
Genetically Designed Heuristics for
the Bin Packing Problem

Oana Muntean
Department of Computer Science

Faculty of Mathematics and Computer Science
Babes-Bolyai University

Kog–alniceanu 1, Cluj-Napoca, 400084
Romania.

oana muntean85@yahoo.com

ABSTRACT

The bin packing problem (BPP) is a real-world problem
that arises in different industrial applications related to mi-
nimization of space or time. The aim of this research is to
automatically design an algorithm that places a collection
of objects into the minimum number of fixed-size bins. For
generating this heuristic we use Genetic Programming (GP)
with a special set of terminals. The evolved strategy is com-
pared to Best Fit Descending (BFD), a well-known heuris-
tic for the bin packing problem. The results emphasize that
evolved GP heuristics can perform equally and sometimes
even better than BFD for the considered test problems.

Categories and Subject Descriptors

I.2.6 [Learning]; I.2.8 [Problem Solving, Control Me-
thods and Search]

General Terms

Algorithms

Keywords

Genetic Programming, Heuristics, Bin Packing

1. INTRODUCTION
Bin packing arises in a variety of packaging and manu-

facturing problems, dealing with distribution of objects into
fixed-capacity bins. To minimize cost and waste, it is de-
manded to lay out the objects so as to use as few bins as
possible.

Many human-designed heuristics have been proposed for
solving this problem. The most popular ones are Best Fit
Descending (BFD) and First Fit Descending (FFD).

Genetic Programming (GP) [3] technique is used here to
detect automatically Bin Packing Problem (BPP) heuristics

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-698-1/07/0007 ...$5.00.

for different classes of given objects. An evolved heuris-
tic is a function which depends on the current state of the
placement. The function will help us to choose which bin is
suitable for placing the current object.

Several heuristics have been designed using this proce-
dure. The heuristics have usually been trained on some
instances and later they have been tested for some other
instances in the same class. Numerical experiments have
shown that the evolved heuristics can perform better than
BFD for instances having certain properties. However, a
single evolved heuristic was not able to conclusively beat
BFD for all instances. This is why the best strategy is to
combine the evolved heuristics: each of them is applied to
a particular instance and the best solution (with minimum
number of bins) is given as output.

The paper is organized as follows: Genetic Programming
is briefly described in Section 2. The Bin Packing problem
and the Best Fit Descending algorithm are described in Sec-
tion 3. Related work in the field of evolution of heuristics
is overviewed in Section 4. The proposed method is deeply
presented in section 5. Several numerical experiments are
performed in Section 6. Conclusion and further work direc-
tions are given in Section 7.

2. GENETIC PROGRAMMING
Genetic Programming technique provides a framework for

automatically creating a working computer program from a
high-level problem statement of the problem [3]. Genetic
Programming achieves this goal by genetically breeding a
population of computer programs using the principles of
Darwinian natural selection and biologically inspired opera-
tions. Five major preparatory steps [3] must be specified in
order to apply a GP technique to a particular problem:

1. the set T of terminals (e.g., the independent variables
of the problem, zero-argument functions and random con-
stants)

2. the set F of primitive functions,
3. the fitness measure (for explicitly or implicitly measu-

ring the quality of individuals in the population),
4. certain parameters for controlling the run
5. the termination criterion and the method for desig-

nating the result of the run.

These preparatory steps are problem dependent so they
must be specified, by a human user, for each particular pro-
blem.

2869

3. BIN PACKING PROBLEM
Several types of BPP are well-known in practice: 1-dimen-

sional (1D), 2-dimensional (2D) and 3-dimensional (3D). In
this paper only the case of 1D packing is considered. The
problem is stated as follows:

Given a set of n objects, having the sizes (volumes) d1, . . .,
dn and any number of fixed capacity (K) bins, it is required
to place all the objects in the smallest number of bins.

BPP is an NP-complete problem [2]. No polynomial-time
algorithm for solving BPP problem is known. Several heuris-
tics for solving BPP problem have been proposed. The most
important are First Fit (FF) and Best Fit (BF). These al-
gorithms can be improved by sorting the objects in decreas-
ing order. The corresponding variants of the algorithms are
called First Fit Descending (FFD) and Best Fit Descending
(BFD).

Best Fit Descending can be described as shown in Algo-
rithm 1.

Algorithm 1 Best Fit Descending algorithm

1: sort the objects descending according to their size
2: for each object i do
3: find bin j such that object i maximizes filled capacity
4: put object i in bin j
5: end for

4. RELATED WORK
A different approach for evolving BPP heuristics using

GP has been proposed in [1]. The differences between the
related approach and the one described in this paper are
given in Table 1.

5. GP FOR BPP
In this section we address the problem of finding heuristics

that can solve BPP rather than solving a particular instance
of the problem. GP technique is used for evolving a function
f that gives a way to place the objects such that a minimum
number of bins is used.

