antecedent is considered as one, the internal antecedent (IA) is
checked first to see if it will be able to execute at all. The IA is
tested to determine: if it is executed, will it return a Boolean
TRUE as a result. It is tested as if it had obtained all available
messages that it matched, even though it has not yet bid on them.

If the IA can return a valid Boolean TRUE, then the external
antecedent (EA) is tested to see if any of its messages match
something on the external message board. If either the IA or EA
fails the test, then the rule is not executed, saving bids that might
have been placed in vain. This rule will lose money on each
epoch of LCS through a life tax mechanism. A rule possessing an
IA and EA that both pass the tests is considered a runnable rule.

The next step is to bid on all internal messages that are matched
on the internal message list by the IAs of all the runnable rules. A
bid tax is paid for every bid placed. Each bid includes a small
amount of zero-mean Gaussian noise to help break ties during the
auction.

After the bids are placed for all the rules, the internal auction
house closes the auction. The auction compares all the bids, if
two or more rules bid on the same messages, then the rule that had
submitted the highest bid wins the message. The winning rules
are notified, and they pay their bids to the internal clearinghouse.
The clearinghouse subsequently distributes the payment to the

rule that had posted the winning messages. The IAs are then run,
to obtain the results, yielding Boolean TRUE or FALSE
indications for the IA section of each runnable rule.

The EA messages are bid on for all the runnable rules that have a
passing IA, also paying a bid tax for each bid. When the EA
message auctions close, the rules are notified as to their success,
and they pay for their winning messages. Then the EA is run,
using the results of the auction. This is the final gate. If a rule
makes it through the running of the EA, then it will then execute
its consequent.

Both the internal and the external consequents now execute, as
indicated in Figure 3. If during their execution, they encounter
any messages in their chromosome, then these messages are
posted on the appropriate message board. As the agent executes
the eligible rules, the reinforcement controller is continually
looking for reasons to reward or punish the agent. If, during the
execution of a rule, a reward given to the agent, then the reward is
tagged with the identification of the rule that was executing. This
rule will be given the reward during the rewards state.

The rewards state occurs after all rules have executed. This is
when distribution of all reinforcement rewards and punishments,
and auction payoffs occurs. Each rule that has a monetary
adjustment coming gets the adjustment made to its wallet. Life
taxes are also taken at this time. The life tax is a certain
percentage of the amount of money a rule has in its wallet.

Each rule gets taxed just for existing. This tax is called lifeTax,
or TL(t), and has a tax rate, KL, with respect to the strength of the
rule, as follows

() (,)L LT t K U x t= ⋅ (1)
where U(x,t) is the fitness of rule x at the start of epoch t.

The lifeTax rate is set based upon the free-fall half life of the
rule’s strength, given decreases only attributable to life taxation.

From Richards, 1998 [13], the lifeTax will be set to:

()
1

11 2
GPT

LK = −

where

TGP = number of LCS epochs between rule-discovery using the
genetic programming system.

Rules that continually are taxed, but never receive any money will
eventually get replaced during genetics processing. After the
rewards have been distributed, the LCS epoch is complete. The
age of the rules are all increased by one. When the agent has
processed the entire LCS epoch, if more epochs are specified for
the current job, the agent will start at the first step of the LCS
epoch processing again.

If there were messages on the message boards that were not
purchased, the system puts these messages into the respective
message depots. As the agent learns, it first pulls any available
genetic material from the message depots to create its new rules
before creating any random data. Thus, it learns to respond to
novel situations occurring in the environment and to link up rules
through messages to form a chain. If there were no runnable
rules, then a special cover message operation will be performed

2731

where a new rule will be created immediately to allow the system
to recognize the current environment.

Figure 2. The rule structure enforces the

antecedent/consequent structure.

Figure 3. Execution of a GP-LCS rule begins with the

antecedents.

2.3 Message List
The message list, shown in Figure 4, is the primary internal and
external communications unit for the agent system. The message
list comprises a dynamic group of messages, each of which has a

Message Allele. These messages are placed onto the list by an
agent or rule, and remain on the list until they are purchased, or
for a certain duration, otherwise.

