
Evolving Lucene Search Queries for Text Classification

Laurence Hirsch

Sheffield Hallam University
Pond Street

Sheffield S1 1WB
+44 (0)114 225 5555

lauriehirsch@gmail.com

Robin Hirsch
University College London

Gower Street
London WC1E 6BT

+44 (0)20 7679 2000

r.hirsch@cs.ucl.ac.uk

Masoud Saeedi
Royal Holloway University

Egham
Surrey TW20 OEX

+44 (0)1784 434455

m.saeedi@rhul.ac.uk

ABSTRACT
We describe a method for generating accurate, compact, human
understandable text classifiers. Text datasets are indexed using
Apache Lucene and Genetic Programs are used to construct
Lucene search queries. Genetic programs acquire fitness by
producing queries that are effective binary classifiers for a
particular category when evaluated against a set of training
documents. We describe a set of functions and terminals and
provide results from classification tasks.

Categories and Subject Descriptors
D.3.3 [Programming Languages]:

General Terms: Algorithms.

Keywords
text classification, Genetic Programming, Apache Lucene.

1. INTRODUCTION
Automatic text classification is the activity of assigning
predefined category labels to natural language texts based on
information found in a training set of labelled documents. In
recent years it has been recognised as an increasingly important
tool for handling the exponential growth in available online texts
and we have seen the development of many techniques aimed at
the extraction of features from a set of training documents, which
may then be used for categorisation purposes. It has also been
recognised that knowledge discovery is best served by the
construction of predictive models which are both accurate and
comprehensible.
In the 1980’s a common approach to text classification involved
humans in the construction of a classifier or 'expert system',
which could be used to define a particular text category. Such a
classifier would typically consist of a set of manually defined
logical rules, one per category, of type

if {DNF formula} then {category}
A DNF (“disjunctive normal form”) formula is a disjunction of
conjunctive clauses; the document is classified under a category if
it satisfies the formula i.e. if it satisfies at least one of the clauses.
An often quoted example of this approach is the CONSTRUE

system[8], built by Carnegie Group for the Reuters news agency.
A sample rule of the type used in CONSTRUE to classify
documents in the ‘wheat’ category of the Reuters dataset is
illustrated below.

if ((wheat & farm) or
(wheat & commodity) or
(bushels & export) or
(wheat & tonnes) or
(wheat & winter & ¬ soft))
then
WHEAT else ¬ WHEAT

Such a method, sometimes referred to as ‘knowledge
engineering’, provides accurate rules and has the additional
benefit of being human understandable. That is, the definition of
the category is meaningful to a human, thus producing additional
uses of the rule including verification of the category. However
the disadvantage is that the construction of such rules requires
significant human input and the human needs some knowledge
concerning the details of rule construction as well as domain
knowledge [1]. Since the 1990’s the machine learning approach to
text categorisation has become the dominant one. In this case the
system requires a set of pre-classified training documents and
automatically produces a classifier from the documents. The
domain expert is needed only to classify a set of existing
documents. Such classifiers, usually built using the frequency of
particular words in a document (sometimes called ‘bag of
words’), are based on two empirical observations regarding text:

1. the more times a word occurs in a document, the more
relevant it is to the topic of the document.

2. the more times the word occurs throughout the documents
in the collection the more poorly it discriminates between
documents.

A well known approach for computing word weights is the term
frequency inverse document frequency (tf-idf) weighting which
assigns the weight to a word in a document in proportion to the
number of occurrences of the word in the document and in inverse
proportion to the number of documents in the collection for which
the word occurs at least once, i.e.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

i
ikik n

Nfa log

where aik is the weight of word i in document k, fik is the
frequency of word i in document k, N the number of documents in
the collection and ni equal to the number of documents in which ai
occurs at least once. A classifier can be constructed by mapping a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007...$5.00.

1604

document to a high dimensional feature vector, where each entry
of the vector represents the presence or absence of a feature [14];
[10]. In this approach, text classification can be viewed as a
special case of the more general problem of identifying a category
in a space of high dimensions so as to define a given set of points
in that space. This is usually accompanied by some form of
feature reduction such as the removal of non-informative words
(stop words) and by the replacing of words by their stems, so
losing inflection information. Such sparse vectors can then be
used in conjunction with many learning algorithms for computing
the closeness of two documents and quite sophisticated geometric
systems have been devised [3].

