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ABSTRACT 
The Probabilistic Adaptive Mapping Developmental Genetic 
Programming (PAM DGP) algorithm that cooperatively 
coevolves a population of adaptive mappings and associated 
genotypes is used to learn recursive solutions given a function set 
consisting of general (not implicitly recursive) machine-language 
instructions.  PAM DGP using redundant encodings to model the 
evolution of the biological genetic code is found to more 
efficiently learn 2nd and 3rd order recursive Fibonacci functions 
than related developmental systems and traditional linear GP.  
PAM DGP using redundant encoding is also demonstrated to 
produce the semantically highest quality solutions for all three 
recursive functions considered (Factorial, 2nd and 3rd order 
Fibonacci).  PAM DGP is then shown to have produced such 
solutions by evolving redundant mappings to select and 
emphasize appropriate subsets of the function set useful for 
producing the naturally recursive solutions.  

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control 
Methods, and Search – Heuristic methods. 

General Terms 
Algorithms, Performance, Experimentation.  

Keywords 
Recursion, developmental genetic programming, genetic code, 
genotype-phenotype mapping, redundant representation, 
cooperative coevolution. 

1. INTRODUCTION 
In this work, we address the problem of automatically evolving 
recursive solutions given a generic (machine language) function 
set that contains no operators designed to enable recursion or 
functions that explicitly accept other functions as arguments so as 
to enable recursion.  The work of Huelsbergen appears to be the 
first to have evolved machine language-based recursion [4] using 
such a function set.  No evolutionary algorithm approaches 

known to Huelsbergen [4] in 1997 involved the generation of 
recursive solutions without recursion-enabling operators in the 
function set.  The early works of Koza [8] and Handley [3] relied 
on introducing specialized recursive operators into their function 
sets and thus avoided automatically synthesizing recursion.  Since 
that time, researchers have continued to work on evolving 
recursive solutions.  Koza has recently implemented more 
specialized functions (automatically defined functions, or ADFs) 
to perform recursion in [9].  Other authors such as Brave [2] and 
Yu [18] have opted to evolve recursive programs by including the 
name of the function on which they want to perform recursion in 
the function set.  Similarly, Wong and colleagues [15, 16] have 
implemented GP systems using logic grammars that include a 
grammar rule capable of recursion.  Whigham [12] has used 
directed mutation operators to evolve a recursive function, but 
operators are both problem specific and incorporate knowledge of 
the solution.  Yu and Clack have also presented an interesting 
technique that uses implicit recursion via higher order functions to 
avoid explicit recursive calls [17].  In their work, the code content 
of a recursive loop is passed as an argument to the higher-order 
function that iteratively applies the code.  While avoiding explicit 
recursion calls, the recursive mechanism is built into the higher 
order function and is thus not automatically generated.  (The use 
of higher order functions does have the benefit that it implicitly 
provides a termination mechanism.)   
It thus seems that Huelsbergen has been the only researcher 
focusing on automatic generation of recursion using a generic 
function set.  In contrast, the focus of other researchers has been 
the issues of measuring good “semantics” in recursive solution 
program structures and handling non-terminating recursive cases.  
Huelsbergen’s concern (and that of this paper) is to actually 
discover recursive solutions using a function set that does not 
directly imply recursion in any way.  This paper does address the 
issue of semantics through a simple metric (correct sequence 
output length prior to program termination) to indicate semantic 
“goodness” of solutions.  The termination issue of recursive 
solutions is handled in the usual way—by reaching a maximum 
number of program steps executed (this method is used in most of 
the literature on recursion, with the notable exception of [17]). 
Central to the approach adopted in this work is the utility of a 
developmental model of evolution in which function set and 
genotype are cooperatively evolved under a symbiotic model, 
Section 2.  Section 3 defines the Factorial and Fibonacci (2nd and 
3rd order) problems used to benchmark the paradigm.  Section 4 
provides results, with Section 5 demonstrating explicit 
contributions made by the coevolutionary model of development.  
Conclusions and Future Work follow in Section 6.  

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
GECCO’07, July 7–11, 2007, London, England, United Kingdom. 
Copyright 2007 ACM 978-1-59593-697-4/07/0007…$5.00. 
 