The message contains the identification of the Originator Agent
and Rule, so that the agent that put the message on the rule list
can get paid when the message is purchased. The Rule ID is also
supplied so that the correct rule of the originating agent can
receive the payment. The message includes a Born-On Date for
use in age determination and operation with algorithms to process
old un-bought messages.

The message list contains an Auctioneer that controls all
purchases of messages from a message list. As rules bid on the
message, the Auctioneer accumulates bids for each message. The
auction is a sealed-bid English auction, where the highest bidder
wins, and no competitor sees the bid of any other competitor.
When the auction closes, the Auctioneer informs the winning rule
of the winning agent that it won the message. The message list
Clearinghouse collects the money from the winning rule, and
sends it to the agent rule that originally put the message on the
message list.

2.4 Message Allele
Similar to genes, each message contains an allele that takes on
some number of values [14]. The Message Allele expresses the
substance of the message, which is composed of the Contents and
the Message ID. The Message ID is in the form of a number and
identifies the contents of the message. The contents of the
message are in the form of a String type. These could include
“Find Part A009976-A11” or “Sell 1000 Shares of XYZ”.

Message alleles are implemented using fuzzy logic techniques.
They have a center numerical value and a range band of
acceptable values.

Figure 4. Messages are placed on message list by a rule.

2732

The message primitive that is present in a rule can be called the
message detector, because it is used to detect if a matching
message is available on the associated message board, internal or
external. The internal message list uses primarily numerical
messages, and the message detectors can examine a number
range. If the message number on the list falls within the range of
the message detector on the rule, then the rule matches the
message and will bid on it. The closer the message is to the
middle of the of the message detector range the more that the
rules will bid on the message. The external message list uses
textual messages, where either a direct match or a theoretical
proximity to the message is used for matching the message.

2.5 Resource Reservoir
The agent maintains a resource reservoir which holds essential
data items and may be dynamic to some extent. The fitness
function(s) provide the agent with a reference as to how well it is
performing the various jobs that it is either learning or executing.
The fitness function is used to help decide between different
courses of action, because actions will be selected that yield a
higher amount of fitness, expressed as monetary rewards given to
individual rules when they have succeeded in accomplishing
milestones that are monitored by the fitness function. Each job
has its own fitness function.

The resource reservoir also contains raw genetic material for use
in constructing new individuals. The raw genetic material
consists of functions and terminals that may be combined into
chromosomes. This system uses strong typing, so that only
certain functions or terminals may be used as input to a given
function. The automatic program generator initially makes
random chromosomes. New raw genetic material may take the
form of new terminals, such as “Generator 8” or “Inventory Site
B”. Other raw genetic material may take the form of functions,
such as “SetGoal(string)”, “increaseSpeed(Generator)”, or
“Dispatch(site)”.As the system becomes aware of new functions
and terminals, they become added to the resource reservoir for use
in automatically creating and testing new programs. The
function “SetGoal(string)” accepts a string as an input argument,
and returns a certain data-type answer, such as a Boolean
(true/false) value, when complete. The “Dispatch(site)” function
accepts a site argument, which can be a terminal of type site, or a
function that returns a site, and when the agent has dispatched to
the site, it may return a Boolean TRUE or FALSE to indicate the
success or completion of the operation.

2.6 Tags
Tags are used to help to identify the agent as being suited for
particular tasks. The offense tags indicate what the agent is good
at; the defense tags serve to protect the rule by indicating what
strengths it has in certain areas, such as with respect to a certain
job; and the mating tags segregate the agents when selective
mating is performed. Tags are updated as the agent learns
different jobs.

2.7 Environmental Interfaces
In the field of intelligent agents, and especially in the field of
genetic algorithms, anthropomorphic terminology is used
frequently, such that the agents and their components are
described in terms of human or animal characteristics. For

descriptive purposes, the intelligent agent is split into a body and
a mind, as seen in Figure 1 [15]. The mind is the essential
intelligence that allows the agent to learn, retain information, and
determine actions. The body is the container for the mind, and
provides the capability to execute commands that the mind has
issued, and to provide information from the outside world into the
mind.

