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ABSTRACT 
Crucial to the more widespread use of evolutionary computation 
techniques is the ability to scale up to handle complex problems. 
In the field of genetic programming, a number of decomposition 
and reuse techniques have been devised to address this. As an 
alternative to the more commonly employed encapsulation 
methods, we propose an approach based on the division of test 
input cases into subsets, each dealt with by an independently 
evolved code segment. Two program architectures are suggested 
for this hierarchical approach, and experimentation demonstrates 
that they offer substantial performance improvements over more 
established methods. Difficult problems such as even-10 parity 
are readily solved with small population sizes.  

Categories and Subject Descriptors 
D.1.2 [Programming Techniques]: Automatic Programming; 
I.2.2 [Artificial Intelligence] Automatic Programming – program 
synthesis; I.2.6 [Artificial Intelligence] Learning – induction. 

General Terms 
Algorithms, Design, Performance, Experimentation. 

Keywords 
Genetic programming, hierarchical GP, decomposition, program 
architecture. 

1. INTRODUCTION 
A key area of research in genetic programming (GP) and in other 
areas of evolutionary computation is that of discovering how to 
scale up such techniques to deal with complex, real-world 
problems. The usual approach of the human programmer is to 
decompose the original problem into sub-tasks that are simpler to 
solve, and then combine the resulting lower-level modules into a 
solution to the full problem. It seems natural, then, that similar 
divide-and-conquer approaches should form the basis for solving 
difficult problems by evolutionary means. 

In GP, decomposition and reuse techniques can take various 
forms, the best-known paradigm being that of Koza’s 
Automatically Defined Functions (ADFs) [10-12]. In this, the 
architecture of programs is defined in such a way that a number of 
function-defining branches are evolved in tandem with a main 
value branch that may make calls to the functions. For many 
problem domains, it has been found that ADF-based systems can 
provide much better performance than conventional GP systems 
[15]. 

An alternative to the use of ADFs is the technique of Module 
Acquisition introduced by Angeline and Pollack [1, 2]. In this, 
portions of individuals are randomly encapsulated as modules that 
are protected from the effects of the usual evolutionary operators. 
Modules are stored in a library, their value being determined by 
how often they are used by evolving individuals. 

Other approaches are more systematic (i.e. less random) in the 
modularisation decisions that are made. The Adaptive 
Representation through Learning (ARL) algorithm [16], for 
example, identifies and extracts subroutines from offspring which 
exhibit the best improvements on the fitness of their parents. 
Similarly, Roberts et al [14] describe a two-stage scheme in which 
module selection is based on sub-tree survival and frequency. 

The importance of modularisation has also been recognised for 
genetic programming systems that use representations which 
differ from the tree structure usually employed. In his work on 
Cartesian Genetic Programming (CGP), Miller has described 
bottom-up techniques for building hardware circuits from simpler 
‘cells’ [13], and for encapsulation of modules in evolving CGP 
programs [18, 19]. 

In much of the existing research, the emphasis is on attempts to 
encapsulate useful code segments as they evolve, and it is usually 
not known in advance what functionality or structure these 
fragments will possess. A very different approach is one in which 
modules are associated with predetermined sub-tasks, so that the 
evolution of each module is guided towards a specific goal. 
However, if we are to avoid having to make use of intelligent 
intervention to define these sub-problems, then other, more 
mechanistic criteria are needed. In the next section, we explore 
these alternatives more fully, and in particular we describe and 
assess some previous work on a problem decomposition technique 
based on the input test cases used to evaluate the fitness of 
individuals in a GP population. In subsequent sections we go on 
to propose two novel program architectures aimed at addressing 
the limitations of the earlier work, and we assess the approaches 
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experimentally before finishing with some concluding remarks 
and suggestions for future research. 

2. PREVIOUS WORK 
In a previous paper [9] we examined the use of layered learning 
[3, 4, 17] as a means for solving GP problems in a hierarchical 
fashion. The essence of the layered learning approach is to 
decompose a problem into subtasks, each of which is then 
associated with a layer in the problem-solving process. The idea is 
that the learning achieved at lower layers when solving the 
simpler tasks directly facilitates the learning required in higher 
subtask layers. 

