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ABSTRACT
Recent research [1] has found that standard sub-tree
crossover with uniform selection of crossover points, in the
absence of fitness pressure, pushes a population of GP trees
towards a Lagrange distribution of tree sizes. However, the
result applied to the case of single arity function plus leaf
node combinations, e.g., unary, binary, ternary, etc trees
only. In this paper we extend those findings and show that
the same distribution is also applicable to the more gen-
eral case where the function set includes functions of mixed
arities. We also provide empirical evidence that strongly
corroborates this generalisation. Both predicted and ob-
served results show a distinct bias towards the sampling of
shorter programs irrespective of the mix of function arities
used. Practical applications and implications of this knowl-
edge are investigated with regard to search efficiency and
program bloat. Work is also presented regarding the appli-
cability of the theory to the traditional 90%-function 10%-
terminal crossover node selection policy.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming

General Terms
Algorithms, Performance

Keywords
Genetic Programming, Crossover Bias, Program Size Distri-
bution, Bloat, Initialisation

1. INTRODUCTION
Program size is important to the efficiency of Genetic Pro-

gramming (GP). Too large a program will produce an ineffi-
cient solution and one that is costly to quantify in terms of
fitness, whilst too small a program will not produce a viable
solution.
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Theoretical and empirical work in this area has often
looked at how populations will be distributed by length with
repeated application of a crossover operator on a flat fit-
ness landscape [2, 3]. Although this is a highly improbable
real-world scenario, if we take account of the fact that once
parents are selected the process of reproduction becomes a
purely mechanical gene swapping/creation exercise, with no
regard to fitness1, the worth of such experimentation be-
comes obvious with regard to analysis of potential operator
length bias.

Early work has concentrated on Linear GP [2], particu-
larly how individuals made up of unary functions and termi-
nals will over time become distributed by length according
to the following fixed-point Gamma distribution on repeated
application of the standard crossover operator with uniform
selection of crossover points:2

Pr{�} = �r�−1(1 − r)2 (1)

where r = (μ0 − 1)/(μ0 + 1) and μ0 is the average size of
the individuals in the population at generation 0. Recent
research [1], however, has shown that length distributions
of populations with different combinations of terminals and
functions can also be predicted accurately. In particular,
it was found that the limiting distribution is the following
Lagrange distribution of the second kind:

Pr{n} = (1 − apa)

�
an + 1

n

�
(1 − pa)(a−1)n+1pn

a (2)

where Pr{n} is the probability of selecting a tree with n
internal nodes and a is the arity of functions that can be
used in the creation an individual. The parameter pa was
shown to be related to μ0 and a according to the formula:

pa =
2μ0 + (a − 1) −

�
((1 − a) − 2μ0)2 + 4(1 − μ2

0)

2a(1 + μ0)
(3)

The distribution in Equation (1) was shown to be a special
case of Equation (2) (obtained by setting a = 1).

As we can see the distribution is limited to the prediction
of GP populations made up of individuals that contain func-
tions of a single arity. The first contribution of this paper

1In fact, in the case of most commonly used GP variation
operators there is also no analysis of node labels [4].
2This is an ordinary subtree crossover where all nodes in a
tree (including terminals) are selected with equal probabil-
ity, i.e., without the 90%-function 10%-terminal node policy
often used by practitioners.
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will be to overcome this limit. We will then use this exten-
sion to understand the practical impact of crossover aiming
for a Lagrange distribution on GP effectiveness.

The paper is organised as follows. Section 2 looks at how
the work described in [1] and summarised above can be gen-
eralised to predict a distribution of program sizes for GP ex-
periments with a function set that contains a mix of arities
(previous work looked at function sets with only one func-
tion arity). Section 3 provides empirical evidence to support
our extension. Section 4 looks at possible applications of the
result, namely initialisation and the sampling of particular
program sizes. In Section 5 we look at the applicability and
implications of the theory in the case where crossover points
are chosen using the traditional 90%-function 10%-terminal
node selection policy. Finally, Section 6 draws some conclu-
sions.