The outside-world information is obtained through the
environmental interfaces, consisting of components such as
external message board links, mobility controls and reward
acceptors. During high-speed training, the mind will leave the
agent body, and will be linked with a different body in the
simulator. The simulator body supplies the mind with the same
inputs and outputs as the real-world body, but executes in the
simulator, for increased speed and repetitive training. Using
interface methods, the mind is connected to the correct body for
either simulated or actual system usage.

2.8 Execution Engine
The agent executes its rules using a state-machine type of method,
where the agent performs certain manipulations on the population
in a given order. Many of these operations could be performed in
parallel, but serial execution was used initially in this system. At
the top-level view of the algorithm the agent views the
environment, and looks at what it is currently doing, then takes
any actions that it believes are appropriate, and makes changes to
the environment and its internal state. All the while, the agent is
expending energy in the form of fitness money, which will
hopefully be balanced by the rewards it receives for doing the
correct things at the correct times.

There are two modes of operation, that of learning, and that of
executing the rule set. During the execution phase the agent is
generally operating in the actual environment, with learning
potentially disabled. During learning, the agent is generally
operating in the simulator and performs frequent genetic
processing and LCS strength updates. These phases can overlap.

3. BUCKET BRIGADE OPERATION
Through the passing of money through the system, the system is
capable of rewarding rules that help achieve a good, profitable
solution. Through multiple iterations, rules that receive payoffs
from the environment wind up passing the money further up the
chain, because they can bid more money on messages. The
messages thus wind up forming a chain of rule executions that get
reinforced due to their proper behavior. The amount that a rule
bids on a message is directly proportional to the amount of money
that a rule has. It is also proportional to how closely the message
on the list is matched by the message in the rule.

Message alleles, representing a genetic primitive, are enforced to
be used as part of the antecedent and the consequent program
trees. When a rule fires, it places its messages on the message
board. Then, when the rules are checking the message board for a
message that matches the message allele in their antecedents, they
use a fuzzy matching range to determine if the center value of the
message on the message board is contained within their range. If
so, then the message allele matches the message on the message
board to a certain degree, and may bid on it.

2733

Similar to the binary LCS, if no rule matches the messages on the
message board, new rules are created at random, but provided
with an antecedent message-allele that will match with a message
on the message list; this is termed ‘cover-detection’. The creation
of messages is also supported, if all the messages have run out on
the message list. With the use of the GP messages, more efficient
information can be transported around the system. The meaning
of messages expressed in the textual messages on the external
message board can reduce message uncertainty entropy through
the increased expressiveness and standardized agreements based
upon the use of an ontological namespace, referencing an
ontological definition or task ontology.

 Jobs to be performed can be given to the GP-LCS as part of an
external message, and the GP-LCS learns to recognize the
message, and to perform tasks to satisfy requirements of the job.

4. FULLY EXPANDED
HYPERDIMENSIONAL NOTATION
To obtain similar capabilities with a GP-LCS as with a Genetic
Algorithm-based LCS it became necessary to be able to analyze
the GP rules to provide data for algorithms such as bidding,
specificity, and crowding. Due to the free-form rules that are
obtainable with GP, a technique using a Fully-Expanded
Hyperdimensional Notation array (FEHN array) was used.

The schema representations of Poli and Langdon [16] and
Justinian Rosca [17] use variable size schematas to hold the
program information. This causes a “competition of hyperspaces”
as the structure of the program changes to adapt to the problem.
To allow an efficient and direct computer implementation of the
representation of program schemas, the concept presented here
uses a fully-expanded hyperspace representation. Hyperspace
representations can change, hyperplanar schemas can evolve, all
without changing the base representation of the individuals.

Consider the gene graph of Figure 5. It shows a complete
hyperdimensional expansion of all nodes and links possible for a
genetic program that is made up of functions having a maximum
fan-in of 2, and it has a maximum graph depth of 4. The
maximums are used, although not all nodes have this maximum
fan in, nor do all graphs have the max depth. The structure of the
gene graph of Figure 5 allows the node names to be organized
into the structure of Table 1, where the contents represent
functions or terminals. Thus, all gene graphs complying with the
fan in and depth specifications can be represented and compared
in one common foundation.

cb

a

ed f g

onmlkjih

1

2

3

4 5

6

7

9

10

11 12

13

14 158

max_fan_in = 2

depth = 4
1

2

3

4

Figure 5. Fully-dimensioned gene graph.