1053



2. EVOLVING GENETIC CODE 
MAPPINGS WITH GENOTYPES 
A number of researchers have advocated the benefits of 
developmental systems that evolve both a mapping that models 
the biological genetic code and an associated genotype [1, 5-7, 
10, 11, 13, 14].  In particular, evolution of a genetic code can 
adaptively bias search toward function set symbols useful for the 
solution, reducing search space and biasing search toward 
appropriate regions of the space.  Banzhaf and Keller initially 
demonstrated the benefits of separating the genotype and 
phenotype spaces in an implementation where genotypes were 
mapped onto phenotypes using redundant encodings for 
emphasizing certain members of the function and terminal sets 
over others.  The mapping was coupled with a single genotype 
individual during the entire tournament, and it was mutated, 
reproduced, or selected along with the genotype that carried it [6, 
7].  Their work was followed by an implementation (here called 
the Standard Adaptive Mapping GP) of Margetts and Jones [10], 
where separate populations of mappings and genotypes co-
evolved in a search for a genotype-mapping pairing that produced 
an appropriate phenotype.  The individuals in the mapping 
population corresponded to one-to-one (non-redundant) mappings 
that used the Huffman compression algorithm.  O’Neill and Ryan 
[11] have also introduced an interesting new developmental 
system that evolves a genetic code along with genotypes, 
although their mapping models the genetic code using a grammar 
rather than a codon (genotype subsequence) to symbol mapping.  
Wilson and Heywood recently introduced a new developmental 
system – Probabilistic Adaptive Mapping Developmental Genetic 
Programming (PAM DGP) – that corrected coevolutionary 
pathologies and search issues of the Standard Adaptive Mapping  
and demonstrated efficient search of the mapping and genotype 
spaces using separate populations in a coevolutionary framework 
[13, 14].  A more developmental redundant (genetic code-based) 
adaptive mapping scheme was introduced in [14].  We review the 
PAM DGP algorithm in this section, and describe its application 
to learning recursive sequences in the remainder of the work. 
In the PAM DGP algorithm, there are two separate populations of 
genotypes and mappings that symbiotically cooperatively 
coevolve.  A probability table is maintained with entries for each 
combination of genotype and mapping.  Entries represent 
frequencies corresponding to the probability that roulette selection 
in a steady state tournament will select the genotype-phenotype 
pairing of individuals dictated by the indices of the table.  A small 
degree of elitism is used in that genotype and mapping individual 
that are members of the current best genotype-mapping pairing 
are protected from mutation and crossover.  Each tournament 
round involves the selection of four unique genotype-mapping 
pairings.  Table columns associated with the winning 
combinations have the winning combination in that column 
updated using Equation 1 and the remaining combinations in that 
column updated using Equation 2 

P(g,m)new=P(g,m)old+α(1−P(g,m)old)            (1) 
)),((),(),( oldoldnew mgPmgPmgP α−=                     (2) 

where g is the genotype index, m is the mapping index, α is the 
learning rate (or how much emphasis is placed on current values 
as opposed to previous search), and P(g,m) is the probability in 
location [g, m] of the table.  To prevent premature convergence, 
the algorithm also features a noise threshold.  If the threshold is 

exceeded by an element in the table following a tournament 
round, a standard Gaussian probability adjustment in the interval 
[0, 1] is added to that element and all values in its column are re-
normalized so that the column elements sum to unity.  An 
overview of the PAM DGP algorithm is depicted in Figure 1. 
 

 
Figure 1. Overview of the PAM DGP algorithm. 

Genotypes in PAM DGP are binary strings, with interpretation 
being instruction-dependant (see next Section).  Two types of 
mappings are benchmarked: Huffman and Redundant.  In the 
Huffman mapping, as advocated by Margetts and Jones [10], 
mapping individuals consist of s binary sections of 10 bits for 
each of s function set symbols.  All the ones in each 10 bit section 
are summed and normalized to provide a frequency for each 
symbol.  The function set, associated frequencies, and genotype 
are provided as arguments to the standard Huffman compression 
algorithm which returns the symbol-encoding mapping.  Given 
the Redundant mapping, individuals are composed of b ≥ s 10-bit 
binary strings, where b is the minimum number of binary 
sequences required to represent a function set of s symbols.  Each 
10 bit mapping section is interpreted as its decimal equivalent, 
normalized to the range [0…1], and mapped to an ordered 
function set index by multiplying by s and truncating to an integer 
value (allowing redundant encoding of symbols).  The Huffman 
and Redundant mappings schemes are shown in Figure 2. 
 

 
Figure 2. Huffman and Redundant mapping schemes. 

3. RECURSIVE PROBLEM DEFINITIONS 
In [4], Huelsbergen compares the abilities of random search 
(Random), genetic programming using solely the crossover 
operator (XO), exhaustive iterative hill climbing (EIHC), and a 
hybrid system of his own design that uses the two latter 
techniques (XO-EIHC) to learn recursive sequences.  He found 
that the simple genetic search (XO) performed the best out of all 
algorithms for the factorial function, but the more sophisticated 
EIHC and XO-EIHC algorithms outperformed the other 
algorithms definitively when evolving solutions to the more 
difficult Fibonacci series.  Sample solutions from the XO-EIHC 
algorithm were then shown to produce general solutions to the 
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recursive problems through use of an infinite loop constructed 
from the branching functions.  Our analysis of the recursive 
functions will examine the ability of coevolved mappings and 
genotypes to not only more efficiently learn recursive solutions 
than other competing algorithms tested, but to generate recursive 
solutions of generality and quality. 
Huelsbergen’s function set is designed to correspond to a virtual 
register machine (VRM), and is generic such that it consists only 
of instructions for primitive register manipulation, conditional and 
unconditional branching, arithmetic operators, and generation of 
an output stream.  Each individual consists of a program with a 
number of external registers, and internal state trackers including 
a program counter (PC) and a flag (Flag).  Flag corresponds to 
the last execution of a comparison instruction (Cmp(Rsource, Rdest)) 
that returns one of the values {greater, less, equal}; it serves as 
the basis on which to perform conditional branching.  The 
program counter is an integer that points to the instruction to be 
currently executed; branching (jump) instructions cause the PC to 
point to their target, while remaining instructions cause PC to 
point to their following instruction.  The Output function places 
an integer from a register on the output stream Stdout; if no output 
is generated by an individual the Stdout stream contains no 
values.  We opt not to use Huelsbergen’s NOP function, which 
has no effect.  The function set is summarized in Figure 3 below, 
where Rs is the source register and Rd is the destination register, 
PC is the program counter, and N is the total number of 
instructions in the program.  In total there are 16 different 
instructions, more than typically employed in a GP function set. 
 