In Layered Learning Genetic Programming (LLGP) [5-9], 
evolution begins in an initial layer that proceeds towards the 
solution of a sub-task of the overall problem. The stopping 
criterion for this may be, say, that a solution to the sub-task is 
found, or that a pre-defined limit on the number of generations 
has been reached. The genetic material produced at the end of this 
layer then forms the basis for the initial population of the next 
layer, which uses what has been ‘learnt’ in layer 1 to help it 
evolve towards a solution of the original problem. In practice, two 
layers may be sufficient, although the approach could in principle 
be extended to multiple layers. There are also various ways in 
which genetic material can be propagated from one layer to the 
next: the population as it stands at the end of one layer may be 
simply re-cast as generation zero of the subsequent layer, or the 
best individuals from the lower layer may be used exclusively to 
seed the higher layer. 

A key issue in layered learning is deciding how to decompose a 
problem into tasks to be associated with the lower layers. There 
are at least three ways in which this can be done: 

1. Based on the original problem specification, identify a 
component sub-task. 

2. Attempt to solve a lower-order form of the same problem. 

3. Make use of a subset of the test cases normally used to evaluate 
the fitness of individuals. 

Most of the published work on layered learning adopts the first of 
these approaches. For example, in research done on the 
application of layered learning to the game of keep-away soccer 
[5-8], it was decided that in attempting to solve the problem of 
preventing the opposing team from gaining possession of the ball, 
it would be useful firstly to evolve accurate passing between 
team-mates without an opposing player present. The drawback of 
such prior decomposition is that it requires an intelligent 
understanding of the problem at hand, plus at least some insight 
into the components that would be useful in forming a solution. 

The other two strategies are far more mechanistic, and were the 
subject of our investigations in the earlier paper [9]. As described 
there, approach number two involves the solution of a problem 
(e.g. the even-5 parity problem) by reusing genetic material 
obtained from solving lower order versions of that problem (e.g. 
even-2 or even-3 parity). Experimentation showed that the 
technique significantly out-performs not only conventional GP 
systems, but also those that make use of Automatically Defined 
Functions (ADFs). 

The way that approach number three works is that only a subset 
of the test cases normally used to evaluate the fitness of an 
individual is considered in the initial layer. Once a solution to this 
sub-problem has been found, or another stopping criterion 
reached, the process is ramped up to a second layer in which all 
test cases are used to drive evolution. For example, in the even-4 
parity problem, exhaustive testing involves 16 combinations of 
values on the binary inputs {D0, D1, D2, D3}. In the layered 
learning approach as we tried it, a lower layer attempts to solve 
for, say, 4 or 8 of these input combinations. The whole of the 
population at the end of layer 1 then becomes the initial 
population of the upper layer, which searches for programs that 
work for all 16 test cases.  

In a range of experiments, layer 1 was allowed to proceed until 
given saturation levels of solutions to the sub-task were reached. 
However, the performance of this strategy was disappointing: 
although modest improvements were seen in some cases, in 
general the approach fared little better than a standard GP system. 

In the following sections we describe how, rather than abandoning 
the test subset approach entirely, we have investigated alternative 
ways of employing it. 

3. A FUNCTION-BASED ARCHITECTURE 
A possible reason for the failure of the test-subset approach to 
improve on performance is that although potentially useful pieces 
of code are evolved in the first layer, there is then no mechanism 
for subsequently protecting those fragments from the deleterious 
effects of crossover and other evolutionary operators. Perhaps 
what is needed, then, is some form of encapsulation to turn the 
useful code sections into indivisible modules. This suggests a 
hierarchical approach to the form of genetic programming that is 
used. 

As mentioned earlier, the best-known of the hierarchical 
approaches to GP is that of Koza’s Automatically Defined 
Functions (ADFs) [10-12]. In implementing this, the structure of 
population members is more tightly specified than is usual in GP. 
Figure 1 shows a typical architecture for programs in an ADF-
based system. 

 

PROGRAM 

FUNCTION 
DEFN.

FUNCTION 
DEFN.

