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ABSTRACT

Tournament selection has been widely used and studied in
evolutionary algorithms. To supplement the study of tour-
nament selection, this paper provides several models describ-
ing the probabilities that a program of a particular rank is
sampled and is selected in the standard tournament selec-
tion in a simple situation and a complex situation. This pa-
per discovers that, with the same tournament size, trends of
sampling probability of a program and selection probability
distributions of a population are the same regardless of the
population size. This paper also models and investigates an
alternative tournament selection method which eliminates
one of the drawbacks in the standard tournament selection.
Finally, this paper proposes a new fitness evaluation saving
algorithm via the use of not-sampled individuals, which is a
special property of tournament selection.

Categories and Subject Descriptors

I.6 [Simulation and Modelling]: Model Validation and
Analysis

General Terms

Theory

Keywords

Tournament Selection, Modelling, Visualisation

1. INTRODUCTION
Selection is intended to improve the average quality of the

population by giving individuals of higher quality a higher
probability of being exploited in the next generation [1].
There is a wide range of selection techniques in Evolutionary
Algorithms (EAs), including fitness-proportional selection,
ranking selection, and tournament selection [5].

The standard tournament selection method repeatedly ran-
domly samples r individuals uniformly and with replace-
ment from the current population of size S and selects the
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one with the best fitness [9]. The popularity of tournament
selection is growing rapidly, because its selection pressure
can be changed by the tournament size for different problem
domains in order to tune the convergence of an evolution-
ary learning algorithm. It is also simple to code, efficient for
both non-parallel and parallel architectures [7], and does not
require sorting the whole population first (it has the time
complexity O(rS)).

A drawback of the standard tournament selection is the
combination of high between-group selection pressure and
random in-group selection. During population convergence,
groups of programs have the same or similar fitness values,
so that the selection pressure increases between groups re-
sulting in “better” groups dominating the next population
and speeding up the convergence. On the other hand, the se-
lection pressure effectively decreases within a group causing
the selection to become random.

Although tournament selection has been studied since the
1990s, most papers only study the standard tournament se-
lection in a simple situation where each individual has a
unique fitness. There are some models of the probability of
an individual being sampled and the probability of an indi-
vidual of a particular rank being selected. However, there
has been no attempt to discover the relationship between
population size and tournament size via these probabilities.
Further, few papers focus on modelling the probabilities of
all individuals being selected in the more complex situation
where some individuals share the same fitness value.

Many alternative tournament selection methods have also
been developed since the 1990s. However, their effective-
ness is mainly demonstrated through experiments. The lack
of formal modelling prevents researchers from understand-
ing the working of these alternative tournament selection
strategies, and from extending or developing new strategies.

“Not-sampled” is a special characteristic in tournament
selection. Poli introduced the use of not-sampled individuals
to make savings on the fitness evaluation cost [9]. However,
several limitations exist in that work and have not yet been
properly addressed.

1.1 Goals
This paper aims to provide models and visualisations to

supplement the study of tournament selection. Specifically,
we investigate: (1) the relationship between population size
and tournament size, (2) the probability of an individual of
a particular rank being selected in a complex situation, (3)
the working of clustering tournament selection [13], and (4)
a limitation in [9] and a new evaluation saving algorithm.
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Note that, hereafter, unless otherwise noted, our investi-
gations are described and discussed in the context of Genetic
Programming (GP).

1.2 Assumption and Definition
Let S be the size of a population. We follow the standard

tournament selection and assume that the standard breeding
process is used, that is, one parent produces one offspring
after mutation and two parents produce two offspring via
crossover. Therefore the total number of tournaments re-
quired to generate an entire new population is S.

We define the selection probability distribution of a popu-
lation to consist of the probabilities of each of the programs
in the population being selected at least once in the process
of generating the next generation.

2. RELATED WORK

2.1 Mathematical Analysis
Blickle and Thiele [1] analysed the “fitness distribution”

of tournament selection, which provides a way to predict the
fitness values after selection, i.e. the fitness values of selected
parents, in the context of Genetic Algorithms (GAs). They
concluded that, for the same selection intensity, tournament
selection has the smallest loss of diversity and the highest
selection variance when compared with truncation selection
and ranking selection. A fairly comprehensive analysis cov-
ering other selection schemes can be found in [2].

Motoki [8] analysed the loss of diversity in a variety of se-
lection schemes, including tournament selection. He showed
that in tournament selection, many more individuals are ex-
pected to be lost than Blickle and Thiele’s static estimation.