Out(Rs) {PC++; Write(Stdout, Rs);} 

Neg(Rs) {PC++; Rs = 0 – Rs;} 

Mov(Rd, Rs) {PC++; Rd = Rs;} 

Set(Rs) {PC++; Rs = 1;} 

Clear(Rs) {PC++; Rs = 0;} 

Inc(Rs) {PC++; Rs = Rs + 1;} 

Dec(Rs) {PC++; Rs = Rs - 1;} 

Add(Rd, Rs) {PC++; Rd = Rd + Rs;} 

Sub(Rd, Rs) {PC++; Rd = Rd - Rs;} 

Mul(Rd, Rs) {PC++; Rd = Rd * Rs;} 

Div(Rd, Rs) {PC++; Rd = Rd / Rs;} 

Cmp(Rd, Rs) { 

      PC++; If (Rd < Rs) Flag = less; 
      Else If (Rd > Rs) Flag = greater; 
      Else Flag = equal;  } 

J(offset) { 

 PC = min(max(0, PC + offset), N);} 

Jl(offset)* { 
      If (Flag == less) 
          PC = min(max(0, PC + offset), N); 
      Else PC++;  } 
*Jg(offset) and Je(offset) are equivalent to 
Jl(offset), only substituting “greater” and 
“equal” for “less,” respectively. 

Figure 3. Machine language-based function set. 

In [4], Huelsbergen investigates four integer sequence problems: a 
sequence of squared numbers, cubed numbers, and the factorial 
and Fibonacci sequences.  We focus on the more difficult and 
naturally recursive Factorial (fact) and Fibonacci (fib) sequences, 
and add the more difficult third order Fibonacci sequence (fib3).  
The function definitions, including base cases, are  

                 1 if x = 0
( )

( 1) otherwise
fact x

x fact x
⎧

≡ ⎨ ⋅ −⎩
                          (3) 

1 if x = 0 or x = 1
( )

( 2) ( 1) otherwise
fib x

fib x fib x
⎧

≡ ⎨ − + −⎩
 (4) 

1 if x = 0, x = 1, or x = 2
3( )

3( 3) 3( 2) 3( 1) otherwise
fib x

fib x fib x fib x
⎧

≡⎨ − + − + −⎩
   (5) 

The fitness evaluation scheme is reproduced from [4] in which the 
first ten values of the Stdout stream, as generated by individuals 
using the OUT instruction, are matched against the ten values of 
the test case using the following fitness function: 

1

0

( ) ( ) ( )
l

i

i

fitness p s f i scale i
−

−

=

≡ ⋅∑   (6) 

where p is the program in the form a binary string, l is the length 
of the recursive sequence  (10 in these experiments), f(i) is the 
value of the recursive function for integer i, and scale(i) is defined  

  max

max

if ( ) 0
( )

/ ( ) otherwise
S f i

scale i
S f i

=⎧
≡ ⎨
⎩

  (7) 

where Smax = max{f(0), …, f(l-1)} for the recursive sequence 
defined by f.  The sequence {s0, …, sl-1}  is the first l values of 
Stdout, if the output contains at least l values.  If it does not, the j 
< l values Stdout contains (that is, {sj, …, sl-1}) are set to Smax.  
The fitness function measures summed scaled error (Equation 6), 
thus lower fitness is better and the objective is fitness = 0. 
Since Huelsbergen’s results indicated that a larger number of 
tournament rounds would likely be necessary to generate 
recursive solutions compared to non-recursive problems, each of 
our 50 trials consisted of a steady state tournament of 500 000 
rounds (4 individuals per round) with a population of 25 
genotypes and 25 mappings (50 individuals for Traditional GP).  
Each genotype consists of 320 bits and 4 subresult registers, and 
each mapping consists of 160 bits (10 bits for each of 16 required 
encodings for a function set of size 16).  Genotypes and mappings 
were randomly initialized, with registers initialized to 1.  XOR 
mutation on a (uniform) randomly chosen instruction was used on 
genotypes, with less disruptive point mutation used on mappings 
to provide a more stable context against which the genotype could 
evolve.  Both mutations used a rate of 0.5.  Crossover occurred 
between equal-sized segments of individuals at a rate of 0.9.  
PAM DGP used a conservative learning rate of 0.1 and noise 
threshold of 0.8 to prevent premature convergence. 
As was the case in [4], the program in each genotype individual 
terminates after running all instructions (PC = n-1 for n 
instructions with indices 0 to n-1) or after the execution of 100 
steps.  Instructions are decoded from a genotype binary sequence 
under the guidance of the mapping, either Huffman or Redundant.  
In each case a number of bits define the instruction type (variable 
for Huffman, fixed for Redundant), two bits define register 
references, and five bits define the offset in branch instructions.  
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In the case of the five offset bits, bit one defines the direction of 
the jump, and four bits declare the (absolute) offset corresponding 
to integers over the interval [0, …,15].  