2. GENERALISATION
Within [1], the distribution in Equation (2) was shown to

describe the limiting distribution of tree sizes obtained in a
population under repeated operation of standard crossover
with uniform selection of nodes, when the internal nodes are
all of the same arity, a. The theory leading to this result
is extremely complex, and, so, it appears very difficult to
generalise this result to the case of generic GP primitive
sets starting from first principles.

Before embarking on such a difficult analysis, therefore
we wondered to what extent Equation (2) would still be
applicable if functions of mixed arities were allowed. In par-
ticular, rather than viewing a as simply the identical arity
of a particular set of functions selected we can choose to use
this as the expected number of children of a non-terminal
picked from a function set, i.e. an average arity. Hence,
an average a, which we will call ā to avoid confusion, can
be calculated for mixed function arities from experimental
initialisation parameters as follows

ā = E(arity(F )) =
�

f

arity(f)P (F = f) (4)

where f is a non-terminal to be used in the GP experiment,
arity(f) is a function returning the arity of the non-terminal
f , and P (F = f) being the probability that a particular
non-terminal f will be selected for a non-terminal node by
the tree inititialisation procedure. For traditional FULL and
GROW initialisation methods non-terminals are chosen with
equal probability [5]. Alternatively, ā can be given simply by
the calculation of non-terminal average arity from the initial
population. (For larger populations these will of course be
almost identical.)

With this new definition of a, we have the problem that
the term an + 1 in the binomial coefficient

�
an+1

n

�
in Equa-

tion (2) may be non-integer. So, the next step is to alter
the definition of binomial coefficient so that it will also work
with non-integer data values, as demanded by our new aver-
age arity version of a. This can be done simply by using the
Gamma function as an alternative for the factorials used,
i.e., Γ(n + 1) = n! [6]. As a result we can rewrite the bino-
mial coefficient as follows�

n

k

�
=

n!

(n − k)!k!
=

Γ(n + 1)

Γ(n − k + 1)Γ(k + 1)
(5)

Therefore �
an + 1

n

�
=

Γ(an + 2)

Γ(an − n + 2)Γ(n + 1)
(6)

which, substituted into Equation (2), gives us the distribu-
tion

Pr{n} = (1−āpā)
Γ(ān + 2)

Γ((ā − 1)n + 2)Γ(n + 1)
(1−pā)(ā−1)n+1pn

ā

(7)
We conjecture that this will be the limiting distribution for
function sets of mixed arities. As we will see in the following
section, this assumption appears to be very realistic.

3. EMPIRICAL VALIDATION
In order to verify empirically the distribution proposed

we performed a number of runs of a GP system in Java.
As in [1] a relatively large population of 100,000 individuals
was used in order to reduce drift of average program size
and to ensure that enough programs of each length class
were available. The FULL [7] initialisation method was used
with each function having the same probability of selection.
Each run consisted of 500 generations.

Histograms were collected from the final generations (in
order to ensure the effects of our chosen initialisation method
have been washed-out3), each bin being the number of in-
ternal nodes contained within a program. A comparison of
theoretical predictions and observed results, averaged over
twenty runs, is available in Figures 1–4. Figures 1 and 2 are
particularly interesting since they represent the behaviour of
the primitive sets for the Parity and Artificial Ant problems
[7] respectively (the other two figures represent hypotheti-
cal function sets where even more spread of primitive arities
is present). In all cases the match between theoretical pre-
dictions and empirical data is striking (note that sampling
noise is more marked in the longer-length classes because
there are fewer programs in each).

As we can see from both our theoretical and observed re-
sults there is a distinct bias towards the sampling of smaller
programs as it was found in [1]. The allowance of mixed
arity function sets, in addition to single arity sets, does not
alter this bias.

4. PRACTICAL APPLICATIONS
Now that we have a formula to predict our distribution of

program lengths under crossover the next step is to see how
we can apply our theory to practical GP applications.