Poli [9] split the tournament selection process into two
steps, sampling and selecting. He mentioned that not sam-

pling and not selecting are two factors that lead to the loss of
diversity. The former factor refers to an individual which is
never sampled in any tournament. The latter factor refers
to a sampled individual which does not win any tourna-
ment. He analysed the number of individuals that are not
sampled in any tournaments in the process of generating
the next generation. Based on the results, he developed a
Backward-chaining EA (BC-EA) and claims that, if a very
small tournament size is used, the algorithm can provide
significant saving on fitness evaluations by simply avoiding
the creation and evaluation of these not-sampled individu-
als. He obtained about 20% saving with tournament size 2
and about 6% saving with tournament size 3 in his experi-
ments. He also mentioned that when the tournament size is
1 (ie, random selection), the saving will be over 35%.

2.2 Alternative Implementations
Harik [4] demonstrated some interesting work in the tour-

nament selection in the context of GAs. He introduced a
restricted tournament selection method in GAs for two pur-
poses. The first is to preserve and find multiple solutions
and the second is to obtain a particular global solution by
taking the advantage of the schema found in multiple local
solutions.

Filipović et al. [3] investigated a fine grained tournament
selection method for a simple plant location problem in GAs.
They argued that the standard tournament selection does
not allow precise setting of the balance between exploration

and exploitation [1]. In their fine grained tournament selec-
tion method, the tournament size is not fixed but close to a
preset value.

Luke and Panait [6] developed two modified tournament
selection methods in GP. The methods use buckets to ap-
ply lexicographic parsimony pressure on program selection
for problem domains where few individuals have the same
fitness. Each individual in the bucket is treated as if it
had the same fitness as others in the same bucket. They
concluded that the methods maintain the same mean best-
fitness-of-run as the Koza-style depth limiting does, but pro-
duces equivalent or significantly lower mean tree sizes.

Sokolov and Whitely [11] introduced an unbiased tour-
nament selection scheme that eliminates the loss of diver-
sity due to individuals not being sampled. The algorithm
is based on reducing variance in the number of times a par-
ticular individual is picked to participate in a tournament.
They showed that the algorithm yields better results than
the standard tournament selection in a generational GA.

In our previous work [13], we developed a clustering tour-
nament selection method for crossover in GP. A population
is grouped into clusters based on some criteria. Clusters are
randomly selected for tournaments, and a program is ran-
domly selected from a winning cluster to participate in the
recombination process. Therefore the parent programs from
different clusters are dissimilar. We showed that avoiding
a crossover between programs with similar behaviours can
contribute to maintaining population diversity and improv-
ing the performance of a GP system. We think an impor-
tant property of the clustering tournament selection is that
it implicitly but effectively eliminates the drawback of high
between-group selection pressure in the standard tourna-
ment selection.

3. MODELLING AND VISUALISING IN

A SIMPLE SITUATION
Our investigation starts from a simple situation where the

population is wholly diverse. This situation seldom happens
in GP for problems with finite number of possible fitness val-
ues. If the situation does happen, it will most likely appear
at the initial generation as long as constraints are applied
to the initialisation process, and the population size is less
than the number of possible unique fitness values.

3.1 Sampling probability modelling and
visualisation

Let S be the size of a population. Let I be the event that
a program is sampled at least once in a single tournament.
There are r samplings in conducting a tournament. The
probability of the event I is

P (I) = 1 −

„

S − 1

S

«r

(1)

Let I ′ be the event that a program is sampled at least
once in y tournaments. The probability that a program will
not be sampled in y tournaments is

(1 − P (I))y (2)

So the probability that a program will be sampled at least
once in y tournaments is the complement of Equation 2.
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Figure 1: Trends of the probability that a program is sampled at least once during the process of generating
an entire new population. (Note that the scales on the x-axes differ.)

That is

P (I ′) = 1 − (1 − P (I))y

= 1 −

„

S − 1

S

«ry

= 1 −

 

„

S − 1

S

«S
!

y
S

r

(3)

Based on Equation 3, it is clear that the sampling proba-
bility is independent of program rank and is only a function
of population size, tournament size, and number of tourna-
ments.

Figure 1 illustrates the probability trends of a program
being sampled using six tournament sizes (from 1 to 32 with
ratio 2) in populations with three different sizes (32, 100,
and 300) when the number of tournaments increases up to
the corresponding population size.