4. RESULTS 
In this section we compare the efficiency, solution content, and 
solution quality of Traditional (linear) GP (Traditional), the 
original adaptive mapping of Margetts and Jones (Standard), 
PAM DGP with Huffman encodings (Huffman), and PAM DGP 
with redundant encodings (Redundant).  Some discussion of the 
recursive solutions produced by the algorithms covered in this 
work is in order before proceeding with the analysis of the results.  
Following Huelsbergen [4], a solution is said to have been located 
when the output stream of an individual’s program produces the 
first ten digits of the required sequence that serve as the test case.  
Given this definition of solution, if the program produces 
incorrect digits or no digits after getting the initial ten digits 
correct, it is still technically a solution.   
A program is considered a general solution if and only if both all 
the members of the sequence of length l ≥ 10 generated by the 
output are correct and if the program were permitted to run 
beyond the maximum number of steps (100 in [4] and these 
experiments), then the program would continue to correctly 
generate the correct members of the sequence.  All solutions 
(programs that generated the first ten members of the recursive 
sequence correctly) in these experiments were inspected by hand 
for generality.  In practice, given the function set for these 
problems, a solution could only be general if it included an 
appropriate instruction sequence using a reverse branch (jump 
instruction with negative offset) at the end of the sequence.  
Furthermore, the repeated sequence would have to include 
appropriate manipulation of register contents and an output to the 
Stdout stream in its body such that the correct output was 
produced.  The results focus on the ability of the algorithms to 
produce not just solutions, but general solutions.  

4.1 The Factorial Function 
The first recursive function we examined was the factorial 
sequence (Equation 3), which is a first order recursive function.  
That is, each iteration of the recursive function only references 
the value produced by the previous recursive step.  In this respect, 
the Factorial problem is the simplest of the recursive functions 
considered.  As mentioned earlier, Huelsbergen found that it was 
most efficiently solved by simple genetic search using only two-
point crossover rather than his more sophisticated search 
techniques [4].  We similarly found that the less complex 
algorithms generated more solutions: given 50 independent trials, 
all trials for Traditional, Standard, and Huffman PAM DGP solve 
the factorial problem, as does 33 trials of Redundant PAM DGP.  
In the case of the factorial problem, every solution for all 
algorithms was general.  The tournament round when a solution 
was located for each solution in 50 independent trials is given in 
Figure 4.  Each box indicates the lower quartile, median, and 
upper quartile values.  Notches indicate the 0.95 confidence 
interval, with points representing outliers to whiskers of 1.5 times 
the interquartile range.  Given the overlap of the notches for the 
boxplots, there is actually no statistical difference at the 0.95 
confidence interval in the median round at which a solution is 
found for any of the four algorithms.  Huelsbergen’s hybrid 
algorithm had a mean of 5.55 x 106 evaluations required per 

solution (over 9 solutions) for the factorial function, while 
Redundant PAM DGP had a mean of only 2.72 x 105 evaluations 
(4 evalutions per round) required per solution (over 33 solutions). 

 
Figure 4. Tournament round at which a solution to the 

factorial problem was located over 50 independent trials. 
While Redundant PAM DGP did not produce as many solutions 
as the other GP algorithms for this simple recursive function, it 
outperforms the other algorithms on solution quality.  The 
programs that are of interest are those that have truly discovered 
recursive solutions, and are thus general.  One way to measure the 
quality of general solutions is to examine how many members of 
the function’s sequence the solution can produce before it reaches 
the program step limit.  That is, efficiency of the program at 
generating the sequence is measured.  The efficiency of sequence 
generation is an important measure:  If the body of the loop(s) 
that produce the sequence contain junk code (introns), program 
steps will be (at best) wasted if the junk code is innocuous in so 
far as it does not disrupt the production of the sequence.  A loop 
with innocuous junk code will produce a less lengthy sequence.  
In fact, introns must be innocuous in general solutions or the 
solutions would not be able to generate the repeated sequence 
indefinitely.  Efficiency also reflects that the algorithm may be 
generating multiple outputs per iteration to avoid wasting steps on 
the jump instructions.  Thus, the higher the value of the correct 
number of sequence members generated, the lower the content of 
junk code within the program loop(s) and/or the more efficient the 
loop(s) contents.  The number of sequence members produced is 
thus a simple and informative measure of the quality of general 
recursive solutions.  The number of sequence members produced 
by the general solutions of each algorithm is shown in Figure 5. 

 
Figure 5. Number of sequence members output by the general 
solutions to the factorial problem over 50 independent trials. 
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It is evident that the Redundant PAM DGP algorithm produces 
the longest sequences among its general solutions at the 0.95 
confidence interval compared to all other algorithms tested.  
Given the aim of discovering a program to produce quality 
general recursive solutions, rather than sheer quantity of solutions 
regardless of quality or even generality, Redundant PAM DGP 
clearly provides the best results on the factorial problem.  The 
best general solution produced the first 32 members of the 
factorial sequence, and can be seen as the upper outlier for 
Redundant PAM DGP in Figure 5.  The program code for the 
individual is given in Figure 6.  This solution contained no 
introns.  The loop responsible for the indefinite repeated 
production of the series is italicized.  Any instructions that are not 
reached by the program counter (instructions that are never read 
by the hypothetical interpreter) are not displayed.  Instruction 
addresses are enumerated on the left of each instruction to help 
the reader better interpret branching commands.   
 