4.1 Sampling of Program Size
With some problems we may have an initial idea of likely

program lengths that may be required to provide an accept-
able solution. For example, this knowledge may range from
knowing that a minimum length is required in that enumer-
ated search has been unsuccessful up to a length when the
search was found to be intractable, or simply that previous
attempts using specific designs or other search algorithms
had provided some initial success at certain solution lengths.
Also, for classical test problems, a great deal of information

3It would, of course, be interesting to see how many genera-
tions are required to nullify length effects of different initial-
isation methods. However, this is beyond the scope of this
paper and will be a subject for future research.
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Figure 1: Comparison between empirical and the-
oretical program size distributions for trees made
up of only an arity 2 function (a=2) initialised with
FULL method (depth=3, initial mean size μ0 = 15.0,
mean size after 500 generations μ = 14.494514)

is available about the distribution of program functional-
ity (including fitness) as the length of programs is varied
(see, for example, [8]). So, it is possible to infer from such
distributions what are the best length classes on which to
concentrate the search for solutions.

Our first step is to see how we can use the parameters
of the limiting distribution of crossover to at least begin
to sample a significant number of programs of a particular
size. The average arity value ā is derived from our function
set which we assume is fixed for the experiment i.e. that
all functions are deemed likely to be required to solve the
problem. We are, therefore, left with our value for pā which
is in turn derived from ā which we do not want to change
and the mean program size of the initital generation μ0.
This latter value can be directly altered by manipulating
the parameters of our initialisation method in order that
significantly large trees are produced.

To illustrate this if we start with the Artificial Ant
problem [7], we have three functions: IF-FOOD-AHEAD,
PROGN2, PROGN3 with arities of 2, 2, and 3 respectively.
As seen in figure 2 our value of ā for this group of arities is
7/3. Knowing this we can alter the value of μ0 to enable the
sampling by crossover of different program length spaces.
Figure 5 shows how varying μ0 alters the crossover distribu-
tion. We can see that there is a consistent high sampling of
smaller programs, however, starting from a reasonable base
figure relatively small increases in μ0 allow larger programs
to be sampled more consistently.

As an illustration, the Artificial Ant problem is known to
have no ideal solutions before a program size of 11 [8], if we
were to ensure that a percentage of programs sampled were
to have at least 5 internal nodes4 for a μ0 value of 5, 10,
and 20 crossover would sample 16%, 36%, and 54% of the
population respectively for that program size or greater.

So, if we initialised the population so that the length dis-
tribution is a Lagrange distribution of the second kind (as
we will discuss in the following section), we could perform
an informed choice of what is the best μ0 to use to maximise

4This estimate is derived from length = an + 1 see [1].
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Figure 2: Comparison between empirical and theo-
retical program size distributions for trees made up
of a mix of 2, 2, and 3 arity functions (a=7/3) ini-
tialised with FULL method (depth=3, initial mean
size μ0 = 21.48, mean size after 500 generations μ =
23.5739605)

the chance of solving a problem. Naturally, if, instead, we
initialised the population with a distribution that is very
different from a Lagrange distribution of the second kind,
as is the case, for example, for FULL or GROW initialisa-
tion, then it would take a few generations before crossover
transforms the size distribution into something resembling
such a distribution. However, eventually this would happen.
At that point, a good choice of μ0 would start paying off.

4.2 Initialisation
By choosing to apply GP to a particular problem we have

made an assumption that both fitness based selection and
crossover are likely to provide an efficient search method to
provide a solution. Normally a GP initialisation method is
used GROW, FULL, RAMPED etc that takes no account
of the eventual distributions ’desired’ by either crossover or
fitness (or any other GP operator such as mutation). Nor-
mally, eventual fitness values are not known in advance of
a GP experiment, however, we now have evidence to show
that crossover will, with repeated application, distribute the
population according to a predictable distribution. Our next
step is to investigate the possible benefits or disadvantages
of initialising a population by length to take account of
crossover.

We could of course write an algorithm to initialise the
population according to the eventual predicted distribution
desired by crossover. The most straightforward programati-
cal method, however, is to simply run the first ’X’ number of
generations of a GP experiment without fitness, thereby al-
lowing crossover to distribute program lengths without hav-
ing to endure the cost of fitness calculations.