Although this method has produced accurate classifiers there are a
number of drawbacks when compared to a rule based system.

1. The approach cannot normally identify word combinations,
phrases or multi-word units e.g. ‘information processing’.
Only the frequency of the terms in the document is stored

2. The classifier (the vector of weights) is not human
understandable.

In recent years there have been a number of attempts to produce
effective classifiers that are human understandable [18]. The
advantages of such a classifier include

1. The classifier may be validated by a human.

2. The classifier may be fine tuned by a human.

3. The classifier may be used for another task such as
information extraction or text mining.

Generally, the attempts to produce classification systems that are
human understandable have involved the production of a set of
rules which are used for classification purposes. Often the set is
quite large which reduces some of the qualitative advantages
because it will harder for a human to comprehend the classifier. In
this paper we describe a method to evolve compact human
understandable classifiers using only a set of training documents.
Furthermore each category in the dataset requires only one rule in
the form of a Lucene search query.

The system uses genetic programming (GP) [11] to produce a
synthesis of machine learning and knowledge engineering with
the intention of incorporating advantageous attributes from both.
The search queries produced by the GP individuals are able to use
a wide variety of features including phrases, word proximity,
word combinations and negative information for discrimination
purposes.

2. Background
Although GP has been used in a textual environment [4][5] it has
not previously been used to evolve search query classifiers for
large text datasets.

2.1 Apache Lucene
In our system each GP individual in the population will produce a
search query and its fitness is evaluated by applying the search
query to a potentially large text dataset. With a GP population of
a reasonable size evolving over 50 or more generations it is
critical that such queries can be executed in a timely and efficient
manner. For this reason we decided to use Apache Lucene which
is an open source high-performance, full-featured text search

engine. We use Lucene to build text indexes on the training and
test datasets and to evaluate the queries built by the GP
individuals. A full description of the indexing system is given at
the official Lucene site (http://lucene.apache.org/) together with
the Java source code and other useful information concerning
Lucene. We currently implement a subset of the available query
types as shown in Table 11.

Table 1 Lucene Query Operators
Symbol Description
OR The OR operator is the default operator. This means

that if there is no other operator between two terms,
the OR operator is used. The OR operator will retrieve
a document if either of the terms exist in the text of a
document.

AND The AND operator matches documents where both
terms exist anywhere in the text of a document.

NOT Excludes documents that contain the term after NOT
+ The "+" or required operator requires that the term

after the "+" symbol exist somewhere in the text of a
document.

- The "-" or prohibit operator excludes documents that
contain the term after the "-" symbol.

~ Proximity searching can be used to find words are a
within a specific distance of each other determined by
a number following the '~'. If no number is entered
then the words must occur together with no
intervening text.

Lucene provides many other features and in particular a tf-idf
based weighting system for search terms. However, in our
application this was not used and we only collected the total
number of matching documents for each search query.

3. Implementation
We summarise the key features of our implementation below
• The basic unit we use is a single stemmed word
• Lucene search queries are produced by GP individuals for

each category in the dataset; thus each search query is a
binary classifier

• Queries can include disjunctions, conjunctions, negations
and proximity searches in Lucene query format.

• Fitness is accrued for GP individuals producing classification
queries which retrieve positive examples of the category but
do not retrieve negative examples. Thus the documents in the
training set are the fitness cases.

3.1 Data Sets
The task involved categorising documents from the Reuters-
21578 test collection which has been a standard benchmark for
the text categorisation tasks throughout the last ten years. Reuters-
21578 is a set of 21,578 news stories which appeared in the
Reuters newswire in 1987. In our experiments we use the
“ModApt´e split”, a partition of the collection into a training set
and a test set that has been widely adopted by text categorisation

1 A full description of the query syntax with examples is given at

http://lucene.apache.org/java/docs/queryparsersyntax.html

1605

experimenters. We focus our discussion on the results we
obtained on the top 10 (R10) categories subset although we also
generated a classifier for the commonly used subset of 90
categories (R90). An in depth discussion concerning the Reuters
dataset is given in [7].

3.2 Pre-Processing
Before we start the evolution of classification rules a number of
pre-processing steps are made.
1. All the text is placed in lower case and stemmed.
2. A small stop set is used to remove common words with little

semantic weight.
3. For each category of the dataset two Lucene indexes are

created for training, one built from documents in the relevant
category (positive examples) and one from the irrelevant
documents (negative examples). Two further indexes from
the appropriate documents in the test set are also created if
testing is needed.