0 INC Reg2; 1 OUT Reg0; 2 OUT Reg1;  
3 OUT Reg2; 4 INC Reg1; 5 INC Reg2;  
6 MUL Reg1 Reg2; 7 OUT Reg1; 8 INC Reg2  
9 MUL Reg1 Reg2; 10 OUT Reg1; 11 INC Reg2;  
12 MUL Reg1 Reg2; 13 OUT Reg 1;  
14 INC Reg2; 15 MUL Reg1 Reg2; 16 OUT Reg1;  
17 J(to 8) using offset -9 

Figure 6. Program code for the individual that produced the 
longest factorial sequence.  Instructions that constitute the 

recursive loop are italicized. 
In the solution above, instructions 1 to 7 generate, via sequential 
non-looping instructions, the first four values of the factorial 
series (1, 1, 2, 6) and thus set up the base case (first value) prior to 
entering the loop.  Instruction 8 begins the loop body that contains 
three consecutive INC, MUL, OUT sequences that maintain the 
function’s x and x-1 values in registers 2 and 1, respectively.  The 
loop efficiently uses all instructions in its body to output three 
members of the factorial solution with each iteration.  This 
solution demonstrates the nature of the efficiency and generality 
of the solutions produced by Redundant PAM DGP, as quantified 
in Figure 5. 

4.2 The Fibonacci Series 
We now move to measuring the capability of the algorithms on a 
more challenging recursive problem: the Fibonacci series as 
defined in Equation 4.  The Fibonacci series uses, by definition, 
second order recursion.  In other words, the current value of the 
function (with the exception of the base cases, of course) depends 
on the values of the two previous recursive steps.  Huelsbergen 
found that only his more sophisticated algorithms (EIHC and XO-
EIHC) were able to produce solutions to the Fibonacci series; the 
other algorithms (XO and Random) produced no solutions given a 
limit of 5 x 107 evaluations. 
Redundant PAM DGP produces the largest number of solutions 
(46), with Standard and Huffman PAM DGP producing 
comparable numbers of solutions (45 and 44, respectively).  
Traditional GP produced the least number of solutions (42).  The 
boxplot for the tournament rounds at which a solution was located 
over 50 independent trials appears in Figure 7. 

 
Figure 7. Tournament round at which a solution to the 

Fibonacci problem was located over 50 independent trials. 
Redundant PAM DGP finds the Fibonacci series within fewer 
rounds than the Standard Adaptive Mapping and Huffman PAM 
DGP at the 0.95 confidence interval.  Redundant PAM DGP also 
has a lower median than Traditional GP, but due to the large error 
level in the Traditional GP boxplot, the difference is not 
statistically significant.  The spread of the Redundant PAM DGP 
boxplot also indicates that it solves the problem more consistently 
than any other algorithm.  Huelsbergen’s hybrid algorithm in [4] 
had a mean of 1.02 x 106 evaluations required per solution (over 
10 solutions), while Redundant PAM DGP had a mean of only 
2.12 x 105 evaluations required per solution (over 46 solutions) . 
Considering the raw number of general solutions found, all 
algorithms actually generated comparable results.  Redundant 
PAM DGP had 38 general solutions, Huffman PAM DGP had 42, 
Standard Adaptive Mapping found 43, and Traditional GP located 
41.  Despite having the lowest (but competitive) raw number of 
general solutions, Redundant PAM DGP definitively generated 
the highest quality (most general) solutions.  The sequence length 
of the solutions generated by each algorithm over 50 independent 
trials is shown in Figure 8.  

 
Figure 8. Number of sequence members output by general 

solutions to the Fibonacci sequence over 50 independent trials. 
Redundant PAM DGP, as was the case for the factorial problem, 
outperforms all other algorithms in terms of efficiency of 
solutions in generating the series.  For the Fibonacci series, 
however, the degree to which Redundant PAM DGP outperforms 
the other algorithms is more considerable:  The lower end of the 
interquartile range for Redundant PAM DGP’s output length is 
above the top of the interquartile range for all other algorithms.  It 
was noted that almost all of the solutions found by Traditional GP 
were general solutions (41 of 42 solutions); however, we can see 
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in Figure 8 that Traditional GP achieved a median of only 11 
sequence members.  This means that Traditional GP was typically 
barely able to generate its minimum output length within its 
solutions—its solutions are thus not efficient despite their 
generality.  The median performance of the Standard Adaptive 
Mapping and Huffman PAM DGP were also significantly lower 
than Redundant PAM DGP, indicating that despite generating 
more general solutions, their solutions were also not as efficient.  
The longest solution Redundant PAM DGP generated was 42 
members of the Fibonacci series, of which there were two distinct 
instances.  The programs that produced these solutions are given 
in Figure 9.  As before, any instructions of the individual’s 
program that were never reached by the program counter (never 
interpreted or executed) are not displayed. 
 