To test this idea we took two out-of-the-box problems
from the ECJ [9] evolutionary toolkit, the Artificial Ant
as previously discussed and 4 Bit Even Parity, making ad-
justments to remove mutation, ensure uniform selection of
crossover points, and to prevent a depth limit being applied.
A population size of 1024 individuals was used and the re-
sults averaged over a hundred runs. All experiments were
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Figure 3: Comparison between empirical and theo-
retical program size distributions for trees made up
of a mix of 1, 2, 3 and 4 arity functions (a=10/4) ini-
tialised with FULL method (depth=3, initial mean
size μ0 = 25.38, mean size after 500 generations μ =
23.76)

initialised using the FULL method with a depth of 3, each
experiment looked at the effect of running with zero, twenty
or fifty initial generations where a constant fitness value was
applied before allowing the experiment to continue as nor-
mal. Naturally, the flat-fitness phase was much faster than
normal, since no fitness evaluation was required. During
this phase crossover was free to distribute the population
towards its limit size distribution.

As we can see in figures 6-7, there is noticable degrading
in mean fitness for the populations with initial crossover-
only generations compared to those were fitness is applied
straight away. This is also seen in figures 8-9 where best
fitness has been recorded. If we look at figures 10-11 we can
see there is much greater variation in individual fitness for
the fitter populations.

The reason for this effect is in the sampling of smaller pro-
grams produced by “Lagrange-like” initialisation. A pop-
ulation distributed by length through the application of
crossover will contain large numbers of relatively small pro-
grams. In both the Artificial Ant and Parity problems these
short programs are associated with low fitness [8]. Crossover
has, therefore, created lots of smaller programs with rela-
tively poor fitness values, whilst FULL originally produced
programs above a reasonable threshold5.

We can also apply these findings to the problem of un-
derstanding the origins of bloat, as we discuss in the next
section.

4.3 Bloat
Bloat, the growth of program size during a GP run with-

out a significant return in terms of program fitness, is seen
in many GP experiments. Figures 12-13 show graphs of pro-
gram growth for the two problems described in the previous
section. There is a noticeable increase in program growth
for the populations with “Lagrange-like” initialisation.

5It should be noted, however, that in problems where high
fitness is associated very small programs the opposite may
be true
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Figure 4: Comparison between empirical and theo-
retical program size distributions for trees made up
of a mix of 1, 3, 3 and 4 arity functions (a=11/4) ini-
tialised with FULL method (depth=3, initial mean
size μ0 = 32.12, mean size after 500 generations μ =
33.22).

At first one might find this result very surprising. How
is it that initialisation has such a big effect on bloat, which
is typically associated with late generations of a run, when
effectively the population starts stagnating? An explanation
for this lies in the combination of the crossover sampling
distribution and fitness.

In every generation we produce a mating pool of relatively
fit programs which will be used for reproduction. The stan-
dard crossover operator (with uniform selection of crossover
points) will create a certain distribution of program sizes ir-
respective of the fitness of programs selected in that mating
pool. For example, if size 45 programs are for some reason
very fit, once in the mating pool, crossover takes no account
of this fitness and produces a distribution of differing pro-
grams. From the theory provided earlier in the paper we
know that this distribution is biased, in frequency, towards
smaller programs, but with a tail of larger programs.

As the smaller programs will tend to be less fit (as a pro-
portion of the population), these will not be selected for
mating in the next generation. The larger programs will be
selected as parents, thereby providing a higher probability
of larger trees being created as children.

This explanation fits completely within the mathematical
explanation for bloat provided in [10], where the following
size evolution equation was derived6

E[μ(t + 1) − μ(t)] =
�

l

N(Gl)(p(Gl, t) − Φ(Gl, t))

where μ is mean program size, Gl represents all programs
of a particular shape, N(Gl) represents the size of programs
of shape Gl, p(Gl, t) represents the selection probability for
programs of shape Gl and Φ(Gl, t) represents their frequency
in the population. If, as is the case for the Ant and Par-

6A major finding of this paper is that for symmetric subtree-
swapping crossover operators, e.g., standard crossover, “The
mean program size evolves as if selection only was acting on
the population”. The derivation of this equation is explained
in section 5.4 of [10].
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Figure 5: Comparison of Pa probability distribu-
tions for different μ0 parameters for the Artificial
Ant problem. Note: the use of a logarithmic scale
for the probability axis.

ity problems, the selection probability for short programs
is consistently lower than their frequency, then, everything
else being equal, one must expect E[μ(t + 1) − μ(t)] > 0,
and hence bloat will occur.

