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ABSTRACT
Several different controller representations are compared on
a non-trivial problem in simulated car racing, with respect
to learning speed and final fitness. The controller repre-
sentations are based either on Neural Networks or Genetic
Programming, and also differ in regards to whether they al-
low for stateful controllers or just reactive ones. Evolved
GP trees are analysed, and attempts are made at explaining
the performance differences observed.

Categories and Subject Descriptors
I.2 [ARTIFICIAL INTELLIGENCE]: Automatic Pro-
gramming

General Terms
Algorithms, Performance

Keywords
Evolutionary robotics, Neural networks, Object-Oriented
Genetic Programming, Subtree macro-mutation, Homolo-
gous uniform crossover, Evolutionary computer games

1. INTRODUCTION
An important open question for Evolutionary Robotics

(ER), and evolutionary game AI, is how best to represent
the controller. Currently, most controllers in evolutionary
robotics are represented as Neural Networks (NN) of some
sort, either feed-forward multilayer perceptrons (MLPs) or
some sort of recurrent network, such as Elman-style net-
works or CTRNNs. The former have the advantage of sim-
plicity and well-understood theoretical properties, and the
latter have the advantage of (potential for) integration of
information over time, thus allowing for deliberative rather
than just reactive controllers.
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Puzzlingly, very little work in ER seem to make use of the
vast knowledge accumulated in the sister field of Genetic
Programming (GP), which deals with the evolution of com-
puter programs represented in some symbolic form. It is not
at all clear why this is so. For one thing, the investigation of
stateful versus stateless controllers in ER is closely mirrored
by the ongoing investigation of how to best evolve programs
with state in GP. We believe there could be much fruitful
interplay between these fields.

In this paper, we compare neuroevolution and GP, both
with and without state, on some variations of a simulated
car racing problem. We hope to be able to understand some
of the similarities and differences between those two families
of controller representations on problems of agent control in
robotics and computer games.

1.1 Evolutionary Car Racing
The problem of racing a simulated car around a track is

interesting from several perspectives. From an applications
perspective, car racing in its myriad of both simulated and
real forms is an ever-popular form of entertainment, and
the problem of getting a vehicle from point A to point B as
fast as possible can hardly be said to be without practical
relevance even outside of entertainment. There thus exists
ample application potential for methods for optimising var-
ious aspects of this approach.

From the perspectives of machine learning, and of evo-
lutionary robotics, the problem of how to win a car race
is far from a solved one and thus the problem of learning
how to win a car race is even further from being solved.
The task has a certain appeal to the evolutionary roboti-
cist, in that while it is fairly easy to learn to navigate a
simple track by driving slowly and keeping your distance to
the walls, beating good competitors in a multi-car races on
a varied selection of challenging tracks requires considerable
training and a diverse skillset. These skills would have to
include modelling the dynamics of the driver’s and oppo-
nents’ cars in various situations, modelling the competitors’
driving style and epistemic state, navigating complex envi-
ronments, planning (e.g. when to overtake and go for the
pit stop) and other high-level cognitive skills as well as just
fast and accurate reactions.

We have previously investigated how to best evolve con-
trollers for single-car, single-track racing [7], how to gener-
alise controllers to reliable drive on several dissimilar tracks
and specialise them for particular tracks [9] and the impact
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of fitness functions on competitive co-evolution of two cars
on the same track [8].

The main goal of the evolutionary car racing project, how-
ever, is still to find methods for evolving controllers with
good, general driving skills. One aspect of this project which
has so far received inappropriately little attention is the con-
troller representation. Almost all of our controllers have
been represented as small, feed-forward multilayer percep-
trons. In this paper we are therefore comparing this rep-
resentation with larger feed-forward neural networks, recur-
rent networks, and several types of GP.