Solution 1: 0 OUT Reg3; 1 ADD Reg0 Reg3;  
2 OUT Reg2; 3 ADD Reg2 Reg0; 4 OUT Reg0;  
5 OUT Reg2; 6 ADD Reg0 Reg2;  
7 J(to 3) using offset -4 
 
Solution 2: 0 ADD Reg2 Reg1; 1 OUT Reg3;  
2 OUT Reg0; 3 ADD Reg1 Reg2; 4 OUT Reg2;  
5 OUT Reg1; 6 ADD Reg2 Reg1;  
7 J(to 3) using offset -4 

Figure 9. Program code for the two individuals tied for 
producing the longest Fibonacci sequence.  Instructions that 

constitute the loop are italicized. 
In both of these solutions, there is a similar structure and neither 
solution includes any intron code in the body of the loop or 
otherwise.  PAM DGP thus produces intron-free solutions to 
factorial and Fibonacci, whereas Huelsbergen’s featured solutions 
for both functions in [4] contained introns.  Both cases represent 
succinct, general recursive programs for generation of the 
Fibonacci series.  Two of the first three instructions in each of the 
solutions establish the two required base case values, and the third 
performs a constructive addition instruction.  Instructions 3 to 7 in 
both solutions comprise the loop that would indefinitely generate 
the Fibonacci series (in the absence of an upper limit of execution 
steps).  Both loops generate two consecutive members of the 
series per iteration through a pair of addition and output 
instructions.  Both of these solutions represent very efficient use 
of the available execution steps. 

4.3 The Third Order Fibonacci Series 
The final function we consider is the third order Fibonacci series 
as defined in Equation 5.  The equation simply involves summing 
the results of the previous three values in the series as opposed to 
the classic, second order, Fibonacci series where the previous two 
values in the series are summed to determine the current value.  
Over 50 trials, neither the Standard Adaptive Mapping nor 
Huffman-encoded PAM DGP produced any solutions.  
Traditional GP produced only one solution after 460 181 rounds, 
and Redundant PAM DGP produced 14 solutions with mean time 
of 174 156 rounds (standard deviation of 24 946) and median of 
173 320 rounds.  The longest tournament for Redundant PAM 
DGP even took less time than Traditional GP (325 4440 rounds).  
Redundant PAM DGP appears to generate more solutions to a 
recursive problem of this order with a higher degree of reliability 
than any other algorithm tested.  Huelsbergen did not attempt 
recursion of this order.  Only one general solution was found by 

Redundant PAM DGP and generated 25 members of the third 
order Fibonacci series within the 100 instruction execution limit.  
The program expressing that general solution is given in Figure 
10.  Only instructions that were executed are displayed, and the 
solution contained no introns. 
 
0 OUT Reg0; 1 OUT Reg2; 2 OUT Reg0;  
3 ADD Reg3 Reg2; 4 ADD Reg2 Reg0; 5 ADD 
Reg0 Reg3; 6 ADD Reg0 Reg3; 7 INC Reg2; 
8 OUT Reg2; 9 ADD Reg3 Reg2; 10 OUT Reg3; 
11 ADD Reg3 Reg2; 12 J(to 4) using offset-8 

Figure 10. Program code for the individual that produced the 
longest 3rd order Fibonacci sequence in a general solution.  

Instructions that constitute the loop are italicized. 
The methodology used by this solution is actually an interesting, 
less direct approach than simply adding the previous three values 
to generate the value for the current time step.  The first four 
instructions generate the three required base cases by placing 
three 1.0s in the sequence and placing an initial value in Register 
3.  The loop actually causes repeated pairwise output of the values 
in Register 2 and 3 to produce all values following the base cases.  
Register 2, in addition to holding values to be output, helps 
Register 3 to generate the its next sequence member two values in 
advance.  That is, if Register 3 has output sequence member nt 
(instruction 10), Register 2 adds the last member it output (nt-1) to 
Register 3 in instruction 11, and then Register 2 adds the 
necessary difference to generate nt+2 (instruction 9) in the 
following iteration of the loop just prior to Register 3’s output.  
Register 2 generates its next value following output in instruction 
8 by having the correct difference to its next value added to it 
(instruction 4) from a subresult in Register 0 defined at a previous 
iteration of the loop (instructions 5 and 6), along with an 
increment in the current iteration (instruction 7).  There is an 
indirect interwoven relationship among the instructions to create 
an innovative solution to the harder regression problem.   
Table 1 summarizes results from Sections 4.1 to 4.3.  It is evident 
that Redundant PAM DGP generates more solutions for the 
higher order (2nd and 3rd) recursion problems (total solutions) with 
less computation effort than other algorithms (mean evaluations). 
Redundant PAM DGP also generates the most efficient general 
solutions across all orders of recursion (sequence length). 

 
Table 1. Summary of results over 50 trials for each algorithm. 