4. For each category of the dataset two ordered lists of features
are extracted for GP use. These sets are initially created by
calculating the tf-idf value for each word in the positive
example category and in the negative example category.
These lists are ordered according to the calculated value such
that element 0 in the list has the highest tf-idf value. We will
refer to these two lists as the positive features list and the
negative feature list.

3.3 Fitness
GP individuals are set the task of combining selected words with
special symbols to form a Lucene search query. The query is then
applied to the index of positive examples and to the index of
negative examples. A classification query must be evolved for
each category in the training set. Each query is actually a binary
classifier i.e. it will classify documents as either in the category or
outside the category. The Break-Even-Point (BEP) statistics is
widely used in information retrieval and text categorization. BEP
finds the point where precision and recall are equal. The F1
measure is also commonly used for determining classification
effectiveness and has the advantage of giving equal weight to
precision and recall [17]. F1 is given by

rp
prF
+

=
21

where recall (r) = the number of relevant documents returned/the
total number of relevant documents in the collection and precision
(p) = the number of relevant documents returned /the number of
documents returned. F1 also gives a natural fitness measure for an
evolving classifier since BEP may favour trivial results, for
example, if no data is correctly categorized then r=0 and p=1 so
their average is 0.5 instead of 0 when using the harmonic average.
Such classifiers are actually likely to be the norm in the early
generations of a GP run, therefore, the fitness of an individual GP
is assigned by calculating F1 for the query produced by that GP.

For example, if we are evolving a classifier for the Reuters 'crude'
category a GP might produce the following query

 barrel bbl

By default the elements of Lucene queries are disjuncts i.e. there
is an implicit OR between elements of a query and the above
query would retrieve any document containing either the word
'barrel' or the word 'bbl'. In fact, such a query is quite an effective
classifier for the crude category and has F1 of 0.693
GP’s have a tendency to ‘bloat’ and to produce long forms of
equivalent shorter programs by including redundant sections. A
typical GP produced query for the money-fx category is shown
below.

dollar dollar -profit interven -profit (market AND bank) -
wheat interven interven -wheat (market AND bank) -profit -
profit -profit (market AND bank) dollar dollar (market AND
bank) -profit –wheat -wheat

The above query is equivalent to
dollar interven (market AND bank) -wheat -profit

Also, because each element of a query is disjuncted by default
there is no penalty for including elements that retrieve no
documents

corn (dollar AND dollar AND NOT dollar)
will have the same fitness as the query

corn
One of the key objectives of our system was comprehensibility.
We therefore applied a simple form of parsimony pressure. The
resulting fitness used is the F1 of a program but where the F1 of
two programs is found to be equal the shorter program is assigned
a better fitness value. With this method we were able to evolve
the queries shown in Table 5 although it can be seen that they are
still not necessarily in the most compact form. Comprehensibility
may be improved by using other forms of parsimony pressure on
the GP evolution or by using an editing program to remove
redundant parts of the query.

3.4 GP Types
We use a strongly typed tree based GP [12] system with types
shown in Table 2.

Table 2: GP Types
Type Description
Int An integer terminal used to identify a word
Quer
y

A complete search query using Lucene query syntax.

In our system each GP will output a query using standard Lucene
query syntax and will return a Boolean value when evaluated
against a document i.e. the query will be either true or false for a
particular document depending on whether the query matches the
text in the document.

3.5 Terminals
We used 8 integer terminals (0 – 7).

3.6 Functions
Table 3 describes the GP functions. At the base of a GP tree we
have integer terminals and at the top we have Lucene queries. A
number of functions take one or more Int arguments and return a
query. In this case features (normally words) are copied from
either the positive or negative feature lists created in the pre-
processing step. The feature returned is the feature occurring in

1606

the list at the position defined by the Integer argument. The
positive feature list is used for all function except for NOT and '–'
(Lucene prohibit function see Table 1) which use the negative
feature list. For example the query "EXISTS 1" will simply return
the word at position 1 in the positive feature list. In the table we
refer to a feature from the list as a 'word' which is the case at the
start of the evolution.