1.2 Motivation for Applying Genetic
Programming

The vast majority of evolved programs use a functional
tree representation and while GP has produced some im-
pressive results it has significant problems with scalability.
Most GP evolved programs are simple expression trees that
perform simple mappings from inputs to desired outputs.
Even since the addition of effective storage and retrieval of
arbitrarily complicated state information to GP, limited re-
search has been devoted to the evolution of programs that
utilize state variables. Many interesting problems require a
program to preserve some sort of state in-between its com-
putations. The notion of state is a very important concept
used by human programmers as means of naming seman-
tically important features that can be used multiple times
or that describe a self-contained entity. The use of state
can come in many different incarnations - be it a single
local/global variable, an arbitrary data structure, up to a
point of an encapsulated collection of data that is being ex-
clusively operated upon by a set of methods, which naturally
leads to data abstraction.

Nevertheless, it seems unlikely that a general-purpose
memory manipulation capability will prove to be advan-
tageous to the evolved solution of an arbitrary problem.
Stated differently, not all programs that use memory will
have a significant advantage over programs that ignore their
memory or that do not have memory, for an arbitrary prob-
lem. Heading towards the direction of evolving complete
classes and co-operating sets of classes we need to study (a)
the nature of problems and the circumstances under which
the evolved solutions can enjoy an evolutionary advantage
from using state variables; (b) the way in which the evolu-
tionary process decides which features to keep track of and
how the storage/retrieval of intermediate state can facilitate
the evolvable computation; (c) the impact that the use of
state-manipulation primitives has on the search operators
for exploring the space of constructible programs; (d) the
effect of state-manipulation primitives to program represen-
tation and interpretation.

From an implementation point of view, hand-coding a
controller that will proficiently race a car around a reper-
toire of tracks is a challenging, open-ended problem. Sim-
ply stated, a perfect solution is often theoretically impossible
and the nature of the problem renders the definition of ana-
lytical algorithms problematic. As an example, imagine the
set of conditions in which a car should or should not steer
when it is moving based on sensory input. It was felt that
many lessons could be learned by allowing the solution to
be provided by an automated program induction technique,
such as GP. The intension was to evolve a program for a
problem whose solution is not precisely known in advance.

However, there are many possible implementations and
these are governed by the programming space that a human
programmer or a program-generation engine are allowed to
operate on. This space is concerned with the program rep-
resentation given a specific primitive language. The use of
state-manipulation constructs defines a different program-
ming space than the one where no state information is ex-
ploited, and allows programs to store and retrieve informa-
tion on various features that they choose to be useful dur-
ing their computations. We would like to see whether the
use of state adds any significant advantage to the evolution
of a proficient controller. If the evolutionary process finds
some workable representation of the useful environmental
features, it may be the case that these can be maintained
and manipulated as state information in order to drive more
efficiently. So at any given time a state-aware controller can
use the information provided by the sensory input and that
which builds and maintains on its own. In addition, it would
be interesting to see which features are chosen to represent
the object state space. Our discussion will be laid in an OO
context so the terms memory and object state space will be
used interchangeably.

2. OBJECT-ORIENTED GENETIC
PROGRAMMING

2.1 OO vs. Functional Programming Spaces
The output of the car controlling program is an array

of two real values, the first being interpreted as the driv-
ing command whereas the second as the steering command.
Figure 1 presents the signature (return type and parameter
types) of the interface method drive() that is used as a
contract between the evolved program and its clients. The
parameter of type SensorModel provides the environmental
input which is discussed in a later section. As with most
programming problems, there are many possible implemen-
tation routes and we can encourage the evolutionary algo-
rithm (EA) to induce a specific implementation by allowing
it to work on a particular programming space. When the
program that implements the CarController interface has
been constructed in an OO programming space, it is allowed
state variables along with methods that inspect and modify
this internal state. A crucial aspect of state-aware programs
is that they often exhibit time-dependent behavior. That is,
the order in which the program stores and retrieves state
information can have a concomitant impact on its output.
This particularity can introduce many dependencies upon
various program parts (i.e among different functions) that
manipulate state information in an explicit order, and in our
opinion is one of the main reasons that hinders the evolu-
tion of programs that use memory. Very importantly, the
program must evolve to ensure that the storage is written to
before it is read and that the manipulation of state informa-
tion by various program parts is performed in a compatible
way. On the other hand a stimulus-response program that
sits in a functional programming space will not enjoy the
use of state information.