Algorithm Factorial Fibonacci Fib3 

General / Total Solutions, Mean General Sequence Length 

Traditional 50/50, 13.1 41/42, 13.2 0/1, N/A 

Standard 50/50, 16.0 43/45, 17.8 0/0, N/A 

Huffman 50/50, 16.9 42/44, 17.0 0/0, N/A 

Redundant 33/33, 19.5 38/46, 27.9 1/14, 25.0 

Mean Evaluations to Solution 

Traditional 1.67 x 105 4.98 x 105 1.84 x 106 

Standard 9.59 x 104 4.89 x 105 N/A 

Huffman 8.00 x 104 4.23 x 105 N/A 

Redundant 2.72 x 105 2.12 x 105 6.97 x 105 
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5. FUNCTION SET ANALYSIS 
It has been demonstrated empirically in Section 4 that Redundant 
PAM DGP produces the most efficient general solutions over the 
factorial, Fibonacci, and third order Fibonacci recursive functions 
out of the four GP algorithms benchmarked in this work.  This 
section investigates whether there was an underlying trimming of 
the function set to contribute to these quality solutions. 
Figure 11 shows the mean distribution of operators within 
factorial function solutions for Traditional GP and the two 
mapping types in PAM DGP (Standard is dropped for clarity 
since it also uses Huffman encoding for function emphasis).  It is 
statistically significant at the 0.95 confidence interval that 
Redundant PAM DGP avoids move, set, negate, subtract, and 
divide to a greater degree than all the other algorithms.  All of 
those operators could be disruptive to the production of the 
factorial series which requires repeated multiplication and 
addition.  Also significant at the 0.95 confidence interval is 
Redundant PAM DGP’s emphasis on addition.  Moreover, the 
five operators most frequently emphasized by Redundant PAM 
DGP are all explicitly appropriate for generating the factorial 
sequence (multiplication, increment, addition, jump, and output).   

1.01E-6

0.00594

0.198

0.376

0.0970

0.0219

0.0489

0.0656

0.635

0.132

0.403

0.599 0.0570

0.3510.0199
0.01362

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

ou
t

m
ov se

t

cl
ea

r

in
c

de
c

ne
g

ad
d

su
b

m
ul di
v

cm
p j jl jg je

Operator

Pr
op

or
tio

n 
of

 S
ol

ut
io

n

Traditional
Huffman
Redundant

Figure 11. Mean operators as a proportion of total solution 
for the factorial sequence over 50 trials.  Error bars reflect 
two-tailed t-distribution for the 0.95 confidence interval.  P-
values correspond to Huffman and Redundant mappings. 

 
The Fibonacci series represented a more difficult (second order) 
recursive function, and required only three operators in its natural 
recursive form (Equation 4): addition, output, and jump.  The 
Fibonacci series solutions’ allocation of operators over 50 
independent trials is shown below in Figure 12.  Redundant PAM 
DGP placed a much higher level of emphasis on addition, output, 
and increment than the other algorithms (all very useful 
instructions for generating the Fibonacci series, and significant at 
the 0.95 confidence interval).  The fourth most emphasized 
operator was the unconditional jump (with other jump variants 
close behind), allowing Redundant PAM DGP’s top four operator 
choices to include the three required functions for the natural 
recursive solution of the Fibonacci series.  The other algorithms 
failed to create the degree of preferential function emphasis 
exhibited by Redundant PAM DGP.   
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Figure 12. Mean operators as a proportion of total solution 
for the Fibonacci series over 50 trials.  Error bars reflect two-
tailed t-distribution for the 0.95 confidence interval.  P-values 

correspond to Huffman and Redundant mappings. 
The third order Fibonacci series represents the highest order of 
recursion investigated in this work.  As was the case for the 
regular (second order) Fibonacci series, the operators used in the 
natural recursive solution are jump, addition, and output.  The 
allocation of operators over 50 independent trials for the third 
order Fibonacci series is shown in Figure 13. 
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Figure 13. Mean operators as a proportion of total solution 
for the 3rd order Fibonacci series over 50 trials.  Error bars 

reflect two-tailed t-distribution for the 0.95 confidence 
interval.  P-values correspond to Huffman and Redundant 

mappings. 

Figure 13 clearly shows that Redundant PAM DGP correctly 
emphasizes the addition and output operators in its solutions to a 
much greater degree than Traditional GP and Huffman PAM DGP 
(significant at the 0.99 confidence interval).  It also has a healthy 
emphasis of the unconditional jump function (as well as 
emphasizing increment, which can also be useful in solution 
construction and was actually incorporated in Redundant PAM 
DGP’s general solution in the previous section).  Traditional GP 
and Huffman PAM DGP have a comparatively even distribution 
of functions across their solutions.  For this problem, where 
Redundant PAM DGP produced considerably more solutions than 

1059



the other algorithms as shown in the last section, the beneficial 
effect of appropriate function emphasis is the most salient. 

6. CONCLUSIONS AND FUTURE WORK 
We have demonstrated that PAM DGP, through cooperative 
coevolution of redundant genetic code mapping and genotype, 
produces the most efficient general solutions (longest sequences) 
over the factorial, Fibonacci, and third order Fibonacci recursive 
functions among all algorithms considered.  Furthermore, its best 
(most general) solutions for each problem were shown to be 
entirely intron-free.  Given higher order recursion problems (2nd 
and 3rd order Fibonacci), PAM DGP generated the largest 
number of solutions and did so more efficiently than any other 
algorithm tested.  Redundant PAM DGP was also shown to 
evolve its genetic code mappings so as to emphasize the operators 
useful for general recursive solutions to each function’s sequence. 
In future work, potentially more complex recursive problems 
from real world domains could be attempted with function sets 
consisting of higher level mathematical operators (such as square 
root, log, et cetera).  Also, these studies relied on a preset limit of 
execution steps to terminate recursive loops.  In fact, this limit 
was indirectly used as a means of roughly measuring semantics: 
semantically better solutions generated more correct values prior 
to forced termination (and were even found to be intron-free).  
Thus, in our search for a semantically good solution from a 
generic function set, we turned concern for termination on it head.  
Future work could continue to involve measuring semantic 
goodness in the same way in a first stage of an algorithm, 
followed by providing the semantically best solution’s loop 
contents to a higher order function (as described by Yu in [17]) 
with ensured termination.   