Table 3: GP Functions
Function
Name

No
of
args

Type
of
args

Return
Type

Description

ADD 2 Int Int Add two integers.
MULT 2 Int Int Multiply two

integers
EXISTS 1 Int Query Return a single

word
PLUS 1 Int Query Return a single

word with the'+'
character appended
to the front.

MINUS 1 Int Query Return a single
word with the'-'
character appended
to the front.

OR 2 Query Query Return a query by
concatenating the
two query
arguments and
inserting a space
between them.

AND 2 Int Query Return in a query
in the form
"(word0 AND
word1)"

NOT 2 Query Query Return a query in
the form (query1
NOT query2)

DNF 3 Int Query Return a query in
the form "(word0
AND word1 AND
NOT word2)"

PHRASE 2 Int Query Return a query in
the form "word0
word1"~ (Lucene
proximity search:
see Table 1)

NEARX 3 Int Query Return a query in
the format of
PHRASE but with
the value of the
third integer
argument appended
at the end

3.7 Example Programs
To illustrate the system in action we show three Genetic Programs
below which were evolved using the Reuters 'crude' category as
positive examples and the Lucene search queries which they
output.

Query: oil
Tree: (EXISTS 0)

Query: (price AND oil)
Tree: (AND (ADD 1 2) 0)

Query: (opec AND petroleum AND NOT year) (oil AND
barrel) "crude price"~5
Tree: (OR (DNF (ADD 4 0) 5 3) (OR (AND 0 1) (NEARX 2
3 5)))

3.8 GP Parameters
We used the ECJ system (http://cs.gmu.edu/~eclab/projects/ecj)
and a fixed set of GP parameters summarised in Table 4

Table 4 GP Parameters
Parameter Value
Population 1024
Generations 50
Typing Strongly typed
Creation Method Ramped half and half
GP format Tree Based
Selection type Tournament
Tournament size 7
Termination Perfect classifier or max gen
Mutation probability 0.1
Reproduction probability 0.1
Crossover probability 0.8
Elitism No
ADF No
Max tree depth at creation 9
Max tree depth for crossover 17
Max tree depth for mutation 17
Subpopulations 3
Number of runs 5

3.9 Making use of discovered queries
The system we describe has the advantage of making extensive
use of negative data. We have extended this capability by storing
information from successfully evolved queries for use in
classifying other categories. This is done in the following way.
1. At the end of evolution for a particular category the best

query is selected.
2. Positive words and phrases are extracted from the query and

stored in the negative features list.
3. All the new elements are assigned a score by multiplying the

number of positive documents in the category by the F1
(training) measure of the query from which they were
extracted, so that the most useful will appear at the top of the
negative feature list.

GP individuals can then make use of this data when evolving
queries for the remaining categories. The data is kept on the list so
that it may also be used during later GP runs.

4. Experiments
4.1 Objectives
The objectives of our experiments were two fold:
1. To evolve effective classifiers against the text datasets.

1607

2. To automatically produce compact and human
understandable classifiers in search query format.

4.2 Evolution
Figure 1 shows a fairly typical pattern of evolution, where
precision (p) and recall (r) may move up and down but there is a
general improvement in the F1 measure (training data)..

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 11 21 31 41

Generation

 f1
p
r

Figure 1 Best query by generation (R10 category Ship).

In all the experiments reported here the GP system only had
access to the training data. The final result was obtained using the
queries produced during the training against the test data.

4.3 Example of Query Generation
In this section we included an example of the evolution of a rule
for the R10 category “corn”. Some good results can be evolved
quite easily on this category e.g. an individual producing the one
word query

corn
appears in generation 0 and will achieve a fitness (F1 against the
training data) of 0.756. In generation 7 a new query is found
giving a fitness of 0.77

(-compan AND corn)
This query searches for documents which do not contain a word
starting with the string 'compan' and do contain the string 'corn'.
In generation 11 the following query is found

maiz corn
This obtains a fitness of 0.862 and will retrieve documents which
include the words 'maiz' or 'corn'. In generation 19 this is replaced
by the slightly more successful query

maiz -bank corn
which obtains a fitness of 0.896 and will retrieve documents
which do not contain the word 'bank' but do contain either the
word 'maiz' or the word 'corn'.