BODY 
ACTING ON 
(T, F+{ADF0, ADF1…}) 

NAME 
(ADF0)

BODY 
ACTING ON 
({P1, P2…}, F) 

PARAM LIST 
(P1, P2,…) 

 
 

Figure 1. Typical architecture of an ADF-based GP system 
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In this architecture, a program tree comprises one or more 
function-defining branches and a main branch that may invoke 
those functions. Each function definition has a formal parameter 
list, and only members of this list can appear as terminals in the 
body of the function; the terminal set of the problem itself is not 
accessible within an ADF. The body of the program as a whole – 
its main branch – is built from the usual terminal set, members of 
the problem function set, and members of the set of ADFs. During 
evolution, operators are usually subject to some context 
restrictions; in crossover, for example, if the first parent’s 
crossover point is within, say, ADF0, then the second parent’s 
crossover point is also confined to ADF0. In this way, all of the 
function branches and the main branch evolve simultaneously 
towards a solution to the problem. 

For our own purpose, a slightly different hierarchical architecture 
is proposed; this is shown in Figure 2.  

 

PROGRAM 

FUNCTION 
DEFN. FOR 
TEST 
SUBSET 0 

FUNCTION 
DEFN. FOR 
TEST 
SUBSET 1 

BODY 
ACTING ON 
(T+{PF0, PF1…}, F) 

NAME 
(PF0) 

BODY 
ACTING ON 
(T, F) 

 
 

Figure 2. Function-based architecture for test-subset 
approach 

 

As before, each program consists of several function defining 
branches plus a main branch. However, there are several key 
differences between this architecture and that of Figure 1. Firstly, 
in the ADF approach the number of function branches is arbitrary, 
whilst in our approach it is determined by the number of subsets 
of test input cases. Secondly, each ADF does not evolve towards a 
particular fixed and independent goal; rather, its evolutionary 
worth is judged according to its contribution to the fitness of the 
individual as a whole. In our new architecture, on the other hand, 
each function is assessed separately, its fitness being determined 
by the number of test cases it fulfils within its assigned subset. 
Thirdly, as is made clear in the diagrams, ADFs are defined in 
terms of formal parameter lists, whereas the functions in the new 
architecture are parameterless functions (PFs). This in turn leads 
to a fourth difference, which is in the composition of the function 
and terminal sets. In the ADF approach, the terminals appearing 
in the body of a function are taken solely from the formal 
parameter list, and the function set in the main branch is 
augmented with the set of ADFs. In the new architecture, the 
normal terminal set for the problem is used to build function 
bodies. Moreover, since these functions are parameterless, they 
act as terminal nodes of the main branch, and so it is the terminal 
set rather than the function set which is expanded to include them. 

(Indeed, the phrase Automatically Defined Terminals (ADTs) has 
been considered for these new entities). 

Other differences lie in the way the evolutionary process is 
conducted. Rather than evolving all branches in concert as in an 
ADF-based system, the proposed approach focuses all of its 
evolutionary effort on one branch at a time (at least, for a 
uniprocessor machine). As soon as a PF has evolved, it is 
propagated to all members of the population, since there is little 
point in evolving multiple versions of functionally identical code. 
Then, when all PFs have been produced, evolutionary effort is 
shifted onto the main program branch. 

In evaluating this architecture, we begin with the even-parity 
problem, one of a class of Boolean problems that is known to be 
difficult for GP to solve. In the even-4 version, the aim is to 
evolve a Boolean design that returns a TRUE output if the number 
of logic one values on its 4 inputs D0-D3 is even, FALSE 
otherwise. The parameters for the problem as we have 
implemented it in our GP systems (before any expansion of the 
function and terminal sets) are given in Table 1. 

 

Table 1. GP parameters for the even-4 parity problem 

Objective To evolve a program capable of determining 
if the number of logic 1s on the 4 inputs is 
even 

Terminal set D0, D1, D2, D3 

Function set AND, OR, NAND, NOR 

Initial 
population 

Ramped half-and-half 

Evolutionar
y process 

Steady-state; 5-candidate tournament 
selection 

Fitness cases 16, representing all combinations of inputs 

Fitness Number of mismatches with expected outputs 
(0-16) 

Success 
predicate 

Zero fitness (solution found) 

Other 
parameters 

Pop size=500; Gens=51; prob. crossover=0.9; 
no mutation; prob. internal node used as 
crossover point=0.9 

 
 
The performance of our subset-based system can be compared 
against a conventional GP system, and also against one which 
makes use of ADFs. For the latter, we have followed Koza’s 
precept [10] of enabling the evolution of one function for each of 
the arities from 2 up to n-1, where n is the size of the terminal set 
for the problem. Hence, for the even-4 parity problem, we allow 
for one ADF with 2 parameters, and a second with 3 parameters 
(although not all formal parameters need be accessed within the 
body of a function). 

