
Regular Expression Generation through Grammatical
Evolution

Ahmet Cetinkaya
Department of Computer Engineering

Istanbul Technical University
Maslak, Istanbul, 34469, Turkey

ahmet@itu.edu.tr

ABSTRACT
This study investigates automatic regular expression gen-
eration using Grammatical Evolution. The software imple-
mentation is based on a subset of POSIX regular expression
rules. For fitness calculation, a multiline text file is supplied.
Lines which are required to match with generated regular
expressions are specified beforehand. Fitness is evaluated
according to the successful match results. Using this fitness
evaluation strategy, preliminary tests have been performed
on different files. Results indicate that the Grammatical
Evolution approach to automatic generation of regular ex-
pressions is promising.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming—
program synthesis, program verification

General Terms
Experimentation

Keywords
Regular Expressions, Grammatical Evolution

1. INTRODUCTION
In formal languages theory, regular expressions are nota-

tions for describing regular languages. They can describe
simple patterns such as different floating point number rep-
resentations. Regular expressions are strong tools which
are used in a wide range of applications such as user input
verification, text search and pattern investigation in large
amounts of data.

Simple regular expressions are constructed by applying
basic recursive rules on the components of a regular lan-
guage [4]. Whereas users can employ more complex rule
sets for generating complicated regular expressions, gener-
ating complicated regular expressions is an arduous process

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-698-1/07/0007 ...$5.00.

of trial and error. To reduce this difficulty, users are en-
couraged to use regular expression tools (testers, helpers)
for assisting in the generation of regular expressions [2].

In this work, automatic generation of regular expressions
through Grammatical Evolution is investigated. Tests are
performed with the implementation which is based on a sub-
set of POSIX regular expression rules.

The remainder of this paper is organized as follows. Major
properties of regular expressions are covered in Section 2.
Section 3 describes Grammatical Evolution and its use in
regular expression generation. Preliminary test results are
presented in Section 4. Section 5 contains conclusions and
future work.

2. REGULAR EXPRESSIONS
Formal languages theory defines regular expressions as no-

tations for describing regular languages [4]. POSIX, being
a standard for achieving “portability across operating sys-
tems”, specifies a standard for regular expressions and the
tools that use regular expressions. Basic abilities of POSIX
regular expressions are character classes, alternation, group-
ing and repetition.

Character classes are structural forms in which characters
are listed [2]. A regular expression with a character class
matches with any text containing any of the listed charac-
ters. For instance, a regular expression that is required to
match with texts containing one of the ten digits can be con-
structed as “[0123456789]”. Range expressions can achieve
the same effect with a simpler form as in “[0-9]”. The
regular expression “[a-z0-9]” can be used for matching al-
phanumeric characters. Negation is also possible for charac-
ter classes by using the ‘ˆ’ meta-character as in “[^a-z0-9]”
which matches non-alphanumeric characters.

Alternation meta-character “|” combines multiple subex-
pressions into a single expression. For instance, “this|that”
matches with both ‘this’ and ‘that’. Grouping is mostly used
together with alternation for matching one of several subex-
pressions inserted between ‘(’ and ‘)’ meta-characters.

‘+’ and ‘*’ are two repetition operators. ‘+’ allows match-
ing one or more of the preceding item and ‘*’ allows match-
ing zero or more. For three numbers ‘11’, ‘101’ and ‘1001’,
‘10*1’ matches with ‘11’, ‘101’ ‘1001’, whereas the ‘10+1’
regular expression only matches with 101, 1001 and so on.

POSIX regular expressions use the ‘.’ meta-character
for matching any character. For example, “pi.k” regular
expression will match with both of the words “pink” and
“pick”, or any 4 character word starting with ‘pi’ and end-
ing with ‘k’.

2643



Matched portion of a text is the part with which the reg-
ular expression matches. For the sentence “New Pink Floyd
album will be released soon.”, “P...” expression matches
with the portion “Pink”.

Furthermore, both “pink|pick” and “p[a-z][a-z][a-z]”
can also be used for matching with “pink”. In conclusion,
users have many different options that can be used for ac-
quiring the same result. Generating a complex regular ex-
pression is considered to be confusing and difficult. One
possible solution would be using regular expression assis-
tance software such as regular expression testers; another
solution is using automatic regular expression generation.