4.4 Performance
GP systems are notoriously computationally intensive and
unfortunately the system described here is no exception. All the
experiments were run on a Pentium p3 processor running at 1GHz
and with 512M of memory. To generate the R10 queries shown in
Table 5 took over 5 hours.
Every GP must query two Lucene indexes to obtain its fitness
value and training must occur on every category of the dataset.
For each category we have implemented 5 GP runs of 50
generations each. Therefore for the R10 case the training involved

the execution of a possible 2 * 1024 * 50 * 5 * 10 = 5120000
Lucene queries. This is on top of the normal operations required
for the GP system such as crossover, mutation and population
management. In light of this the training time is actually a
testament to the efficiency of Lucene and ECJ.
The good news is that most of this effort goes into increasing the
classification accuracy by only a small amount. For example, a
reasonable classifier for the R10 with a macro average F1 of
0.749 and micro average of 0.816 can be generated in 4 minutes.
In this case a population of 128 GPs evolved using only 1 run and
20 generations. Furthermore there is ample opportunity for
parallelization of many parts of the system, for example, the GP
runs, the evaluation of separate categories and subpopulation
evolution are all open to simple forms of parallelization.
The result of all the training work is a search query. To test the
R10 classifier requires the execution of 10 search queries and the
result will occur in a time frame well below human perception.
The fact that search queries will scale up to large text databases,
such as the Internet, is well known.

4.5 Overfitting
As expected we found overfitting to be most severe when the
training data was quite limited. For example on the R90 set the
classifier

kerosen (jet AND logist AND NOT qtr) "paralyz javier"~6
evolved and was a perfect classifier for the 5 training examples
but failed to match any of the test documents.
Figure 2 shows the closeness in F1 test and training values for
classifiers of the R90 dataset in relation to training data size.

-0.1

0.1

0.3

0.5

0.7

0.9

1 10 100 1000 10000
Number of training examples

F1
 T

ra
in

 -
F1

 T
es

t

Figure 2 Difference between F1 train and F1 test (R90)

Perfect classifiers of the training data are commonly evolved
where the set of positive training documents is small e.g. less that
20 documents. However we never evolved such a classifier for
any of categories of the R10.

5. Results
A classification rule was evolved for each category by using 5 GP
runs for each category and selecting the best query, as measured
against the training data, to emerge from the 5 runs. The selected
query was then run against the test set to produce the final result.
The query produced is an important part of our system since we
are emphasising the qualitative difference of this particular
classifier, and so we give the complete set of classification search
queries for the R10 categories dataset.

1608

Table 5 R10 Classification Queries
Class F1

(test)
Search Query

Acq 0.913 -vs -ct -tonn inc corp "dlr share"~ -"wheat wheat"~20 inc ((bui AND compani AND NOT shr) NOT "inc share"~10) -
"barrel barrel"~20 inc -dollar bid -rate acquir -ct merger corp sell -"march loss"~10 corp inc corp -"japanes trade"~20
-ship corp -"rate bank"~10 -ct takeov -rate inc -grain stake -"march loss"~10 corp -"trade export"~20 acquir -"barrel
barrel"~20 -qtr acquir acquisit

Corn 0.896 maiz –bank corn

Crude 0.87 (((barrel AND barrel AND NOT acquisit) (-stake -stake -trade (-stake -wheat -"compani share"~10 (+oil NOT
compani) NOT acquisit) –crop crude "oil petroleum"~20) NOT "march loss"~10) NOT net) (+barrel NOT merger)
NOT dollar) -"march loss"~10 ("opec oil"~5 (ga AND import) -"rate bank"~10 (refineri AND oil) -"corn corn"~10
"oil energi"~20 (barrel AND barrel AND NOT acquisit) "oil petroleum"~20 "oil energi"~20 "oil explor"~5 (ga AND
opec) -vs