For our parameterless function approach, we also need to make a 
decision as to how many functions are required, and this in turn is 
governed by how we choose to partition the test cases. For even-4 
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parity, exhaustive testing using all combinations of the four inputs 
{D0, D1, D2, D3} requires 16 test cases. In this experiment, we 
will assess the effectiveness of declaring 2 functions, the first 
dealing with the integer values 0-7 on the four binary inputs, the 
other dealing with the values 8-15. We will also evaluate the 
effect of using four PFs, dealing with values 0-3, 4-7, 8-11 and 
12-15, respectively. 

In comparing approaches, we make use of the success rate at 
finding solutions over 100 runs, each of 50 generations. We also 
make use of Koza’s metric of computational effort [10], defined 
as the minimum number of individuals that must be processed to 
achieve a 0.99 probability that a solution will be found. Table 2 
presents these figures for each of the systems we have described. 

 

Table 2. Comparative performance of the PF approach on the 
even-4 parity problem 

Approach Success rate (%) Comp. Effort 

Standard GP 14 700,000 

ADF GP 43 97,500 

2 PFs, 8 cases each 55 116,000 

4 PFs, 4 cases each 59 72,000 

 

 

When only 2 PFs are used, the solution-finding success rate of the 
subset-based approach is substantially better than standard GP; it 
is also significantly better than ADF-based GP, although more 
computational effort is required. When 4 PFs are used, both the 
success rate and the computational effort are better than either of 
the more established approaches. 

Figure 3 shows the graph of best fitness for one successful run of 
the subset-based approach, using 2 PFs dealing with 8 cases each. 
From generations zero to 7, the system is evolving the code for 
PF0, which handles test cases 0-7. In the initial population, the 
best individual has a fitness value of 3, i.e. it cannot solve for 3 of 
the 8 test cases. The code for PF0 is evolved at generation 7, and 
in generation 8 a new population is created to evolve PF1, which 
handles test cases 8-15. This is completed by generation 12, and 
in generations 13-17 the main branch of the program is evolved, 
the code for which must pass all 16 test cases. 
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Figure 3. Graph of best fitness for one run of the PF approach 

on even-4 parity 

It is important to bear in mind that the code evolved for a PF is 
specific to the test cases for which it is responsible, and is in no 
sense a generalised solution. For example, in a two-PF program 
for even-4 parity, PF1 will give correct answers for all of the 
integer values 8-15 encoded on the inputs {D0, D1, D2, D3}; 
however it may very well give incorrect results for other integer 
encodings. In a sense, these other results are ‘don’t care’ values, 
and it is the job of the main program branch to screen these out 
and ensure that only valid outputs are reflected in the program as 
a whole. 

The success of the approach for even-4 parity encouraged us to 
try it for the more difficult even-5 parity problem. The only 
changes to the problem parameters given in Table 1 are an 
additional input D4, a corresponding increase in the fitness cases 
to 32, and an increase in population size from 500 to 2000. As 
before, we experimented with two versions of the subset-based 
system: one with 4 PFs dealing with 8 of the 32 test cases each, 
and one with 8 PFs handling 4 cases each. The results are 
compared in Table 3. 

 

Table 3. Comparative performance of the PF approach on the 
even-5 parity problem 

Approach Success rate (%) Comp. Effort 

Standard GP 0 - 

ADF GP 32 864,000 

4 PFs, 8 cases each 58 564,000 

8 PFs, 4 cases each 10 3,584,000 

 
 
Like Koza [10], we found that discovering a solution to the even-
5 parity problem using standard GP is extremely difficult. By 
incorporating an ADF mechanism we were able to get much 
better results, with a success rate of 32%. When we try the test 
subset approach using 4 PFs, the success rate is almost double that 
achieved in the ADF system, leading to a large decrease in the 
computational effort. However, when we attempt to evolve 
solutions with 8 PFs, the performance drops markedly. We shall 
return to the reasons for this in the next section. 