The idea behind the usage of this function is the fact that
Step 3 of the Algorithm 1 (described in Section 3) can be
rewritten as:

find bin j such that K - filledj - di is minimal,

where filledj is the filled capacity of bin j.
Only bins where object i can be placed are considered.

All the others are ignored.
The optimal bin is the one for which the function K -

filled j - di is minimal. Thus we have a function depending
on 3 parameters: K, filledj , di. Our idea is to generate a
function f by using Genetic Programming.

The new algorithm (called BFD-f) involving function f
is given in Algorithm 2.

Function f depends on information about the current
state of the placement. Ideal case would be to send all
information available at current moment as input to that
function. This means that we have to send the size of each
object, bin size, unfilled capacity for each bin, etc. But such
a function would have a variable number of arguments be-
cause the instances have a variable number of objects. More-
over, the number of existing non-empty bins is also variable.
This number depends on the current state of the placement.

Algorithm 2 Best Fit Descending algorithm involving func-
tion f (BFD-f)

1: sort the objects decadently according to their size
2: for each object i do
3: find the bin j such that f is minimal
4: put object i in bin j
5: end for

It would be difficult for GP to evolve such function (es-
pecially due to the variable number of arguments). Thus
just some partial information from the current state of the
placement process is extracted. This information should be
independent with respect to the instances size. Moreover, it
must be computed easily because it is used each time a new
object is placed in some bin.

The partial information set to GP is described in section
5.2.

5.1 Fitness Assignment
The fitness is assigned to the function f in the current

population by applying BFD-f on several data sets (training
set) and evaluating the results.

The fitness of a GP chromosome encoding a function f is
equal to the total number of utilized bins over total number
of instances in the training set. Because the minimum num-
ber of bins is required, the entire fitness function has to be
minimized.

5.2 Terminals and Functions Sets
For evolving path function f we consider a set T of ter-

minals involving the following elements:
1. Bin size,
2. Occupied volume of the current bin,
3. Size of the current object,
4. Sum of the already placed objects,
5. Sum of the objects not placed yet,
6. The smallest not filled volume,
7. The emptiest bin containing at least one object,
8. The size of the next object to be placed.

Set T of terminals is chosen in such way to be indepen-
dent of the instance size. This choice confers flexibility and
robustness to the evolved heuristic.

For evolving a GP function for BPP problem we may con-
sider the following set of function symbols:

F = {+,−, %, ∗, max,min}.

6. NUMERICAL EXPERIMENTS
In this section we evolve a function f which is embedded

into the BFD-f heuristic. Several BBP instances are used
for training purposes. The best obtained function is applied,
at the end of the search process, for solving several other
BPP instances (test set).

6.1 BPP instances
Several difficult data sets, taken from [4, 5] have been

used in these experiments. The data are divided in different
classes having different properties.

The first set of problems (BPP1) has the following pro-
perties: K = 1000, n = 50, 100, 200, 500 and di are ran-
domly generated over different intervals.

2870

Table 1: The differences between our approach and the one proposed in [1].
The approach proposed in [1] Our approach
The modified algorithm was First Fit. The modified algorithm was Best Fit Descending.
The best obtained heuristic performs equally to
First Fit.

Our evolved heuristics perform (in some cases)
better than Best Fit Descending. Note that BFD
performs at least as well as FF.

Invalid individuals (i.e. put all objects in the first
bin) can appear in the system. These individuals
are highly penalized.

No invalid individuals can appear in the system.

Complicated formula for fitness computation. Fitness of a GP tree is equal to the number of
utilized bins.

Only 3 terminals have been used (the filled capac-
ity, bin capacity, size of current object).

9 different terminals have been used.

Function set have been F = {+,−, ∗, /, abs}. Function set is F = {+,−, ∗, %, min, max}.
A fixed number of objects (120) was used in all
experiments.

The number of objects varies between 50 and 500.

The bin capacity was fixed to 150. Bin capacity varies between 1000 and 100000.
Object sizes vary between 20 and 100. Object sizes vary between different ranges of val-

ues, depending on the experiment.

In the first class here (BPP11) we have di values uniformly
generated with maximal deviation of 20% of the average
object size. Training set consists in 4 instances and the test
set consists in 36 instances.

In the second class (BPP12) we have di values uniformly
generated with maximal deviation of 50% of the average
object size. Training set consists in 4 instances and the test
set consists in 36 instances.

In the third class here (BPP13) we have di values uni-
formly generated with maximal deviation of 90% of the ave-
rage object size. Training set consists in 4 instances and
the test set consists in 36 instances. For this class the BFD
heuristic performs very well (for training set it obtains with
only one bin more than the optimal result (287 bins instead
of 286)). In this case it is quite difficult for our heuristic to
find better solutions. This is why we have not applied our
algorithm to this class of problems.

The second set (BPP2) of 10 difficult instances has the
following properties: K = 100000, n = 200 and di are ran-
domly generated between 20000 and 35000.

6.2 Evolving an Heuristic
Parameters of the GP algorithm, used for evolving an

heuristic function f , are given in Table 2.
First we have evolved an heuristic function for class BPP11.