Earn 0.958 ("vs vs"~20 NOT takeov) "ct vs"~20 "march qtr"~5 (rev AND shr) "qtr qtr"~20 "ct vs"~20 ("vs vs"~20 NOT acquir)
("ct vs"~20 "march qtr"~5 (loss AND net AND NOT takeov) -acquir (dividend AND dividend AND NOT stake)
(("net loss"~0 NOT acquir) NOT net) "ct year"~20 ("vs vs"~20 NOT acquir) "qtr qtr"~20 (ct AND qtr) ((("vs vs"~20
NOT merger) (profit AND year AND NOT stake) NOT acquir) NOT acquir) (profit AND year AND NOT corp)
"year net"~20 payabl NOT net) "ct year"~20 "ct vs"~20 "march qtr"~5 (profit AND net AND NOT takeov) (dividend
AND year AND NOT stake) (ct AND qtr) ("ct vs"~20 "march qtr"~5 (rev AND shr) "ct shr"~20 ("vs vs"~20 NOT
acquir) "qtr qtr"~20 NOT acquir) (profit AND five AND NOT corp) "year net"~20 "ct vs"~20 (net AND shr AND
NOT stake) (profit AND net AND NOT corp) "qtr qtr"~20 "ct vs"~20 (ct AND qtr) ("net loss"~0 NOT acquir) "year
net"~20 -"wheat wheat"~20 "ct vs"~20 -bid (profit AND net AND NOT takeov) "mln ct"~21 (dividend AND
dividend AND NOT stake) -"trade export"~20 (profit AND ct AND NOT corp) "ct vs"~20 "march qtr"~5

Grain 0.933 wheat "rice tonn"~20 "agricultur tonn"~20 maiz "cereal week"~20 (grain AND agricultur) wheat barlei (agricultur
AND corn) "cereal state"~20 wheat wheat (grain (corn AND corn AND NOT "ct vs"~20) (grain AND agricultur)
wheat -inc barlei crop "rice tonn"~20 wheat -inc barlei crop -bank (maiz AND agricultur) wheat grain maiz "cereal
week"~20 wheat barlei wheat (corn AND corn AND NOT "ct vs"~20) crop "export rice"~20 NOT compani)

Interest 0.723 "pct outright"~20 -shr "rate prime"~20 "rate discount"~20 -shr "rate prime"~20 "rate bank"~20 "pct outright"~20 "rate
bank"~20 "feder monei"~20 (fed AND pct) "rate discount"~20 "monei central"~30 "pct outright"~20 "rate bank"~20
(discount AND england AND NOT "ct year"~20) -shr "rate prime"~20 "prime point"~20 "rate prime"~20 -stake
"central monei"~20 "england pct"~20 "pct outright"~20 "rate discount"~20 "rate prime"~20 "rate bank"~20 -dividend
"rate prime"~20 "discount bank"~5 -commission -shr "prime point"~20 "outright england"~4 "monei rate"~ "down
england"~4

Money-fx 0.734 "currenc dollar"~20 -wheat "currenc currenc"~18 "currenc currenc"~5 -crop currenc "financ dollar"~7 -"year net"~20
"monei market"~0 "currenc currenc"~5 "pari dollar"~20 "financ dollar"~20 -dividend (-net NOT "ct year"~20)
"currenc currenc"~5 "sai dollar"~20 "london dollar"~20 "currenc far"~5 -qtr (market AND fed AND NOT "year
net"~20) "currenc currenc"~5 -"year net"~20 "bank dollar"~20 "bank dollar"~20 "rate market"~0 -commiss "dollar
market"~ "chang dollar"~7 "england currenc"~20 "dealer dollar"~20 "monetari dollar"~20 "monetari rate"~20 -"oil
crude"~20

Ship 0.840 (+vessel NOT "march qtr"~5) "sea port"~20 (warship (sao (("freight ship"~5 NOT "march qtr"~5) "sai port"~20 NOT
"march qtr"~5) "hour port"~20 NOT "march qtr"~5) "passeng port"~20 (-"currenc far"~5 -corn ((+vessel NOT "march
qtr"~5) "cargo port"~20 NOT "march qtr"~5) -net vessel -per "vessel gulf"~ (tonn AND freight) -shr (freight AND
sea) "transport tanker"~20 -"currenc monei"~20 tanker (((+vessel NOT "march qtr"~5) "tanker port"~20 NOT "march
qtr"~5) NOT "march qtr"~5) "vessel gulf"~ (-tariff -wheat ship "cargo water"~3 "vessel gulf"~ "port strike"~20 -
"profit year"~20 ship NOT "march qtr"~5) NOT "march qtr"~5) NOT shr)