Table 1. FEHN array representation of fully-expanded gene
graph for fan-in of 2 and depth 4.

Gene
number

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

Contents a b c d e f g h i j k l m n o

4.1 Crowding
The comparison distance between two gene graphs is used in the
calculation of the crowding distance. New children are integrated
into the population such that they replace adults of a similar
crowd, where the adult to be replaced is the one with the lowest
fitness in the group.

A measure of closeness is required. In a manner very similar to
that used by Holland [18] for tag comparison in Echo CAS agents,
and also in Holland [10] for schema processing, the genetically
created programs are compared to each other and a measure of
closeness is calculated.

The FEHN array structure allows all comparisons to be performed
with a linear array. The match score between two gene graphs is
the sum of the match scores of each of the positions in their
associated FEHN array. These match scores may be as shown in
Table 2.

Table 2. FEHN array comparison values.

COMPARISON MATCH SCORE

exact match of two, non-empty items
at the same location in the FEHN array +2

mismatch of two, non- empty items at
the same location in the FEHN array -2

mismatch between one non- empty
item and one empty item at the same
location in the FEHN array

-1

if both items are empty at the same
location in the FEHN array 0

Thus, having a means to compare two gene graphs, a crowding
technique may be implemented. A set of random individuals may
be compared to a new child for similitude, replacing the most
similar. Or the entire set of adult individuals may be FEHN
checked, to determine the similarity of each to the new child.
Then, the least fit of the most similar individuals may then be
chosen for replacement.

4.2 Specificity
The GP-LCS rule structural specificity is determined from the
number of nodes of the antecedent gene-graph containing
information, not including the primitives {and, or, not, progn},
which do not lend much to the determination of how specific a
gene graph is. The number of information nodes is divided by the
maximum number of nodes possible. A higher the ratio indicates
a higher specificity. Also, the mechanical specificity is
determined by the width of the fuzzy-message detection range.
The smaller the range, then the higher the specificity.

2734

4.3 Bidding
The total bid provided by rule n at epoch t, Bidn(t), is based on

{ }() (,)

where

= bid ratio constant, for example 0.1 portion of money

 base level of bid, constant

 specificity based portion of bid, constant

 specificity of rule, based on ru

n R B S R

R

B

S

R

Bid t K K K S U x t

K

K

K

S

= ⋅ + ⋅ ⋅

=

=

= le analysis

(,)= strength of rule at the start of epoch U x t x t

5. RESULTS
The parameters used in the testing by the General Electric Global
Research laboratory included: agentQuantity, classifierQuantity,
initialRuleFitness, controls for the SigmaTruncationOscillation,
migrantProportion, agentBirthRate, bidTaxLevel, specificityLevel
(Ks), dontCareRatio, pMutation, generationGap, ADF0-4 max
depths and create methods, crowdingFraction, and
crowdingAlgorithm selection. The dontCareRatio works with the
fuzzy rule matching, where 0 means an exact match, and 1 means
that virtually any rule can match the message(s). Emphasis in this
testing was based on characterizing the bucket-brigade market-
based learning aspects.

The test cases included ordered traversal of different remote
computer sites, as a path planning exercise, including cases where
the agent was expected to visit a certain site more than once to
test non-Markovian performance. An inventory scenario was also
tested, involving agent purchase of parts. This scenario was
expanded in subsequent testing to include multiple parts stores,
and changing costs and availability, forcing on-line adaptation,
and this was successfully demonstrated.