2.2 Evolvable Class Representation
Following our previous work on the evolution of complete

classes [1] we decided to represent an evolvable individual
using a syntactic structure that couples a linear repository
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public interface CarController{
public double[] drive(SensorModel sm);

}

Figure 1: The interface specifying the signature of
the driving method

of class and instance variables representing the object state
along with a set of evolvable methods (using an expression
tree representation) that are responsible for the way an ob-
ject acts and reacts, in terms of state changes and message
passing.

2.3 State Representation
The use of memory in GP dates back to the work of Koza

(1992), who used global registers that could be manipulated
with specially built storage operators. Teller (1994) intro-
duced Indexed Memory to allow a selection from an arbi-
trary set of memory cells [6]. Additional read and write

operations are made available in the language to allow this
memory to be accessed and manipulated by various program
parts. Koza (1999) went on and generalized both the above
to the notion of an Automatically Defined Store [4]. Finally,
Kirshenbaum (2000) presented work on the evolution of pro-
grams that use statically scoped local variables [2]. That is,
variables whose visibility is bounded to a given scope - a
subtree rooted on a Let construct.

We employed a simple memory addressing scheme by com-
bining type information along with the mechanism of pass
by reference in order to operate on the object state space
[1]. The object memory is represented as a linked list of
objects of interface type Settable, reminiscent of Teller’s
indexed memory but uses a different way to store and read
values. References to these Settable objects are added to
the language used to construct programs, and these rep-
resent the available instance variables (object state space).
Within a program structure these language elements are be-
ing passed by reference to specially built primitives that ex-
plicitly set the value of their argument. Once the method
returns, the value of its argument will have been updated.
For our purposes a setValue(Settable s, double value)

primitive method has been defined. Notice that the use
of strong typing for drawing a distinction between settable
variables and their underlying values allows for the emer-
gence of various sorts of assignment schemes and obviates
the need of devising a strategy to deal with illegal range
of index values, a substantial issue when working with tra-
ditional indexed memory. We follow Teller’s example and
setValue is defined to return the original value held in the
Settable object it has just overwritten.

2.4 Variation Operators
Our search employs two different variation schemes.

These are Subtree macro-mutation (MM – substituting a
node in the tree with an entirely randomly generated subtree
of the same return type, under depth or size contraints), and
homologous Uniform Crossover (UXO) along with Point
Mutation (PM) as defined by Poli and Langdon [5]. In the
case of multi-tree programs the evolutionary algorithm must
come to a decision as to which tree the variation operator
will be applied. Here, the variation operator is applied to the
expression tree implementing the interface method drive

with a probability of 1.0 and to each supplementary expres-
sion tree with a probability of 0.5. Additionally, for MM,
other than choosing the tree node to be replaced at ran-
dom we devised an additional simple node selection scheme
that allows us to select nodes at different depth levels using
a uniform probability distribution, with the expectation to
render bigger changes more likely.

2.5 Program Representation Language
We defined a diverse set of language elements to form a

general programming space for the evolutionary algorithm
to work on. This is presented in table 1. Standard arith-
metic operators have been provided (add, sub, mul, div)
along with state-manipulation operators (setValue), predi-
cates (>,>=,=,<,<=) and an IF-Then-Else construct that al-
lows to control the flow of execution within the program such
that every expression tree rooted at that node will be inter-
preted using lazy evaluation. The program is required to
return an array of two double values so rootGlue has been
defined as a wrapper that accepts two doubles and returns
a double array populated with these argument values. The
car controller receives environmental input using four differ-
ent sensors. These are modeled as method invocations on a
SensorModel object (see figure 1). The wallSensorReading

method requires two parameters of type double that spec-
ify the angle and the range of the sensor. The range of the
sensor is equal to the range parameter multiplied by 200
pixels; this parameter is constrained to be within the [0, 1]
interval. For example, wallSensorReading(π/2, 0.75) re-
turns an estimation of the distance to the wall along a line
protruding straight to the left of the car, as a proportion of
150 pixels. If the first wall to the left of the car is 100 pixels
away, the wallSensorReading method will return around
0.66 in the example given. Method speed returns the driv-
ing behavior and it’s 0.3 for driving forward, 0.0 for neutral
and -0.3 for backwards. The angleToNextWaypoint method
returns the difference between the current orientation of the
car and the angle between the center of the car and the next
waypoint. Similarly, distanceToNextWaypoint returns the
distance between the center of the car and the next way-
point. All angles are unwrapped and a small amount of
gaussian noise is added to all readings.