Trade pr 0.795 "deficit trade"~73 "deficit surplu"~7 ("deficit trade"~73 ((sanction AND japanes) NOT payabl) -monei (trade AND
retali AND NOT "rice tonn"~20) (sanction AND japanes) -payabl "deficit trade"~30 ((sanction AND japanes) NOT
payabl) ((sanction AND japanes) NOT payabl) ("surplu japanes"~20 -grain "deficit trade"~7 NOT "currenc
dollar"~20) "surplus trade"~7 -corn NOT "barrel barrel"~20) ((sanction AND japanes) NOT payabl) ((sanction AND
japanes) NOT payabl) (("surplu japanes"~20 -grain "trade polici"~20 (trade AND sanction AND NOT "ct shr"~20)
NOT "currenc dollar"~20) -monei "deficit trade"~3 "deficit trade"~73 -payabl "trade retali"~20 "trade minist"~20
((sanction AND japanes) NOT payabl) (surplu AND deficit AND NOT dividend) ("trade tariff"~20 -grain (import
AND trade AND NOT payabl) -corn NOT vessel) "surplus trade"~7 -corn NOT "barrel barrel"~20) -"currenc
dollar"~20

Wheat 0.886 ((((((((((wheat NOT "year net"~20) NOT earn) NOT secur) NOT acquir) NOT "profit year"~20) NOT "monetari
rate"~20) NOT "qtr qtr"~20) NOT "qtr qtr"~20) NOT treasuri) NOT payabl)

1609

Table 6 shows classifiers R10 dataset. In this case we show the
BEP as in the past this result has been the most widely used and is
therefore useful for comparison purposes. We are particularly
interested in the other rule based classifiers which are at least
partly human understandable. These are TRIPPER [18], RIPPER
[6], ARC-BC (3072 rules) [2] and C4.5 [13]. The results for

bigrams are from [16] and the results of other classifiers are taken
from [10]. We also note that the query evolved for the wheat
category which scores and F1 of 0.886 outperforms the human
constructed rule discussed in the introduction which has an F1 of
0.84

Table 6 Comparison by category (R10)

BEP
GP-
TC trip rip

ARC-
BC C4.5

bi-
gram Bayes

Roc-
chio

k-
NN

SVM
(poly)

SVM
(rbf)

acq 91.3 86.3 85.3 89.9 85.3 73.2 91.5 92.1 92.0 94.5 95.2
corn 90.6 85.7 83.9 82.3 87.7 60.1 47.3 62.2 77.9 85.4 85.2
crude 87.3 82.5 79.3 77.0 75.5 79.6 81.0 81.5 85.7 87.7 88.7
earn 95.9 95.1 94.0 89.2 96.1 83.7 95.9 96.1 97.3 98.3 98.4
grain 93.3 87.9 90.6 72.1 89.1 78.2 72.5 79.5 82.2 91.6 91.8
interest 72.3 71.5 58.7 70.1 49.1 69.6 58.0 72.5 74.0 70.0 75.4
money 73.4 70.4 65.3 72.4 69.4 64.2 62.9 67.6 78.2 73.1 75.4
ship 84.3 80.9 73.0 73.2 80.9 69.2 78.7 83.1 79.2 85.1 86.6
trade 79.5 58.9 68.3 69.7 59.2 51.9 50.0 77.4 77.4 75.1 77.3

wheat 90.1 84.5 83.0 86.5 85.5 69.9 60.6 79.4 76.6 84.5 85.7

macro-
avg 85.8 80.4 78.1 78.2 77.8 70.0 69.8 79.1 82.1 84.5 86.0

The results for the R10 set show that GPTC produces rules of
higher accuracy than any other rule based system in every
category. We should note that GPTC produces only one rule per
category as opposed to hundreds or thousands using some of the
other rule based methods [2]. The comprehensibility of the GPTC
queries is quite variable and some are perhaps too complex for a
non-expert to deal with. However we suggest that the readability
of GPTC queries does compare favourably to other rule based
systems which often include large sets of rules.

Unfortunately we do not have the micro average available for all
the systems shown inTable 6, however Table 7 shows the results
for GPTC against a recent survey of over 40 classifiers used for
the Reuters set [7]. The results show that GPTC to be well above
average in the task of classifying the R10 set but somewhat below
average when classifying the R90 set.

Table 7 Reuters Comparison 2

 Microaveraged F1 Macroaveraged F1
 GPTC Survey

Average
GPTC Survey

Average
R(10) 0.897 0.852 0.847 0.715
R(90) 0.772 0.787 0.418 0.468

6. Future Work
We are investigating the usefulness of new GP functions using
numeric terminals for identifying frequency information.
Functions such as ‘>’ return a Boolean value based on the
frequency of a particular word in a document [2].