It is clear that for a given population size, increasing the
tournament size or the number of tournaments raises the
probability of an arbitrary program being sampled. The
number of tournaments required to obtain a sampling prob-
ability very close to 1.0 is inversely proportional to the tour-
nament size and is about 4S

r
. For instance, in a population

of size 100, the sampling probability is about 0.982 after 100
tournaments when the tournament size is 4, while it becomes
0.985 after only 13 tournaments when the tournament size
is 32.

It is also clear that for a fixed tournament size, the sam-
pling probability of a program in a single tournament varies
with population size. However, interestingly, the trends of
sampling probabilities of a program along the increments of
the number of tournaments are very similar in different sized
populations. This is because (S−1

S
)S is close to a constant

for large S, so sampling probability depends on the ratio of
the number of tournaments to the population size. In other
words, it depends on the fraction of population generated
for the next generation. Therefore, with the same tourna-
ment size, sampling probability for large populations can be
estimated reliably from experiments on smaller populations
at the stage of generating the same fraction of population.

3.2 Selection probability distribution:
modelling and visualisation

Suppose a population is ranked by fitness values and the
best program is ranked 1st. Let Wj be the event that the
jth ranked program is selected by a tournament. The prob-
ability of this event is given by the probability that all r

programs in a tournament are of rank j or worse, minus the
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Figure 2: Selection probabilities of programs with
different ranks in a single tournament using different
tournament sizes.

probability that all r programs in a tournament are of rank
j + 1 or worse:

P (Wj) =
(1 + S − j)r − (S − j)r

Sr
(4)

Let W ′
j be the event that the jth ranked program is se-

lected at least once in y tournaments. The probability of
this event is

P (W ′
j) = 1 − (1 − P (Wj))

y

= 1 −

„

1 −
(1 + S − j)r − (S − j)r

Sr

«y

(5)

Figure 2 illustrates the selection probabilities of programs
with different ranks in a single tournament, where the pop-
ulation size is 100, and the tournament size ranges from 1
to 100. It shows that the selection probability of the 1st
program increases significantly as the tournament size in-
creases, while the selection probabilities of low ranked pro-
grams decrease: the selection is biased more and more heav-
ily towards high ranked programs as the selection pressure
increases. When the tournament size is the same as the
population size, which represents an extremely high selec-
tion pressure applied, only the best five programs have a
selection probability greater than 1% (see the data label in
the figure).
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Figure 3: Selection probabilities of programs with different ranks in a single tournament using different
tournament sizes up to 20.

Figure 3 zooms in on the small tournament size portion
of this graph, and also shows the same portion for two other
population sizes.

For the same tournament size, the selection probabilities
of programs in a population with large size are overall flatter
than that in a population with small size. It means that
selection pressure decreases when population size increases.

For the same population size, the selection probability of
the high ranked program decreases when the tournament
size decreases. But the reductions become less significant
when population size increases. Therefore, in a single tour-
nament, the selection probability of each program in a pop-
ulation is clearly affected by the population size and the
tournament size.

Figure 4 illustrates the selection probability distributions
for two different population sizes (100 and 300) and three
different tournament sizes (4, 8, and 16). In all cases, the
fitness values of the programs are assumed to be unique.

For a given population size, the flat region (probabilities
close to 0) in a selection probability distribution becomes
larger as tournament size increases, meaning that more and
more low ranked programs are thrown away in the selection
process due to the increased selection pressure.

With the same tournament size, although the selection
probability of a program with a given rank varies in differ-
ent sized populations, the selection probability distributions
for different population sizes remain the same shape and are
dependent primarily on the fraction of population at the
next generation that has been generated. This indicates that
it is not necessarily to investigate an effective tournament
size for every different population size. As for the sampling
probability, the results of empirical studies with small pop-
ulations on the effects of different tournament sizes should
also be applicable to larger population sizes.

4. MODELLING AND VISUALISING IN

A COMPLEX SITUATION
Our further investigation focuses on a more complex situ-

ation where some programs have the same fitness value. In
this case, programs with the same fitness value are given the
same rank.

As sampling is independent of program ranking, the sam-
pling probability model in a complex situation is the same
as that in a simple situation. However, modelling the se-
lection probability of a program ranked jth is more difficult
because the probability will be affected by the number of
programs with the same rank, the probability of any one of

these programs being sampled, and the probabilities of any
programs with worse fitness values being sampled.