In essence where a reasonable minimum size threshold ex-
ists for relatively fit programs, the repeated application of
fitness based selection and standard crossover (with uniform
selection of crossover points) to a population will cause bloat
to occur. Our experimentation has shown that by allowing
crossover to distribute a population before applying fitness
we make this effect more acute. That is we are produc-
ing populations with proportionately more shorter programs
than those created using more traditional GP initialisation
methods.

5. CROSSOVER WITH 90%-FUNCTION/
10%-TERMINAL CROSSOVER-POINT
SELECTION POLICY

The theoretical results on the evolution of size during GP
runs developed in [2, 3, 1] and in this paper assume that
crossover points are selected uniformly at random out of the
set of all primitives in a tree (including terminals). This
assumption simplifies the, already complex, mathematics
required to obtain results in this area. However, GP re-
searchers and practitioners almost universally use a 90%-
function/10%-terminal crossover-point selection policy. We
will call this policy 90/10 for brevity. It is, therefore, inter-
esting to investigate to which extent the theory for uniform
crossover point selection applies to this, non-uniform case.
In this section, we will present a preliminary analysis of this
issue. Much more work will need to be devoted to it in
future research.

The starting point for our analyis is that in the 90/10
policy crossover points are still uniformly distributed within
each class of nodes (internal vs. terminals). So, 90/10
crossover may still have the symmetries required to model
the tree population using a branching process as was done
in [1]. This, in turn, suggests that some form of modified
Lagrange distribution of the second kind might still be ap-
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Figure 6: Comparison of mean fitness values for pop-
ulations with zero, twenty and fifty prior generations
of crossover without fitness for the Artificial Ant
problem. Note: values for generations where the
fitness function was “switched off” are not shown.

plicable to describe the limiting distribution of tree sizes for
90/10 crossover.

We are not in a position to say what the exact size distri-
bution under 90/10 crossover would be. However, we note
that the 90/10 policy has a considerable effect on the propor-
tion of programs of size 1, (i.e., with no internal nodes). This
is because such programs are only created if the crossover
point in the root donating parent is the root node itself and
the crossover point in the subtree donating parent is a ter-
minal. In the 90/10 policy the probability of a leaf node
is artificially set to 10%, which, with typical primitive sets,
is notably smaller than with uniform selection of crossover
points. Naturally, in the same conditions, the probability
of the root node being chosen grows, but not enough to
compensate for the drop the probability of selecting termi-
nals. So, their product – the probability of creating size 1
programs – is much smaller than in the uniform case. Nat-
urally, if there is a drop in the frequency of size 1 programs,
there must be a corresponding increase in the other length
classes.

On the basis of these observations, it is clear that the
distribution of tree sizes under 90/10 crossover cannot be a
pure Lagrange distribution of the second kind. However, we
might expect to see a “Lagrange-like” distribution for pro-
grams with one or more internal nodes. We conjecture that
the following family of distributions may provide a reason-
able first order approximation of the true limiting distribu-
tion of sizes for subtree crossover with 90/10 policy:

Pr 90/10{n} =

�
α if n = 0,

(1 − α) Pr{n,ā,pā}
1−Pr{0,ā,pā} otherwise,

(8)

where α is a constant and Pr{n, ā, pā} stands for the exten-
sion to the Lagrange distribution of the second kind in Equa-
tion (7). In this formula the denominator 1 − Pr{0, ā, pā}
has the effect of normalising the numerator Pr{n, ā, pā} in
such a way to make it a probability distribution for n ≥ 1.7

7Naturally Pr{n, ā, pā} is already a probability distribution
for n ≥ 0.
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Figure 7: Comparison mean fitness values for popu-
lations with zero, twenty and fifty prior generations
of crossover without fitness for the 4 Bit Even Parity
problem
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Figure 8: Comparison best fitness values for popu-
lations with zero, twenty and fifty prior generations
of crossover without fitness for the Artificial Ant
problem

That is
�

n≥1

	
Pr{n,ā,pā}

1−Pr{0,ā,pā}



= 1. Then the multiplication

by (1−α) ensures that Pr 90/10{n} is a probability distribu-
tion for any value of α ∈ [0, 1], ā > 0 and pā ∈ [0, 1/ā].