To evaluate the approach further, we applied it to the majority-on 
problem. In this, the aim is to evolve a program that is capable of 
determining whether the majority of its Boolean inputs are set to 
logic-one. Thus, in the 5-input version, a solution will deliver 
TRUE if three or more inputs are logic-one, and FALSE 
otherwise. The function set for the problem is F={AND, OR, 
NOT}, but other parameters for the problem as we have 
implemented it are the same as given for the even-parity problem. 
In creating the ADF version of the GP code, we have again used 
Koza’s rule of thumb, so that for the majority-5-on problem there 
are three ADFs, with arities 2, 3 and 4. For the subset-based 
approach, we have experimented with 2 PFs of 16 cases each, and 
4 PFs of 8 cases each. The results are given in Table 4. 
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Table 4. Comparative performance of the PF approach on the 
majority-5-on problem 

Approach Success rate (%) Comp. Effort 

Standard GP 62 49,000 

ADF GP 7 945,000 

2 PFs, 16 cases each 86 24,000 

4 PFs, 8 cases each 41 91,000 

 
 
An unusual characteristic of this problem is that the performance 
of the ADF version is substantially worse than that of the 
conventional GP approach. Much better than either of these is the 
subset-based approach with 2 PDFs, with a computational effort 
only half that of standard GP. Again, however, when the number 
of PFs is increased to 4, the performance drops: although still 
overwhelmingly better than the ADF system, it is somewhat 
worse than standard GP. 

4. A SELECTION ARCHITECTURE 
It is clear from the experimentation of the previous section that 
the test subset approach can lead to substantially better 
performance than more conventional GP methods. However, the 
number of parameterless functions employed is critical to 
optimum performance, and this phenomenon merits further 
attention. 

When the number of PFs is low, the size of the test subset 
assigned to each PF must be quite high. This means that the PF 
itself must be reasonably complex to deal with the relatively large 
number of cases, and so it may take some time to evolve. On the 
plus side, the main branch has to accommodate only a small 
number of additional functions, and so may evolve quite quickly.  

Conversely, a large number of PFs means that each function is 
comparatively easy to evolve, because it has to deal with only a 
small number of test cases. However, it becomes correspondingly 
more difficult to evolve the main branch. Not only does it have to 
select terminals from a greatly expanded set, it also has to 
combine these in such a way that the useful outputs from the PFs 
are given prominence, while the ‘don’t care’ outputs described 
earlier are masked out. The difficulty of this is seen time and time 
again in the experiments: the PFs evolving very quickly, often 
within a generation, with the necessarily more complex main 
branch subsequently failing to evolve at all. 

But what if there were ways to simplify the main branch? In fact, 
what if it were possible to do away with the main branch 
completely? 

Once a PF has evolved successfully, what is generated is a self-
contained program which, on application to a pre-determined set 
of test inputs, always produces the correct results, whilst for other 
test inputs it produces garbage. In other words, function X may 
work for test case A, but not B. However, the complete 
partitioning of test cases means that there will exist another 
function Y that will work for test case B. Suppose, then, that we 
define our program architecture in such a way that test case A is 
always referred to function X for solving, while test case B is 
always passed to function Y. If this were in place, each PF would 

receive only the input values it had evolved to handle, and so 
would never generate any garbage outputs. 

The architecture we propose is shown in Figure 4. Since there is 
no longer a main branch, there is no function calling, and code 
fragments that were previously encapsulated as parameterless 
functions now simply become branches of the main program. The 
root node of this program takes the form of a ‘select’ function. Its 
job is essentially to route control flow to the appropriate branch, 
according to the current program input values. Its precise form is 
left deliberately vague; its exact nature will depend on the 
problem being solved and the language being used to encode 
evolved programs. It will usually take the form of a ‘switch’ or 
‘case’ statement, or perhaps even a nested ‘if-then-else’ construct. 

 

SELECT 

BRANCH 0 BRANCH 1 BRANCH n 

INPUTS 

TEST 
SUBSET 0 

TEST SUBSET 1 

TEST 
SUBSET n 

 
 

Figure 4. Selection architecture for test-subset approach 

 

The primary advantage of using this architecture is that we need 
evolve only the branches responsible for the test case subsets, 
exactly as we did earlier for the parameterless functions. The 
select node at the root of the program tree takes care of everything 
else. The total amount of evolutionary effort required to discover 
a solution may therefore be greatly reduced. 