Let the set of programs be S, and let the set of programs
with the rank j be Sj . Let Q be the number of distinct
fitness values. Let Wj be the event that a particular program
in Sj is selected in a tournament involving r samples. Let
W ′

j be the event that a certain program in Sj is selected at
least once in y tournaments.

The probability that all the programs sampled for a tour-
nament have a fitness value between j and Q (ie, are from
Sj . . . SQ) is given by

 
PQ

i=j
|Si|

|S|

!r

Let Tj be the event that the highest ranked program in a
tournament is from Sj . Therefore, the probability that the
selected program will have rank j is

P (Tj) =

 
PQ

i=j
|Si|

|S|

!r

−

 
PQ

i=j+1 |Si|

|S|

!r

(6)

As each element of Sj has equal probability of being se-
lected in a tournament, for any given program p ∈ Sj , the
probability that p will be selected in a tournament is

P (Wp) =

„

PQ
i=j

|Si|

|S|

«r

−

„

PQ
i=j+1

|Si|

|S|

«r

|Sj |
(7)

Therefore the probability that p is selected at least once
in y tournaments is

P (W ′
p) = 1 − (1 − P (Wp))y (8)

= 1 −

0

B

B

@

1 −

„

PQ
i=j

|Si|

|S|

«r

−

„

PQ
i=j+1

|Si|

|S|

«r

|Sj |

1

C

C

A

y

(9)

A wholly diverse population can be seen as each program
having a unique fitness for each rank j. In other words
|Sj | = 1. Therefore Equations 4 and 5 can be obtained by
replacing each |Sj | in Equations 7 and 8 by 1 and simplify-
ing, respectively.

Two simulations were conducted to visualise the selection
probability distributions in the complex situation. The first
one is a restricted case, where only one (arbitrary) fitness
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Figure 4: Selection probability distributions in a simple situation.
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Figure 5: Selection probability distributions in a complex situation.

value is associated with several programs; each of the other
fitness values is still mapped to a unique program. The
selection probability distribution in this restricted case gives
an indication of how the distribution will be changed when a
population has some programs with the same fitness value.
The change is a stair-like probability distribution breaking
the smooth surface (see Figure 5 (a)).

The second simulation uses data taken from a randomly
chosen generation in a real GP run on a symbolic regression
problem (see Figure 5 (b)).

When comparing the corresponding probability distribu-
tions in Figure 5 with those in Figure 4, we observe that:

1. with the same tournament size, the corresponding out-
lines of the selection probability distributions remain
unchanged;

2. the group of programs with the same fitness have the
same probability of being selected, showing that when
a single top ranked group covers most of the popula-
tion, the whole selection process becomes random;
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Figure 6: Comparison of the reproduction rate.

3. as a corollary of the previous observation, the width of
a stair-like probability distribution change is propor-
tional to the number of these programs;

4. the depth of a stair-like probability distribution change
is affected by the tournament size and the number
of tournaments. The larger the tournament size, the
deeper the change becomes (except programs falling in
the flat region). The change is also amplified when the
number of tournaments increases.

5. MODELLING CLUSTERING

TOURNAMENT SELECTION
One of our previous work for dealing with the high between-

group selection pressure drawback is an alternative tourna-
ment selection method called clustering tournament selec-

tion [13]. This section provides a model to investigate how
it can well maintain the population diversity.

The clustering tournament selection assumes a popula-
tion is grouped by fitness values and each cluster is a single
sampling candidate and is equivalent to a set of programs
Sj mentioned in Section 4. Therefore, the number of sam-
pling candidates is reduced from the population size to the
number of clusters.

Using the same notation as in Section 4 P (Tj) (for a clus-
tering tournament selection) can be obtained from Equation
6 by replacing |S| with Q, and |Sj | with 1, and simplifying:

P (Tj) =
(1 + Q − j)r − (Q − j)r

Qr
(10)

Therefore, we obtain

P (Wj) =
(1 + Q − j)r − (Q − j)r

Qr × |Sj |
(11)

where P (Wj) is the probability of selecting the jth cluster.
Reproduction rate is given a different definition in [1] from

the common meaning in GP: it is defined as the ratio of the
number of individuals with a certain fitness value in the
mating pool after the whole selection process to the number
before the selection. A reasonable selection method should
favour good individuals by assigning them a reproduction
rate greater than 1 and penalise bad individual by a ratio
less than 1. This definition of reproduction rate can be in-
terpreted as the frequency that individuals with a certain
fitness value are used to produce offspring. Therefore, re-
production rate can be used to measure selection pressure

across population. We follow the formula in [1] and calculate
the reproduction rate to compare the standard tournament
selection with the clustering tournament selection.