3. METHODS

3.1 Car simulation and Fitness Measure
This simulation, which is intended to qualitatively model

driving a radio-controlled toy car on a tabletop racing track,
has a car with dimension 20*10 pixels driving on a 400*300
pixels racing track. While the simulation is based on a rea-
sonably realistic physics model, allowing for momentum, col-
lisions, and skidding, it does not behave identically to any
particular physical system. At each time step (the simula-
tion is updated at 20hz in simulated time) a command is
sent from the controller to the simulation, which executes
the command and returns the new state of the car.

Selected elements of the state are available to the con-
troller via an interface. The available information is all such
that it could in principle have been gathered by sensors
places on the car (‘first person’): speed of the car, angle
and distance to the next way point and distance to the wall
in a given direction relative to the heading of the car. A
small amount of noise is added to all sensor readings.
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Table 1: Primitive elements for evolving car controlling programs
Method set

Method Argument(s) type Return type
rootGlue double, double double[ ]
State Manipulation
setValue Settable, double double
Sensory input
wallSensorReading double, double double
speed - double
angleToNextWayPoint - double
distanceToNextWayPoint - double
Arithmetic
add double, double double
sub double, double double
mul double, double double
div (protected) double, double double
Predicates
>, >=, =, <, <= double, double boolean
Conditional
IF-Then-Else boolean, double, double double

Terminal set
Terminal Value Type

Constants π, −π, π/6, −π/6, π/12, −π/12 double
−5.0, −4.0, −3.0, −2.0, −1.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0

Parameters subject to environment model of evaluation double

As for the outputs of the controller, these are two real
numbers which are interpreted by the simulation as any of
nine possible commands - typical toy cars of the sort that
inspires our simulation have bang-bang control, hence the
discretisation. The first controller output is interpreted as
the command for driving forward if its value is above 0.3,
backward if below -0.3 and neutral otherwise. The second
output is interpreted as steering left, right or centre in the
same manner.

The fitness of a certain controller is given by how far
around one or several tracks it manages to travel in 700
time steps. This is measured by how many way points it
manages to pass within that time. Each racing track is de-
fined by a starting position, a set of walls and a chain of way
points. The eight tracks used for the experiments in this pa-
per are depicted in figure 2(a). A way point is considered to
be passed if the centre of the car is within 30 pixels of the
centre of the way point, and that way point is the next one
in the chain (way points must be passed in order). Passing
all way points within 700 time steps yields fitness 1, passing
fewer way points leads to lower fitness and completing sev-
eral laps of the track within the allotted time gives higher
values. The maximum possible fitness for most tracks seem
to be between 2 and 4. An example configuration of wall
sensors is depicted in figure 2(b).

3.2 Evolutionary Algorithm
For ease of comparison, the same evolutionary algorithm

is used for all presentations. This algorithm is a 50+50 Evo-
lution Strategy, meaning that each generation the 50 best
controllers are retained, while the 50 worst are deleted and
replaced with mutated copies of the 50 best (the exact vari-
ation mechanism for GP is detailed in a section below). To
alleviate the considerable noisiness of the fitness evaluations,
the fitness of each controller is calculated as the average of
three independent trials.

3.3 Evolving Functional Controllers
For the functional representation we used both standard

GP and GP with ADFs using the Evolutionary Selection of
Program Architecture method as it is described in [3]. Each
functional program is allowed a maximum of 5 ADFs and
each ADF is allowed a maximum of 3 arguments. Parameter
and return types are set to double to be compatible with
the numeric primitives present in the programming space.
Similarly to [3], a simple ADF naming scheme is employed
is order to prevent the emergence of circular calling depen-
dencies among the functions which can result in non-halting
programs. This would require the experimenter to handcraft
a way of stopping their evaluation and assign them fitness
- an issue clearly out of the scope of this paper. This was
done to place a reasonable limit on the duration of the evo-
lutionary run. When limited in this way each individual run
still took approximately 3 hours on a 3.4GHz machine.