Table 5 shows the performance results obtained for the even-4 
parity problem when using this selection architecture. The 
experiment was performed with 2 branches dealing with 8 test 
cases each, and 4 branches dealing with 4 cases each. 

 
Table 5. Performance of the selection approach on the even-4 

parity problem 

Approach Success rate (%) Comp. Effort 

2 branches, 8 cases 
each 

71 59,500 

4 branches, 4 cases 
each 

100 3,500 

 
These figures should be compared with those given for 
conventional, ADF-based and PF-based GP in Table 2. It is patent 
that the selection architecture leads to substantially improved 
performance. When four branches are used, the branches are 
trivially easy to evolve, several often appearing together in the 
initial population. Since we have eliminated the need to evolve 
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additional code to combine these four fragments, the overall 
computational effort is tiny. 

The following shows the form of code that is generated as a 
solution to the even-4 parity problem when using four branches: 

 

SWITCH (INT(D3..D0)) 

CASE 0..3: 

NAND(OR(D0 D1) NAND(D0 D1)) 

CASE 4..7: 

NOR(NOR(OR(D1 D2) OR(D1 D1)) NAND(OR(D0 D1) 
NAND(D0 D1))) 

CASE 8..11: 

AND(AND(OR(NAND(OR(D1 D0) AND(D1 D1)) 
OR(NAND(D1 D0) NAND(D3 D1))) OR(NOR(NOR(D2 
D0) NAND(D2 D2)) OR(D1 D0))) OR(NAND(NOR(D2 
NOR(D0 D0)) NOR(NAND(D0 D0) NOR(D0 D2))) 
NAND(NAND(AND(D1 D2) NOR(D0 D3)) AND(AND(D2 
D3) NAND(D3 D1))))) 

CASE 12..15: 

OR(AND(AND(NAND(AND(D1 D0) OR(D2 D1)) 
AND(NAND(D0 D3) NAND(D1 D2))) AND(OR(AND(D2 
D1) NAND(D3 D0)) OR(NAND(D1 D3) OR(D2 D3)))) 
AND(D1 D0)) 

 

and here is a solution when 2 branches are used: 

 

SWITCH (INT(D3..D0)) 

CASE 0..7: 

NAND(NAND(NOR(D3 D1) AND(AND(NAND(D2 D2) 
NOR(D2 D0)) OR(NOR(D3 D0) NAND(D0 D2)))) 
NAND(NOR(NOR(NOR(AND(D1 D2) AND(D1 D3)) 
NOR(AND(D0 D1) AND(D2 D3))) AND(NOR(D1 D2) 
NAND(D0 D1))) OR(AND(AND(D2 D1) OR(D1 D1)) 
OR(NOR(D1 D2) D0)))) 

CASE 8..15: 

NOR(NOR(NOR(AND(AND(D2 D1) NAND(OR(D1 D3) 
AND(D1 D0))) OR(NAND(D2 D2) OR(D3 D1))) 
NAND(AND(NAND(D0 D0) AND(D2 D1)) D2)) 
NOR(AND(NOR(NAND(D1 D1) AND(D0 D1)) OR(D1 
NAND(D0 D1))) NAND(OR(AND(D0 D2) NAND(D2 
D2)) NAND(NAND(NAND(NOR(AND(D2 D2)AND(D0 
D0)) OR(NAND(D0 D0) D2)) OR(AND(AND(D0 D2) 
NAND(D2 D1)) AND(AND(D1 OR(D1 D0)) NAND(D2 
D1)))) OR(D1 D0))))) 

 

In each case, the integer value on the four binary inputs {D0, D1, 
D2, D3} is used to select the appropriate branch to execute. An 
important point to note here is that each branch is a stand-alone 
piece of code that deals with a particular test case subset, and that 
the garbage values it produces for unrecognised inputs are no 
longer an issue. Because of this, it becomes possible to combine 
branches from different programs in a ‘mix and match’ approach 

to solution generation. For example, if we are looking for the 
shortest solution, we can bring together the shortest branches 
obtained over a sequence of runs. If we do this for the 4-branch 
version of our even-4 parity problem, we can build the following 
program from the various solutions: 