We simulate two populations with 100 possible fitness val-
ues. One has a uniform fitness distribution: every unique
fitness value maps to the same number of individuals. The
other has a quadratic fitness distribution biased towards
good fitness values so that good fitness values map to more
individuals.

Figure 6 illustrates the reproduction rates using the stan-
dard tournament selection and the clustering tournament
selection with the tournament size of 4 in the two popula-
tions. It is clear that if a population has a uniform fitness
distribution, the clustering tournament selection will have
the same behaviour as the standard tournament selection.
But in a population with a quadratic fitness distribution,
where more individuals share the good fitness values, the
clustering tournament selection significantly reduces the re-
production rate of high fitness programs, while increasing
the rate of middle ranked programs. Therefore, the cluster-
ing tournament selection can reduce the chance that groups
of high ranked programs dominate the next generation and
it has better ability to maintain population diversity than
the standard one.

6. COMPUTATIONAL SAVINGS ON

NOT-SAMPLED INDIVIDUALS
As mentioned in Section 2, BC-EA [9] is an interesting

algorithm for obtaining computational savings by simply
avoiding the creation and evaluation of not-sampled individ-
uals1. However, there are several factors that may limit the
effectiveness of the algorithm. One of them is the number
(m) of individuals that need to be evaluated at generation
G in order to find an acceptable solution. If an acceptable
solution is the first evaluated individual (m = 1) in the
population at generation G, significant computational sav-
ing can be obtained. But if m is a large number, requiring
more samplings from generation G − 1, and consequently
more evaluations at generation G− 1, then the effectiveness
of the algorithm will be reduced.

6.1 Modelling the threshold of m

Let S be the population size and let r be the tournament
size. Then the total number of samplings from generation

1We assume readers have had enough information about the
algorithm.
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Figure 7: Threshold at generation G requires the
evaluation of the whole population at generation G−
1.

G−1 is mr. Let u be the number of unique individuals in the
mr samplings. Clearly, when m increases, u also increases.
When m reaches a certain threshold, such that u = S, then
the algorithm will not bring us any saving at all. Therefore,
an important question is that what is the threshold of m.

For a given m, u can vary from 1 to max(u), where

max(u) =



S , m × r > S

m × r , m × r ≤ S
(12)

Let U∗(S, r, m, u) denote the number of different sampling
events from generation G − 1

U
∗(S, r, m, u) =



S , u = 1
(mr
u )(S

u)u! , 1 < u ≤ max(u)
(13)

Let U be the event that there are u unique individuals
sampled from generation G − 1 for a given m at generation
G. The probability of this event is

P (U) =
U∗(S, r, m, u)

Pmax(u)
i=1 U∗(S, r, m, i)

(14)

When u = x, such that P (U) returns the highest proba-
bility, it is most likely that there are x unique individuals
sampled in mr samplings. Therefore, for m increased from
1 to S, we select u such that P (U) is the highest. If u = S,
then the value of m will be the threshold. In other words,
the value will be the maximum number of individuals that
can be evaluated at generation G in order to have evaluation
savings at generation G − 1.

6.2 Visualising the threshold of m

Figure 7 shows the number of individuals evaluated at
generation G that requires the evaluation of the whole pop-
ulation at generation G − 1 using different tournament size
in a population of size 50.

The case of tournament size 1 is not shown in the figure.
It means that no matter how many individuals at generation
G will be evaluated, we will never need to evaluate the whole
population at generation G−1. The figure shows that, when
the tournament size is 2, if the last individual in generation
G is evaluated, the whole population at generation G−1 will
be evaluated. When the tournament size is 3, we can eval-
uate up to 68% of the population at generation G in order
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Figure 8: Threshold at generation G requires the
evaluation of the whole population excluding not-
sampled individuals at generation G − 1.

to have evaluation savings on generation G − 1. From the
results, it seems that BC-EA is promising. However, as the
whole population at generation G − 1 has to be fully evalu-
ated, there would be no further saving on generation G− 2,
generation G − 3, ..., and generation 0, unless tournament
size 1 is used. It is clear that, if tournament size 1 is used,
the evolutionary algorithm will effectively act the same as a
random (beam) search algorithm and may suffer long search
time and low problem solving quality. In this case, it is not
worth having such saving if we have to sacrifice the search
time and the problem solving quality.