Under this representation the program returns its output
via the expression tree that is explicitly dedicated to the in-
terface method drive in figure 1. In the presence of ADFs
the representation system is enhanced and GP is allowed to
co-evolve additional modules advantageous to the composi-
tion of the final solution. No restrictions were placed upon
which primitives can be used by which function-defining ex-
pression tree of a multi-tree program, thus the function and
terminal sets were identical both for method drive and any
supplementary ADFs. State is not allowed, so the language
used for the functional representation contained all elements
of table 1 but setValue. Respectively, no Settable objects
are added to the terminal set.

3.4 Evolving Object-Oriented Controllers
The genome representation in the case where we evolve

a complete class has been outlined in section 2.2. During
the generation of the initial population the EA performs a
random sampling of Evolvable Class structures. The gen-
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(a) (b)

Figure 2: (a) The eight tracks. Notice how tracks
1 and 2 (at the top), 3 and 4, 5 and 6 differ in the
clockwise/unti-clockwise layout of waypoints and as-
sociated starting points. (b) An example sensor
setup. Here, the car is seen in close-up moving
upward-leftward. The protruding lines represent
sensor visualisations as these are specified by the
parameters of the wallSensorReading.

eration of such an individual is analogous to the process of
initialising an individual using the Evolutionary Selection
of Program Architecture method with the addition of ran-
domly selecting the number and type of instance variables.
Analogously to section 3.3 the number of additional instance
methods is set to the random interval of [1, 5] (using a uni-
form probability distribution) and the number of the argu-
ment that each one may possess is set to the random interval
of [1, 3]. The range of potentially useful numbers and types
of instance variables cannot be predicted with certainty for
an arbitrary problem. Here we require the number of in-
stance variables to be uniformly drawn from within the [5,
15] interval. In addition, the type of information that can be
stored in the form of object state is set to be of type double
in order to be compatible with the numeric input and output
types of the primitive language elements. Notice that once
the number and type of instance variables are specified, they
cannot be altered by the application of variation operators.

Similarly to section 3.3, no circular calling hierarchies are
allowed, and no restrictions are being placed as to which
primitives can be used by which expression tree. State ma-
nipulation is allowed so setValue and a number of Settable
objects are made available in the primitive language.

The fitness evaluation of state-aware programs begins
with the initialization of object state variables at time step
t0. We do not allow the evolution of explicit constructor
methods. Alternatively, we require that all numeric instance
variables be set to zero. This is in line with most modern
OO programming languages - Java for example will implic-
itly set the values of numeric instance variables to zero in

the absence of a constructor method. Hence, at each time-
step tn the object is being operated upon by invoking the
interface method drive with the state variables being set to
the value that was stored at time-step tn−1. It is notewor-
thy that the fitness evaluation simulates the life-cycle of a
passive object that is being born when its state variables are
initialised to zero, it is being acted upon by invocation to
the interface method drive for 700 time-steps, and finally
dies along with the cease of fitness evaluation procedure.

3.5 GP Run Parameters
Different evolutionary run parameters were used de-

pending on the representation and variation scheme em-
ployed. All initial generations are being populated using the
Ramped-Half-and-Half algorithm with a maximum depth
constrained by a maxInitialDepth parameter. For stan-
dard GP (program with a single result producing branch)
the maximum initial depth when using MM was set to 5 and
expression trees were allowed to grow up to depth of 10. In
the case of UXO 1 both the initial and maximum depths
are set to 10. For GP with ADfs and OOGP the maximum
initial depth for the case of MM was set to 5 whereas the
maximum tree depth was set to 8. Analogously, for UXO
both initial and maximum depths are set to 8.

In the case of macro-mutation search regime, MM is the
sole operator and is applied with 100% probability. For the
recombination search regime, UXO is applied with 100%
probability and subsequently each offspring is subjected to
PM with a variable mutation probability pm. This is in-
duced by dividing 2 by the size of the tree and refers to the
probability that a single node will be mutated.