3. GRAMMATICAL EVOLUTION
Grammatical Evolution (GE) is defined as a grammar

based genetic algorithm to generate programs in many dif-
ferent languages using the Backus-Naur Form (BNF) defini-
tions [5]. BNF is the set of production rules that are used for
expressing grammars of languages. BNF grammars consist
of terminal and non-terminal symbols. Terminal symbols
can not be expanded into further terminals or non-terminals.
BNF grammars may express only a certain subset of a lan-
guage that meets the needs of a problem.

In GE, a sequence of 8 bit codons represent each indi-
vidual. Each codon encodes an 8 bit number [6]. These
numbers are used in the translation from genotype to phe-
notype [8]. This mapping process is based on selecting pro-
duction rules. Starting from the beginning of the genotype,
each codon’s integer value is used for calculating the cur-
rent production rule index. For the <meta-character>rule
given below, there are two production rules from which to
select. If the codon integer value being processed is 231,
then modulo operation 231 MOD 2 = 1 would select rule
(1) <meta-character>::=+.

<meta-character> ::= ‘*’ (0)

| ‘+’ (1)

Different integer values may represent the same produc-
tion rule due to the use of the modulo operation as in 13
MOD 2 = 1 and 23 MOD 2 = 1. Hence, for the given exam-
ple, 13, 23 and all other odd numbers would select the rule
<meta-character>::=+. This is called genetic code degen-
eracy [7].

Before the phenotype can be completely constructed, the
mapping process may reach the end of the codon sequence.
The solution to this problem is “wrapping”, which is loop-
ing back to the beginning and reusing the same codons [7].
Wrapping represents the “overlapping genes” property of
evolution observed for many organisms [6]. The maximum
number of wrapping is a parameter of the mapping process.
If the mapping for an individual reaches the maximum num-
ber without producing a valid phenotype, the individual is
classified as invalid. Invalid individuals are given the lowest
possible fitness value [7].

3.1 Grammatical Evolution for Regular Ex-
pression Generation

Integer representation is used in the implementation [1].
This is where the implementation differs from the standard
GE where adjacent 8 bit codons are replaced by their integer
values and production rules are selected using these values
and the MOD operation [5]. Whereas in this study, for

simplifying the implementation, integer values are used for
selecting appropriate production rules from BNF grammar
and for representing the individuals as integer strings.

Before fitness evaluation, each individual is passed through
the process of mapping. The result of this mapping pro-
cedure is a regular expression for each individual. Then,
fitnesses for each of the regular expressions are calculated.
For fitness calculation, users supply a file of n lines where
they mark m of them specifically. A regular expression of
optimum fitness is required to match all of these m lines and
none of the other n-m lines.

The fitness of a regular expression is the sum of A and B
where,

A = number of lines that the regular expression correctly
matches

B = number of lines that the regular expression correctly
not matches

Using this fitness evaluation strategy, the minimum fitness
for a valid individual is 0 and the maximum is n. A regular
expression that matches all lines of the file is evaluated with
the value m. A regular expression that does not match any
line has the fitness n-m. Invalid individuals have a fitness of
-1.

A suitable Genetic Programming variant can also be em-
ployed for generating regular expressions. For instance, reg-
ular expressions are used in bioinformatics tools for classi-
fying discovered protein and DNA sequences and Genetic
Programming is used for generating a regular expression
classifier [3].

4. EXPERIMENT RESULTS

4.1 The BNF Grammar
The BNF grammar given below has been used to represent

a subset of POSIX regular expressions.

<reg-expression> ::= <term>

| <term> ‘|’ <reg-expression>

<term> ::= <factor>

| <factor> <term>

<factor> ::= <atom>

| <atom><meta-character>

<atom> ::= ‘.’

| ‘(’ <reg-expression> ‘)’

| ‘[’ <character-set> ‘]’

| ‘[^’ <character-set> ‘]’

<character-set> ::= <character-item>

| <character-item><character-set>

<character-item> ::= ‘a’ | ‘b’ | ... | ‘z’

| 0 | 1 | ... | 9

<meta-character> ::= ‘*’

| ‘+’

4.2 Test Setup
As an example to test the approach, a web page source

file of 266 lines was used for fitness evaluation. 83 of these
266 lines included links to other web pages. Each line with

2644



Table 1: Generated Regular Expressions

Regular Expression Generation Number
[h][r]+[ˆh-m] 240

[h][r]+.[ˆj-tl]+[ˆ1] 316
[e][l]*[f]+[v8-b]+ 470
[f]+[7-ay0-0]+ 494

[f][5-cxi] 1230

a link to other web pages contains HTML anchor tags. For
instance, a line with a link may look like:

... <a href="otherpage.html">link to a page</a> ...