According to Equation 3, we compute that, with a pop-
ulation of size 50, the sampling probability of an individual
after 50 tournaments is about 0.64, 0.87, and 0.95 when the
tournament size is 1, 2, and 3 respectively. Let NS be the
expected number of not-being sampled individuals. Then
about 36%, 13% and 5% of the population is NS in the pro-
cess of generating the next generation. Since NS should not
be evaluated, we certainly should take these numbers into
consideration to re-calculate the threshold. In other words,
we would like to know what is the threshold of m, such that
u = S − NS.

Figure 8 illustrates the number of individuals evaluated
at generation G that requires the evaluation of S−NS indi-
viduals at generation G− 1 using different tournament sizes
in a population of size 50. The figure shows that when NS

is considered, the threshold decreased significantly for tour-
nament size 1, 2, and 3. Note that due to the number of
not-sampled individuals is very small for tournament sizes
greater than 3, there is no difference between Figures 7 and
8 from tournament size 4.

According to Figure 8, the threshold is about 66% of the
population when the tournament size is 1. It means if an
optimal solution is found within the first 66% of the popu-
lation at generation G, we will have about 36% saving on
the evaluation of generation G−1. As the proportion of the
population that needs to be evaluated at generation G−1 is
64%, which is less than 66%, we expect constant savings at
all preceding generations, even with little growth. But for
each of other tournament sizes, when m reaches the thresh-
old, the savings at preceding generations will quickly drop
because more and more individuals beyond the threshold
have to be evaluated at each of the preceding generations.
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6.3 A new fitness evaluation saving algorithm
Is there a way to avoid the limitations of m and tour-

nament size but still obtain constant saving on the fitness
evaluation at each generation? We propose a simple algo-
rithm called Evaluated-just-in-time (Ejit) and expect it can
guarantee the savings as long as there exist not-sampled in-
dividuals. Briefly, Ejit works in the following way:

1. create (all) programs at generation G − 1 but do not

evaluate them,

2. sample programs at generation G−1 for tournaments,

3. evaluate the sampled programs if they have not been
evaluated, then select the winners as the parents of
programs at generation G.

Although Ejit has to create every individual in a popula-
tion, the creation time is in fact very little comparing with
the time spent on fitness evaluations. Savings on creating
not-sampled individuals are negligible thus it is fine to leave
it out. Comparing with BC-EA, Ejit is expected to pro-
vide the following additional features: (1) constant savings
by avoiding evaluations of not-sampled individuals; (2) no
limitation on the maximum number of individuals that are
evaluated at generation G; (3) no need to limit the tourna-
ment size to be just 1; (4) no additional memory required;
and (5) no need to put effort on choosing G in order to solve
a problem.

7. CONCLUSIONS AND FUTURE WORK
We have provided several models of describing the prob-

abilities that a program of a particular rank is sampled and
is selected in the standard tournament selection process in
a simple situation and a complex situation.

Under the assumption that the standard breeding process
is used, we have demonstrated that with the same tourna-
ment size, the trends of sampling probability of a program
and the selection probability distributions of a population
are the same regardless of the population size. This ob-
servation suggests that the ratio of a tournament size and
a population size may not be an issue in empirical studies
on the effects of different tournament sizes in an evolution-
ary algorithm. Results from one reasonable population size
should be applicable to other population sizes.

We have also demonstrated that with the same tourna-
ment size, the overall outline of a selection probability dis-
tribution in a complex situation is similar to that in a simple
situation. This observation should reduce some complexities
in further research of modellings in a complex situation.

We have also modelled the clustering tournament selection
[13] to investigate its advantages in terms of maintaining
population diversity.

We have further modelled and investigated a limitation of
BC-EA [9]. In addition, we have proposed Ejit algorithm in
order to have constant computation savings by avoiding the
evaluation of not-sampled individuals.

Although this study is conducted in GP, the results are
expected to be applicable to other evolutionary algorithms.

There are other different implementations at the funda-
mental level, including returning more than one individual
per tournament [12] and sampling without replacement. We
will further model and analyse existing alternative imple-
mentations in order to develop new selection strategies.
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