An example of the results for the testing of the specificity value,
Ks , from Equation 3, is shown in Table 3. Along with the testing
results of the other jobs, this shows that lower specificity resulted
in improved learning performance; further testing will help
generate a better curve for Ks . The Time value is in milliseconds.
Cycles are epochs of rule list processing, and generation is the
number of generations of evolution processing needed to correctly
learn the job. Further training enforces parsimony, and increases
the job performance. In many cases, as shown by the standard
deviations, the learning performance can be greatly improved, or
diminished, depending on the other parameters. For instance,
with 8 agents (8 separate rule sets evolving and sharing migrants),
with 100 classifiers each, it took only 8 seconds, 2 generations
and 8 epochs, but this was probably based on a lucky first
creation of the rule trees. It had generationGap = 0.24, max depth
of rules of 2 or 3 which perhaps could have been deeper for better
results but that helped enforce rule chaining, bid tax level 0.0004,
crowding fraction 0.2, initial rule fitness/cash 50000, pMutation
0.4 which was sort of high, and specificity level 0.7, which is not
what the overall results show as the best specificity, but it worked
well in this case.

Table 3. Testing of GP-LCS on a non-Markovian problem.

 Ks = 0.6 Ks = 0.7

Number of Successful Runs 26 138

Number of Runs 26 145

Average of "Time" 5,457,331.38 6,478,668.91

StdDev of "Time" 3,897,044.68 5,449,800.56

Average of cycle Counter 712.69 916.04

StdDev of cycle Counter 659.37 920.83

Average of generation 177.96 224.51

StdDev of generation 164.86 216.42

Another test, to determine the appropriate number of classifiers to
use for these sample problems is given in Table 1. This shows
that the number of classifiers is relatively important in the speed
of learning, although, it will learn satisfactorily without having an
optimum number of classifiers. Having too many or too few
classifiers is seen to impair learning performance. The learning
was cut off after a certain number of generations, resulting in
unsuccessful learning in some cases. If a more compact rule set is
desired, then it will take more learning, if the particular job
spectrum requires more classifiers for an optimum learning speed.

Table 4. Testing the effect of different number of classifiers.

Number of Classifiers 25 50 75 100

Total Number of
Successful Runs 45 161 33 153

Total Number of Runs 45 176 33 165

Total Average of
"Time"

6.03e6

7.52e6

44.84e

5.62e6

Total StdDev of "Time"

3.84e6

7.18e6

3.79e6

5.20e6

Total Average of cycle
Counter

1,274.

1,301.

898.06

937.60

Total StdDev of cycle
Counter

865.10

1,414.

809.69

1,138.3

Total Average of
generation

284.04

288.81

204.42

210.80

Total StdDev of
generation

185.85

320.58

180.72

289.79

Other results show that having more agents results in faster
learning, but this can be offset in processing time, if a single agent
learning site is used. Increasing the dontCare ratio to provide
more generalization also speeds the learning process, similarly to
increased performance resulting from less specificity.

2735

6. SUMMARY
In this paper, we described a Genetically Programmed Learning
Classifier System for Complex Adaptive System Processing. We
provided a method for GP “bucket-brigade” rule-chain learning
by a type of fuzzy message matching and by implementing a
specificity technique for GP-LCS. This specificity technique is
characterized by the FEHN array technique which provides a GP
gene graph comparison technique useful in the implementation of
a crowding algorithm.

An LCS has many parameters, for administration, the market
system, the chromosomes, and the genetics. In a large, complex
system, testing of the effects of these parameters can greatly
improve the learning and operating performance of the system.
There is a careful balance of parameters required for optimal
learning, and it leads to the concept of meta-LCS control for
optimizing the learning parameters with respect to a given
problem domain.

This GP-LCS implementation has been proven to work, and tests
for scalability should be performed. It creates rules in an
environment, and these rules consist of sets of programs
automatically written in a high-level language of functions and
terminals. It provides the ability to realize a large-scale Complex
Adaptive System in a multi-computer environment. We believe
that an expanded system, with attendant simulation systems for its
training, and an infrastructure that interacts through the external
message list could provide autonomic learning, processing and
optimization for many enterprise-level tasks, much in keeping
with John Holland’s Echo and Complex Adaptive System
environments.

7. ACKNOWLEDGEMENTS
This work was supported by Internal Research and Development
at Lockheed Martin Simulation, Training & Support. We wish to
acknowledge Robert K. Hollister, Mike Bodkin, and GE Global
Research for their contributions to this work.