3.6 Evolving Neural Network Controllers
In the neural network controller representation, each con-

troller is based on either a multi-layer perceptron or on a
Elman-style recurrent neural network (essentially an MLP
with an added layer of connections to the hidden neural
layer from the hidden layer of the last update of the net-
work). All the MLPs take the speed and the angle to the
next waypoint as inputs, and in addition to this they take a
number of wall sensor readings as inputs as determined at
the start of each experiment. These wall sensors are con-
stant throughout the evolutionary run, and are distributed
at roughly even angular intervals around the car (accessed
through calls to getWallSensorReading with a constant an-
gle and a range of 1 – figure 2(b)).

We evolve three different neural network configurations:
MLPs with 12 hidden neurons and 12 wall sensors, Recur-
rent neural networks with 12 hidden neurons and 12 wall
sensors, and MLPs with 12 hidden neurons but only 4 wall
sensors.

4. RESULTS

4.1 Single-track Controllers
The first set of experiments concern the evolution of driv-

ing skills on a single track. The track in question is track 5
on figure 2(a), which is one of the easiest of the eight tracks.

1A very interesting property of UXO is that the offspring
will not grow past the depth of its deeper parent and thus
past the depth of the deepest program populating the initial
generation.
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In this set of experiments, each evolutionary run starts with
freshly created controllers: neural networks with all connec-
tion weights set to 0, or GP controllers with small randomly
generated trees. For each controller configuration, we ran
10 independent run of 200 generations with population 100.
The results of this can be seen in table 2.

The first observation on the results is that all configura-
tions of both NN and GP controller representations managed
to evolve high-performing car drivers. But the performance
of GP and NN controllers are not identical. Generally, it
can be seen that the GP controllers evolve much faster than
the NN controllers, but that the NN controllers ultimately
reach higher fitnesses. No significant difference can be seen
between functional and object-oriented GP, and between re-
current and feedforward neural nets.

4.2 Performance on Several Tracks
Next, we looked at the generalisation capability of the

controllers evolved in the preceding section. This was done
by trying each of these controllers on each of the eight tracks,
not only the track for which they had all been evolved.

Due to lack of space, we have omitted the table detailing
the results, but it can safely be said that in general, the
evolved neural networks perform significantly better than
the GP controllers even for tracks for which they have not
been evolved. Like in the previous section, not much of a dif-
ference was found between stateful and stateless controllers.
Finally, similarly to our previous paper [9], all controllers
scored lower on other tracks than on track 5, for which they
had been evolved, but scored slightly better on tracks which
like track 5 run counter-clockwise than on those that run
clockwise.

4.3 Evolving Generalisation
The final set of experiments concern the incremental evo-

lution of general controllers. In these experiments, each evo-
lutionary run was seeded with the results of the 200 gener-
ations of evolution on a single track described above. Then,
evolution proceeded for 50 generations, with the crucial dif-
ference that the fitness function was made incremental; each
controller evaluation was done as the average of the progress
that controller displayed on a set of tracks. At the first gen-
eration of each evolutionary run, only track 5 was used for
fitness evaluations, but every time a controller reached fit-
ness 1.5 a track was added to the evaluation set (and kept
for the duration of the evolutionary run). The sequence in
which tracks were added was 5, 6, 3, 4, 1, 2, 7, 8. (Note
that every second track added runs clockwise instead coun-
terclockwise, to increase the diversity between tracks added
in sequence and thus avoid overfitting to a particular driv-
ing direction.) A controller that was able to generalise com-
pletely and drive proficiently on all tracks would at the end
of these 50 extra generations have all 8 tracks in its eval-
uation set, whereas a very poor generaliser would be stuck
with only track 5 in the set.

As a consequence, the graphs depicted in figure 3 for these
evolutionary runs include not only the fitness of the best
controller in the population but also the incrementation level
(number of tracks in the evaluation set) of the population.

As we can see from table 3, both NNs and GP are able
to incrementally generalise previously evolved controllers
and achieve proficiency on a majority of the eight tracks.
However, there is a marked difference, in that the neu-

Table 3: Average number of tracks, proficiently
driven (averaged over 10 independent evolutionary
runs - std. deviation in parentheses)

Method Avg. no of tracks

Functional/ADFs/Macromutation 6.0 (0.8)
OO/Macromutation 5.8 (0.91)
OO/Recombination 4.6 (1.07)
MLP 8.0 (0.0)
Recurrent 8.0 (0.0)
MLP with less sensors 8.0 (0.0)

ral network-based controllers on average generalised signifi-
cantly better, and end up being able to drive proficiently on
seven of the eight tracks.