In this test, a regular expression with optimum fitness is
required to match with only the lines with a link to other
pages. As a result, the optimum fitness is 266.

An initial population of 100 individuals was constructed.
Each individual of this initial population has a random inte-
ger string of length 100. The number of fitness evaluations
is limited to 250000. The wrapping operator of GE was
implemented for a maximum number of 5 rounds.

Tournament selection with a tournament size of 2 and
two-point crossover with probability 0.9 is used. For mu-
tation, random-reset and creep mutations were considered.
Random-reset for integer representations is defined as, set-
ting a new random integer value for each gene with user-
defined probability p [1]. Integer values before and after the
mutation may represent same rule due to the use of the mod-
ulo operation in Grammatical Evolution mapping process.
In order to increase the probability of rule change in a possi-
ble mutation, creep mutation was employed. Mutation was
implemented using the definition of creep mutation in [1],
as adding -1 or +1 to each gene with a probability of 1/N,
where N is the size of integer string being used to represent
individuals. Since chromosome length for the implementa-
tion is 100, creep mutation was used with probability 0.01.
Elitism is used to keep the best individual of the previous
generation.

4.3 Results
Results for the examples are acquired from the software

that has been implemented in this study, using the func-
tional programming language, Haskell. These results are
evaluated and reported over 20 runs of the algorithm for
the same test file. Each of these runs ended up with an op-
timum individual. Individuals with optimum fitness value
were found in an average 65960 fitness evaluations. Table 1
shows 5 of the evolved regular expressions with optimum
fitnesses and the generations at which they were found.

Each regular expression from Table 1 was evaluated again
using the same web page source file. The matched portions
of the lines are listed in Table 2. The second column of Ta-
ble 2 shows the target portion of the corresponding regular
expression. Table 2 also shows that evolved regular expres-
sions share similar characteristics. Each of them targets
similar portions of the lines.

The average of best fitnesses of 20 runs are presented in
Figure 1.

The best regular expressions found in 20 runs were also
tested with different web page source files. These validation
web pages contain 498, 1317 and 1919 lines. Each file has
lines containing 43, 82 and 88 links to other web pages,

Table 2: Matched Portions for Regular Expressions

Regular Expression Matched Portion
[h][r]+[ˆh-m] “hre”

[h][r]+.[ˆj-tl]+[ˆ1] “href=“...”
[e][l]*[f]+[v8-b]+ “ef=”
[f]+[7-ay0-0]+ “f=”

[f][5-cxi] “f=”

Table 3: Results for Other Web Pages

Regular Expression WP 1 WP 2 WP 3
[h][r]+[ˆh-m] 498 * 1316 1917

[h][r]+.[ˆj-tl]+[ˆ1] 498 * 1316 1919 *
[e][l]*[f]+[v8-b]+ 498 * 1316 1919 *
[f]+[7-ay0-0]+ 492 1299 1911

[f][5-cxi] 492 1283 1891

respectively. The best regular expressions of 20 runs are
evaluated for their fitness using the validation files. Table
3 shows 5 best regular expressions and the results of their
fitness for the corresponding web pages. Three of the regular
expressions (marked with *) reached best possible fitness for
at least one of the pages.

Further experiments have been conducted for a relatively
more complex problem. This time, a file of 273 lines was
used where 232 of the lines contained the words ‘http’ or ‘ftp’
in them. 5 runs were performed and 4 of them resulted in
an optimum solution before the 250000th fitness evaluation.
The failing run resulted with a best individual of fitness 269.

Table 4 shows the evolved regular expressions with op-
timum fitnesses and the generations to which they belong.
All regular expressions reflect similar characteristics. The
matched portions for all of them is “tp”. This indicates that
the similar parts between “http” and “ftp” were discovered
by the search.