7. ACKNOWLEDGEMENTS 
We gratefully acknowledge the support of an Izaak Walton 
Killam scholarship (G.W.) and CFI New Opportunities and 
NSERC research grants (M.H.). 

8. REFERENCES 
[1] Banzhaf, W. Genotype-Phenotype Mapping and Neutral 

Variation. In Parallel Problem Solving from Nature III, 
(Jerusalem, Israel, Oct. 9-14, 1994), Springer-Verlag, Berlin, 
1994, 322-332. 

[2] Brave, S. Evolving recursive programs for tree search. In 
Advances in Genetic Programming 2. MIT Press, 
Cambridge, MA, 1996, 203-219. 

[3] Handley, S. A new class of function sets for solving 
sequence problems. In Genetic Programming 1996: 
Proceedings of the First Annual Conference, (Stanford, 
California, July 18-31, 1996), MIT Press, Cambridge, MA, 
1996, 301-308. 

[4] Huelsbergen, L. Learning Recursive Sequences via 
Evolution of Machine-Language Programs. In Genetic 
Programming 1997: Proceedings of the Second International 
Conference, (Stanford, California, July 13-16, 1997), 
Morgan Kaufman, San Francisco, CA, 1997, 186-194. 

[5] Keller, R. and Banzhaf, W. Genetic Programming using 
Genotype-Phenotype Mapping from Linear Genomes in 
Linear Phenotypes. In Genetic Programming 1996: 
Proceedings of the First Annual Conference, (Stanford, 

California, July 18-31, 1996), MIT Press, Cambridge, MA, 
1996, 116-122. 

[6] Keller, R. and Banzhaf, W. The Evolution of Genetic Code 
in Genetic Programming. In Proceedings of the Genetic and 
Evolutionary Computation Conference (GECCO 1999), 
(Orlando, Florida, July 13-17, 1999), Morgan Kaufman, San 
Francisco, CA, 1999, 1077-1082. 

[7] Keller, R. and Banzhaf, W. Evolution of Genetic Code on a 
Hard Problem. In Proceedings of the Genetic and 
Evolutionary Computation Conference (GECCO 2001), (San 
Francisco, California, July 7-11, 2001), Morgan Kaufman, 
San Francisco, CA, 2001, 50-56. 

[8] Koza, J. Genetic Programming II: Automatic Discovery of 
Reusable Programs. MIT Press, Cambridge, MA, 1994. 

[9] Koza, J. Genetic Programming IV: Routine Human-
Competitive Machine Intelligence. Kluwer Academic, 
Norwell, MA, 2003. 

[10] Margetts, S. and Jones, A. An Adaptive Mapping for 
Developmental Genetic Programming. In Proceedings of the 
Fourth European Conference on Genetic Programming 
(EuroGP 2001) (Lake Como, Italy, April 18-20, 2001), 
Springer Verlag, Berlin, 2001, 97-107. 

[11] O'Neill, M. and Ryan, C. Grammatical Evolution by 
Grammatical Evolution: The Evolution of Grammar and 
Genetic Code. In Proceedings of the Seventh European 
Conference on Genetic Programming (EuroGP 2004), 
(Coimbra, Portugal, April 5-7, 2004), Springer, Berlin, 2004, 
138-149. 

[12] Whigham, P. Grammatical Bias for Evolutionary Learning. 
Ph.D. Thesis, University of New South Wales, Sydney, 
Australia, 1996. 

[13] Wilson, G. and Heywood, M. Probabilistic Adaptive 
Mapping Developmental Genetic Programming (PAM 
DGP): A New Developmental Approach. In Proceedings of 
the 9th International Conference on Parallel Problem 
Solving from Nature (PPSN IX), (Reykjavik, Iceland, Sept. 
9-13, 2006), Springer-Verlag, Berlin, 2006, 751-760. 

[14] Wilson, G. and Heywood, M. Introducing Probabilistic 
Adaptive Mapping Developmental Genetic Programming 
with Redundant Mappings. Genetic Programming and 
Evolvable Machines (Special Issue on Developmental 
Systems), 2007, to appear. 

[15] Wong, M. and Leung, K. Evolving recursive functions for 
the even-parity problem using genetic programming. In 
Advances in Genetic Programming II, MIT Press, 
Cambridge, MA, 1996, 222-240. 

[16] Wong, M. and Mun, T. Evolving Recursive Programs by 
Using Adaptive Grammar Based Genetic Programming. 
Genetic Programming and Evolvable Machines, 6, 4 (Dec. 
1995) 421-455. 

[17] Yu, T. Hierarchical Processing for Evolving Recursive and 
Modular Programs Using Higher-Order Functions and 
Lamda Abstraction. Genetic Programming and Evolvable 
Machines, 2, 4 (Dec. 2001) 345-380. 

[18] Yu, T., Polymorphism and Genetic Programming. In 
Proceedings of the Fourth European Conference on Genetic 
Programming, (Lake Como, Italy, April 18-20, 2001), 
Springer-Verlag, Berlin, 2001, 218-231.

1060