In this class 4 instances were used for training purposes and
36 for testing purposes. Twenty runs having different seeds
have been performed. In all cases a better heuristic than
BFD has been obtained for the test set. The best heuristic
generates 2633 bins for test set and 293 bins for the training
set. By applying BFD on the same data we obtain 2852 bin
for the test set and 316 bins for the training set. This means
that we have obtained an improvement with 219 bins for the
test set.

We have also applied the evolved heuristic for problems
belonging to other classes (BPP12, BPP13, BPP2), but we
have not been able to obtain better results than BFD.

Secondly we have evolved an heuristic function for the
class BPP12. In this class 4 instances were used for training
purposes and 36 for testing purposes. Twenty runs having

different seeds have been performed. In all cases we have
been able to find a heuristic which performs better than
BFD for the test set. The best heuristic generates 2671 bins
for test set and 294 bins for the training set. By applying
BFD on the same data we obtain 2675 bins for the test set
and 299 bins for the training set. This means that we have
obtained an improvement with 4 bins for the test set.

It seems that increasing the range where size of objects
lies, also increases the quality of solutions obtained by the
BFD heuristic. In this case the solutions obtained by BFD
are closer to the optimal values. This means that our pro-
cedure has smaller chances to discover a better heuristic.

Thirdly we have evolved a heuristic for the second set of
instances (BPP2). These instances are more difficult than
the first ones because only 2 up to 5 objects can enter in a
bin.

The first 5 instances were used for training purposes and
the other 5 instances were used for testing purposes. Twenty
runs have been performed.

One of the best evolved heuristic has the following per-
formance: fitness for training set is 285. At the end of the
search process we have applied the best individual on the
test set and we have obtained 286 bins. By comparison, the
Best Fit Descending algorithm was able to generate 298 bins
for the training set and 298 bins for the test set. Thus, for
the test set, our heuristic was able to obtain an improvement
of 12 bins.

7. CONCLUSIONS AND FURTHER WORK
Genetic Programming has been used for evolving heuris-

tics for the Bin Packing problem. Several different heuris-
tics have been designed, each of them being able to perform
better than Best Fit Descending for several cases. However,
no heuristic was able to perform better than BFD for all
cases. This is why it is recommended to combine the evolved
heuristics in order to obtain a better one. For achieving this
each of the evolved heuristics was run separately. For each
heuristics we obtain a solution of the considered BPP in-
stance. The solution with the minimal number of bins is
finally output.

2871

Table 2: General parameters of the GP algorithm
Parameter Value
Population size 500
Number of generations 51
Mutation probability 0.01
Crossover probability 0.9
Selection Binary Tournament
Terminal set 9 terminals (see section 5.2)
Function set F = {+,−, ∗, %, max,min}
Initial maximum GP tree height 4

Since the BPP is NP-Complete we cannot realistically ex-
pect that an absolutely correct evolved expression has poly-
nomial complexity. Although the supposition that evolution
could overcome the exponential complexity problem is very
exciting, we cannot expect that this direction could lead to
important theoretical results. Searching for heuristics that
give near optimal solutions seems to be a more realistic ap-
proach.

Moreover that taking No Free Lunch (NFL) theorems [6,
7] we cannot expect to be able to design an heuristic that
performs perfectly for all test cases. All we can do is to de-
sign optimal or near-optimal algorithms for some particular
problems, without any guarantee related to their generaliza-
tion ability on new and not seen test problems.

Further efforts will be focused on:

• Evolving strategies starting from others heuristics,

• Using an extended set of terminals,

• Extending the data set by including more difficult BPP
instances,

• Evolving heuristics for other NP-complete problems.

8. REFERENCES
[1] Burke E. K., Hyde M. R., Kendall G., Evolving Bin

Packing Heuristics with Genetic Programming,
Parallel Problem Solving from Nature - PPSN IX,

LNCS, Vol. 4193, pp. 860-869, Springer-Verlag, 2006

[2] Garey, M.R., Johnson, D.S., Computers and

Intractability: A Guide to NP–Completeness, Freeman
& Co, San Francisco, CA, 1979.

[3] Koza, J. R.: Genetic Programming, On the

Programming of Computers by Means of Natural

Selection, MIT Press, Cambridge, 1992.

[4] Martello, S., Toth, P., Knapsack problems. Wiley,
Chichester, 1990.

[5] Scholl, A., Klein, R., Jurgens. C., BISON: a fast
hybrid procedure for exactly solving the
one-dimensional bin packing problem. Computers &

Operations Research, 24, 627-645, 1997.

[6] Wolpert, D. H., McReady, W. G. No Free Lunch
Theorems for Search, Technical Report
SFI-TR-05-010, Santa Fe Institute, USA, 1995.

[7] Wolpert, D. H., McReady, W. G., No Free Lunch
Theorems for Optimization. IEEE Transaction on

Evolutionary Computation, 1:67-82, IEEE Press, NY,
USA, 1997.

2872