We would like to run the classifier on a larger dataset such as the
full Ohsumed set or the Reuters RCV1-V2 set. This would require
an upgrade in hardware resources and ideally a parallel
implementation as discussed above.

We believe that the system described here may be of particularly
value when used in conjunction with other classification systems
in a classification committee [15].

7. Conclusion
We have produced a system capable of generating classification
search queries with no human input beyond the identification of
training documents which are useful to the task of discriminating
between text documents. The classifier makes use of conjunction,
disjunction, negation and word proximity. We believe this new
arrangement for a text classifier has important advantages
stemming from its compactness, its comprehensibility to humans
and its search query format.

We suggest that there may be a number of areas within automatic
text analysis where the technology described here may be of use.

8. References
[1] Apt´e, C., F. J. Damerau, and Weiss, S. M. 1994. Automated

learning of decision rules for text categorization. ACM
Trans. on Inform. Syst. 12, 3, 233–251.ATTARDI

[2] Antonie, M. L. and Zaane, O. R. Text document
categorization by term association. In IEEE International
Conference on Data Mining, pages 19--26, December 2002

1610

[3] Bennet, K., Shawe-Taylor, J. and Wu, D. 2000. Enlarging
the margins in perceptron decision trees. Machine Learning
41, pp 295-313

[4] Bergström, A., P., Jaksetic and Nordin, P. 2000. Enhancing
Information Retrieval by Automatic Acquisition of Textual
Relations Using Genetic Programming. In Proceedings of the
2000 International Conference on Intelligent User Interfaces
(IUI-00), pp. 29-32, ACM Press.

[5] Clack, C., Farrington, J., Lidwell, P. and Yu, T. 1997.
Autonomous Document Classification for Business, in
Proceedings of the ACM Agents Conference.

[6] Cohen, W. 1995 Fast effective rule induction. In
Proceedings of the Twelfth International Conference on
Machine Learning, pages 115–123

[7] Debole, F. and Sebastiani, F 2005. An analysis of the relative
hardness of Reuters-21578 subsets. Journal of the American
Society for Information Science and Technology, 56(6):584-
596.

[8] Hayes, P. J., Andersen, P. Nirenburg, I. and Schmandt, L. M.
1990. Tcs: a shell for content-based text categorization. In
Proceedings of CAIA-90, 6th IEEE Conference on Artificial
Intelligence Applications (Santa Barbara,CA, 1990), 320–
326.

[9] Hirsch L., Saeedi M. and Hirsch R., Evolving Text
Classification Rules with Genetic Programming Applied
Artificial Intelligence, (AAI 19/7), Taylor & Francis, August
2005

[10] Joachims, T. 1998. Text categorization with support vector
machines: learning with many relevant features. In

Proceedings of the l0th European Conference on Machine
Learning (ECML98), pp 137-142.

[11] Koza, J.R. 1992. Genetic Programming: On the
Programming of Computers by Means of Natural Selection.
The MIT Press, Cambridge MA

[12] Montana, D. 1995. Strongly Typed Genetic Programming. In
Evolutionary Computation. 3:2, 199--230. The MIT Press,
Cambridge MA.

[13] Quinlan, J. R. Bagging, boosting, and C4.5. In Proceedings,
Fourteenth National Conference on Artificial Intelligence,
1996.

[14] Salton,G., Singhal, S., Buckley, C. and Mitra, M. 1996.
Automatic Text Decomposition Using Text Segments and
Text Themes. In Proceedings of the hypertext ’96
Conference, Washington D.C. USA.

[15] Sebastiani, F. 2002. Machine learning in automated text
categorization, ACM Computing Surveys, 34(1), pp. 1-47.

[16] Tan, C.M., Wang, Y.F., and Lee, C.D. 2002. The use of
bigrams to enhance text categorization In Information
Processing and Management: an International Journal, Vol
38, Number 4 Pages 529-546

[17] Van Rijsbergen, C.J. 1979. Information Retrieval, 2nd
edition, Department of Computer Science, University of
Glasgow

[18] Vasile, F., Silvescu, A., Kang, D-K. and Honavar, V. 2006.
TRIPPER: An Attribute Value Taxonomy Guided Rule
Learner. Proceedings of the Tenth Pacific-Asia Conference
on Knowledge Discovery and Data Mining (PAKDD),
Berlin: Springer-Verlag. pp. 55-59

1611