On the other hand, there seems to be no significant perfor-
mance difference between stateful and stateless controllers,
i.e. between MLPs and functional GP on the one hand and
recurrent networks and OOGP on the other hand.

4.4 A Gallery of Evolved Car Controlling
Programs

(Method:rootGlue
(Method:sub

(Method:getSpeed
)
(Method:sub

Constant : 3.0
Constant : 4.0

)
)
(Method:mul

(Method:angleToNextWaypoint
)
Constant : 0.2617993877991494

))

Figure 4: Sample evolved program using standard
GP

(Method:rootGlue
Constant : 3.141592653589793
(Method:sub

(Method:getWallSensorReading
Constant : -1.0
Constant : 0.2617993877991494

)
(Method:angleToNextWaypoint
)

))

Figure 5: Sample evolved program using standard
GP

This section presents some sample evolved car controlling
programs. A very simple strategy that seems to be adequate
of achieving a high fitness on track 5 was based on maintain-
ing a constant speed in the forward direction and steering
defined as a factor of the angle to the next waypoint. Various
bloated forms of this algorithm have been designated as the
best-of-run controller, using all different forms of program
representation (OO/Functional with ADFs/Functional with
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Table 2: Average fitness of best controller for generations 10, 50, 100, 200 (averaged over 10 independent
evolutionary runs - std. deviation in parentheses)

Method 10 50 100 200

Functional/no ADFs/Macromutation 1.26 (0.65) 2.33 (0.4) 2.47 (0.4) 2.51 (0.15)
Functional/ADFs/Macromutation 1.54 (0.45) 2.54 (0.17) 2.62 (0.15) 2.67 (0.1)
Functional/no ADFs/Recombination 1.87 (0.52) 2.38 (0.16) 2.45 (0.17) 2.46 (0.17)
Functional/ADFs/Recombination 1.62 (0.74) 2.23 (0.63) 2.39 (0.47) 2.53 (0.17)
OO/Macromutation 1.55 (0.61) 2.47 (0.7) 2.54 (0.18) 2.59 (0.18)
OO/Recombination 1.10 (0.75) 2.39 (0.3) 2.47 (0.07) 2.55 (0.07)
MLP 0.13 (0.17) 2.48 (0.67) 2.92 (0.09) 3.08 (0.07)
Recurrent 0.19 (0.16) 1.06 (0.45) 2.43 (0.46) 2.92 (0.16)
MLP with less sensors 0.19 (0.22) 2.65 (0.08) 2.94 (0.08) 3.07 (0.02)

(Method:rootGlue
Constant : 2.0
(Method:sub

Constant : 0.2617993877991494
(Method:sub

(Method:setValue
SettableVariable[1]
(Method:angleToNextWaypoint
)

)
(Method:mul

Constant : -0.5235987755982988
Constant : 0.0

)
)))

Figure 6: Sample evolved program evolved using
OOGP

no ADFs). Figure 4 presents a program that exhibits the
above strategy. The rootGlue accepts two sub-expressions
rooted is the subtraction (sub) and multiplication (mul)
methods respectively. The evaluation of the first subtree
adds one to the current speed. The evaluation of the second
subtree multiplies the angle to next waypoint with the coef-
ficient 0.26. More specifically the above controller attained a
fitness of 2.84 in track 5 but generalized poorly when tested
on additional tracks.