8. REFERENCES
[1] Ahluwalia, M. & Bull, L. A Genetic Programming-based

Classifier System. GECCO-99: Proceedings of the Genetic
and Evolutionary Computation Conference. Morgan
Kaufmann, 1999, 11-18.

[2] Stolzmann, W.. Anticipatory classifier systems. Proceedings
of the Third Annual Genetic Programming Conference, July
22-25, 1998. (University of Wisconsin, Madison, WI).
Morgan Kaufmann Publishers, San Francisco, CA, 1998,
658-664.

[3] Wilson, S.W.. Generalization in the XCS Classifier System.
Proceedings of the Third Annual Genetic Programming
Conference. (University of Wisconsin, Madison, WI, July
22-25, 1998). Morgan Kaufmann Publishers, San Francisco,
CA, 1998, 665-674.

[4] Bay, J.S. Learning Classifier Systems for Single and
Multiple Robots in Unstructured Environments. Web page,
Jan. 5. 1999. Internet. http://armyant.ee.vt.edu/

[5] Bonarini, A., Bonacina, C., and Matteucci, M. Fuzzy and
crisp representations of real-values input for learning
classifier systems. Proceedings of the Genetic and
Evolutionary Computation Conference, 1999, LCS
workshop. (Orlando, FL, 1999).

[6] Booker, L.B. Do we really need to estimate rule utilities in
classifier systems? Proceedings of the Genetic and
Evolutionary Computation Conference, 1999, LCS
workshop. (Orlando, FL, 1999).

[7] Dorigo, M. Message-based bucket brigade: an algorithm for
the apportionment of credit problem, Proceedings of
European Working Session on Learning '91. (Porto,
Portugal), also Web page, Internet
http://iridia0.ulb.ac.be/~mdorigo/publications.html

[8] Smith, R.E., Dike, B.A., et al. The fighter aircraft LCS: a
case of different LCS goals and techniques. Proceedings of
the Genetic and Evolutionary Computation Conference,
1999, LCS workshop. (Orlando, FL, 1999).

[9] Holland, J.R. Emergence: From Chaos to Order. Addison-
Wesley Publishing Company, Reading, MA, 1998.

[10] Holland, J.R. Adaptation in Natural and Artificial Systems.
The MIT Press. Cambridge, MA, 1975.

[11] Koza, J.R. Genetic Programming: On the Programming of
Computers by Means of Natural Selection. The MIT Press,
Cambridge, MA, 1992.

[12] de la Maza, M. Sigma Truncation in The Boltzmann
selection procedure. Practical Handbook of Genetic
Algorithms, New Frontiers, Vol. II. Chapman & Hall/CRC,
Boca Raton, FL, 1995, 111-138.

[13] Richards, R. Zeroth-Order Shape Optimization Utilizing a
Learning Classifier System. Web page, viewed December 3,
1998. Internet
http://www.stanford.edu/~buc/SPHINcsX/book.html

[14] Goldberg, D.E. Genetic Algorithms in Search, Optimization,
and Machine Learning. Addison-Wesley Publishing
Company, Reading, MA, 1989.

[15] Muller, J.P. The Design of Intelligent Agents: A Layered
Approach. Springer-Verlag, Berlin Heidelberg, Germany,
1996.

[16] Poli, R. and Langdon, W.B. A new schema theory for
genetic programming with one-point crossover and point
mutation. In Genetic Programming 1997: Proceedings of
the Second Annual Conference. (Stanford University, July
13-16, 1997). Morgan Kaufmann, San Francisco, CA, 1997,
35-43.

[17] Rosca, J.P. Analysis of complexity drift in genetic
programming. Genetic Programming 1997: Proceedings of
the Second Annual Conference. (Stanford University, July
13-16, 1997). Morgan Kaufmann, San Francisco, CA, 1997,
286-294.

[18] Holland, J.R. Hidden Order: How Adaptation Builds
Complexity. Addison-Wesley Publishing Company, Reading,
MA, 1995.

2736