The average of best fitnesses of 5 runs are presented in
Figure 2.

5. CONCLUSIONS AND FUTURE WORK
In this study, Grammatical Evolution is applied to the

problem of automatic generation of regular expressions. Im-
plemented software was used for preliminary tests on web-
page source files. Experiments indicate that the GE ap-
proach to automatic generation is promising. However, more
work is required to make additional experiments and tune
the parameters of evolution for improving the success rate.

The current evolution scheme for automatic regular ex-
pression generation is based on a random initial population.
As mentioned in [7], the characteristics of initial population
is effective on the results. For instance, reducing the number
of invalid individuals in the initial population could improve
the performance. “Sensible initialization” suggested in [7]

Table 4: Generated Regular Expressions

Regular Expression Generation Number
[t][p] 882

[v]*[ˆqhuak]*([t])[p] 412
[ct][py] 854
[t][p]+ 2073

2645



 250

 255

 260

 265

 270

 0  500  1000  1500  2000  2500

F
itn

e
ss

Generation

best fitness of generation
optimum fitness

Figure 1: Average of best fitnesses of 20 runs for the

first experiment.

 255

 260

 265

 270

 275

 0  500  1000  1500  2000  2500

F
itn

e
ss

Generation

best fitness of generation
optimum fitness

Figure 2: Average of best fitnesses of 5 runs for the

second experiment.

can be implemented and used for creating the initial popu-
lation. Moreover, different crossover and mutation operators
can be investigated.

A subset of POSIX regular expressions was used in the
tests. After implementing the mapping procedure for the
rest of the POSIX rules, new tests can be performed covering
a larger portion of the standard.

Furthermore, an algorithm can be implemented and used
for correcting invalid regular expressions that would not be
accepted by POSIX regular expression engine.

6. ACKNOWLEDGEMENTS
This work is based on the author’s senior project under the

supervision of Lecturer H. Turgut Uyar from the Computer
Engineering Department of Istanbul Technical University,
Turkey.

7. REFERENCES
[1] A. E. Eiben and J. E. Smith. Introduction to

Evolutionary Computing. Springer, 2003.

[2] J. E. Friedlt. Mastering Regular Expressions.
Addison-Wesley Publishing Company, Sebastopol, CA,
1997.

[3] A. Heddad, M. Brameier, and R. M. MacCallum.
Evolving regular expression-based sequence classifiers
for protein nuclear localisation. In G. R. Raidl,
S. Cagnoni, J. Branke, D. W. Corne, R. Drechsler,
Y. Jin, C. R. Johnson, P. Machado, E. Marchiori,
F. Rothlauf, G. D. Smith, and G. Squillero, editors,
Applications of Evolutionary Computing,

EvoWorkshops 2004, volume 3005 of LNCS, pages
31–40, Coimbra, Portugal, 5-7 Apr. 2004. Springer
Verlag.

[4] P. Linz. An Introduction to Formal Languages and

Automata. John and Barlett Publishers, Sudbury,
Massachusetts, 2000.

[5] M. O’Neill and C. Ryan. Under the hood of
grammatical evolution. In W. Banzhaf, J. Daida, A. E.
Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and
R. E. Smith, editors, Proceedings of the Genetic and

Evolutionary Computation Conference, volume 2, pages
1143–1148, Orlando, Florida, USA, 13-17 July 1999.
Morgan Kaufmann.

[6] M. O’Neill and C. Ryan. Grammatical evolution. IEEE

Transactions on Evolutionary Computation,
5(4):349–358, Aug. 2001.

[7] M. O’Neill and C. Ryan. Grammatical Evolution:

Evolutionary Automatic Programming in an Arbitrary

Language. Kluwer Academic Publishers Group,
Norwell, Massachusetts, 2003.

[8] C. Ryan, J. J. Collins, and M. O Neill. Grammatical
evolution: Evolving programs for an arbitrary
language. In W. Banzhaf, R. Poli, M. Schoenauer, and
T. C. Fogarty, editors, Proceedings of the First

European Workshop on Genetic Programming, volume
1391, pages 83–95, Paris, 14-15 1998. Springer-Verlag.

2646