Figure 5 presents a controller that generalised with the
first 6 tracks. Here we observe a different strategy than
the one previously discussed. First we note that the con-
troller is constantly driving forwards, given by the constant
3.14. The tree that is evaluated to induce the steering value
uses two sensors. The wall sensor can be visualized as a
line protruding to the right of the (with an angle of ap-
proximately π/3) and a range of approximate pixels. The
wallSensorReading method returns a value in the interval
of [0, 1]. Given that the range of the sensor is relatively
small (50 pixels), this sensor will be most of the time re-
turning 1 unless it comes very close to a right wall (assume
that the can is moving anti-clockwise). The car will initially
turn away from the first way point. At the initial time-step
t0 the angle to next way point is zero so the expression tree
rooted in the sub node will return a negative value. While
the car is steering to the opposite direction, the angle to
the next way point will be increased and thus the difference
1−angleToNextWayPoint will gradually return a negative
number that will force the car to change direction and move
towards the way point.

Finally, figure 6 presents a program that uses state infor-
mation. The controller is driving forwards as specified by
the constant 2. The steering value is given by the subtree
rooted in the node sub. At time ti the program stores the
angle to the next way point to the instance variable with in-
dex 1 and returns the value of the instance variable at time
ti−1.

4.5 GP Results
Observing the results of table 2 we note that state infor-

mation did not add any significant advantage to the evolved
controllers and so the functional representation that employs
ADFs performed quite similar to the OO representation. As
expected, GP with ADFs performed better than standard
GP. Furthermore, we found that even when state manipula-
tion constructs are present in the primitive language, the
evolved programs presented a tendency towards avoiding
their use. Our intuition suggests that this may be due to the
nature of the problem. The evolved programs can have di-
rect access to the information needed for navigation within
the track and it seems that there is no need for the program
to maintain an environmental model by keeping track of var-
ious sensor readings. State manipulation would appear very
promising if we allow the car to be trained in the normal
way and then we switch off the environmental sensors. It
seems likely that a sensorless program could take advantage
of extra information that it built and maintained during the
training stage.

Homologous uniform crossover appears to be very promis-
ing and achieved substantially competitive performance
with macro-mutation as far as the training on a single track
in concerned. However, controllers evolved using recombi-
nation found to be generalising with an average of 4.6 tracks
whereas those evolved using macro-mutation drove sensibly
in an average of 5.8 tracks. This form of crossover is very
sensitive to the evolutionary run parameters (initial depth,
population size, point mutation probability) and is believed
that adequate tuning will yield even better performance.

5. CONCLUSIONS
The main finding of our experiments is that, for the given

problem and experimental setup, the various versions of GP
evolve faster than NNs, but the neural networks ultimately
perform better, especially on the more complicated version
of the task, that takes all eight tracks into consideration.

An early suspicion was that as the GP trees evidently
make use of much fewer wall sensor readings than the neural
network controllers, this contributed to the fast learning but
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Figure 3: (a) Best-of-generation individuals using GP with ADFs; (b) Best-of-generation individuals using
OOGP and MM (generalisation to additional tracks is shown after generation 200); (c) Tracks driven profi-
ciently using OOGP and MM; (d) Best-of-generation-individuals using MLP; (e) Generalisation to additional
tracks after generation 200 using MLP (f) Tracks driven proficiently using MLP

poor generalisation of GP controllers. The argument was
that it is easier to learn to drive on a simple track when only
caring about the speed and the angle to the next waypoint,
but that this strategy breaks down when exposed to the
more complicated tracks where the straight line between two
waypoints might pass through a wall. As neural networks
are in effect forced to consider all its sensor readings, this
makes it harder to find an initial control strategy, but once
found, such a control strategy will be much more robust.
Much to our dismay, our hypothesis was falsified by the
inclusions of the ”minimal” neural network controller that
only uses four wall sensors, yet performs almost as well as
those controllers that use 12 wall sensors.

Another hypothesis is that we are being unfair to GP when
we are asking it to compete with neural networks on the
neural networks’ home arena. GP experiments typically use
much larger population sizes and different selection regimes.
Given such changes the GP controllers might very well out-
perform our neural network controllers.

An additional puzzling phenomenon is the virtual lack of
difference between the performance of stateless and stateful
controller representation. Our best bet as to why this is so
is that we need even more complex versions of the car racing
task, such as competitive multi-car racing, in order to ex-
ploit the statefulness of the controllers. Maybe we also need
to introduce more complex primitive object; one promising
suggestion is to include complete forward models of the car
dynamics as objects which could be accessed and manipu-
lated by the OOGP system.
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