To corroborate this conjecture we performed GP runs with
the same configuration as in Section 4 except that this time
we used 90/10 crossover. Figure 14 shows a comparison
between empirical size distributions observed at generation
500 in our runs and corresponding Pr 90/10{n} modified La-
grange distributions for the case of trees made up with prim-
itives of average arity ā = 1.5, 2 and 2.5 (see caption of
Figure 14 for additional information). The theoretical mod-
els were obtained by setting α equal to the number of pro-
grams with no internal nodes and finding the value of pā

which minimised the mean square error between empirical
data and Equation (8). Naturally, our choice of α guaran-
tees a perfect fit for n = 0. Its value, however, influences
the scaling of the whole distribution for n > 0. It is, then,
remarkable to see that such choice allows a very accurate
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Figure 9: Comparison best fitness values for popula-
tions with zero, twenty and fifty prior generations of
crossover without fitness for the 4 Bit Even Parity
problem

 0

 100

 200

 300

 400

 500

 600

 700

 0  5  10  15  20  25  30  35  40  45  50

V
ar

ia
nc

e 
of

 F
itn

es
s 

(T
ot

al
 F

oo
d 

- 
F

oo
d 

E
at

en
)

Generation

Zero
Twenty

Fifty

Figure 10: Comparison fitness variance values for
populations with zero, twenty and fifty prior gener-
ations of crossover without fitness for the Artificial
Ant problem

match between our conjectured theoretical distribution and
the distribution observed in real runs.

These results suggest that many of the implications and
applications of the size bias of subtree crossover with uni-
form selection of crossover points discussed in Section 4 carry
over to the case of 90/10 crossover.

6. CONCLUSIONS
A decoupling of fitness from the mechanical reproduction

process means that an awareness of bias within our repro-
duction operators is essential in the understanding of how ef-
ficiently an algorithm will search the possible program space.

We have presented within this paper a generalisation of
the limiting distribution of program sizes in tree-based ge-
netic programming (Equation (7)).

The formula provides evidence that the reproduction pro-
cess has a strong bias to sample shorter programs when
crossover with uniform selection of crossover points is ap-
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Figure 12: Comparison mean number of nodes for
populations with zero, twenty and fifty prior gener-
ations of crossover without fitness for the Artificial
Ant problem

plied. This bias is most acute when a population has a
small mean program size.

A number of practical concerns have been presented in
light of this bias. The first is an inability to sample large
proportions of the problem space, i.e., those associated with
larger programs. Additional problems with crossover are
also encountered when fitness is associated with certain min-
imum program sizes leading to relatively poor performance
in the finding of fit solutions and a tendency for the popu-
lation to bloat. In particular, we have shown that bloat can
occur even from generation 0. It normally happens effec-
tively only in much later generations because it takes time
for crossover to heavily skew the size distribution towards
short programs, towards its limiting Lagrange distribution
of the second kind.

It is, therefore, evident that future research should look
into ways of modifying the bias of crossover if bloat is to
be prevented. One way to achieve this is to “equalise” the
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Figure 13: Comparison mean number of nodes for
populations with zero, twenty and fifty prior gener-
ations of crossover without fitness for the 4 Bit Even
Parity problem

distribution of tree sizes produced by crossover. This can be
done, for example, by using an adaptive process of crossover
point selection which actively streers the offspring size dis-
tribution towards a more desirable distribution.

Aware of the fact that many practitioners use crossovers
with a non-uniform selection of crossover points, in Sec-
tion 5 we extended our theoretical results to the case
where crossover points are chosen using the traditional 90%-
function 10%-terminal node selection policy. Surprisingly,
the model we obtain for the distribution of program sizes
(Equation (8)) is a simple modification of the one for the
uniform case. This reveals that, except for the case of pro-
grams with no internal nodes, the two crossovers have effec-
tively the same size biases. So, all of the implications and
applications we considered in Sections 4.1–4.3, including our
explanation for bloat, carry over to the 90/10 crossover case.
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