 

SWITCH (INT(D3..D0)) 

CASE 0..3: 

NAND(OR(D0 D1) NAND(D0 D1)) 

CASE 4..7: 

NOR(NOR(D1 D0) AND(D1 D0)) 

CASE 8..11:  

AND(OR(D0 D1) NAND(D0 D1)) 

CASE 12..15: 

NAND(NAND(D0 D1) OR(D1 D0)) 

 

An interesting feature of this concocted program is that although 
it is a solution to a four-input problem on D0-D3, the branches are 
expressed in terms of the two inputs D0 and D1 only. The size of 
the solution is 29 nodes (including the root node); this compares 
with the 59-node smallest program found in the standard GP runs, 
and the 33-node shortest solution in the ADF-based GP runs. 

Table 6 shows the performance of the selection architecture when 
applied to the even-5 parity problem; this can be compared with 
the results given earlier in Table 3. Similarly, Table 7 shows how 
the selection architecture fares on the majority-5 problem; this can 
be contrasted with the results of Table 4. In both cases, the 
superiority of the new approach is evident. 

 

Table 6. Performance of the selection approach on the even-5 
parity problem 

Approach Success rate (%) Comp. Effort 

4 branches, 8 cases 
each 

91 192,000 

8 branches, 4 cases 
each 

100 16,000 

 
 

Table 7. Performance of the selection approach on the 
majority-5-on problem 

Approach Success rate (%) Comp. Effort 

2 branches, 16 cases 
each 

90 19,500 

4 branches, 8 cases 
each 

100 6,500 
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In general, as the number of test cases per branch is lowered, each 
branch becomes correspondingly easier to evolve, and solutions 
can be found with a comparatively small population size. At the 
same time, small test subsets imply a large branch count, so that 
even though only a small number of generations may be needed to 
evolve each branch, the maximum number of generations per run 
may have to be greatly increased in order to allow enough 
evolutionary time to generate all branches. Utilising this 
knowledge allows us to solve comparatively difficult problems by 
using only small GP populations, simply by extending run lengths 
to include a sufficient number of generations. A final 
demonstration of the efficacy of the selection architecture 
approach is presented in Table 8, which gives the performance 
figures obtained from solving the even-10 parity problem using a 
population size of only 2000. To achieve this, the program 
architecture has been given 256 branches, each handling just 4 
test cases, and the maximum run length is set at 500 generations. 
It is perhaps worth remarking that the figure of computational 
effort for this approach to the even-10 parity problem is lower 
than that required for standard GP to solve the even-4 parity 
problem. 

 

Table 8. Performance of the selection approach on the even-10 
parity problem 

Approach Success rate (%) Comp. Effort 

256 branches, 
4 cases each 

100 628,000 

 
 

5. CONCLUSIONS 
In this paper we have proposed two novel program architectures 
for enabling the hierarchical decomposition and evolutionary 
solution of problems, via consideration of subsets of the test input 
cases normally used to evaluate the fitness of individuals. 

In the first of these approaches, parameterless functions (PFs) are 
evolved to handle each of the test case subsets. The main program 
branch can include calls to these new entities via an expanded 
terminal set. Our experiments have shown that it is possible to 
achieve performance levels that are much improved over standard 
and ADF-based GP, but that crucial to this is judicious selection 
of the number of PFs, which may be difficult to determine in 
advance. 

In the second approach, the complexity and associated problems 
of the main program branch are removed by eliminating that 
branch entirely. This is achieved via an architecture which 
contains a selection primitive at its root node. Experimental 
results for this approach are impressive, and offer the ability to 
solve complex problems such as even-10 parity with relative ease. 

The proposed architectures also have additional advantages over 
more conventional systems.  Unlike ADFs, for example, each PF 
and selection branch is evolved according to its own pre-defined 
goal and fitness criterion. As such, these code fragments are 
evolved independently of each other and of any main branch. This 
provides several benefits. Firstly, as we saw earlier, it becomes 
possible to mix-and-match fragments from different solutions. 

Secondly, it becomes possible to apply different evolutionary 
techniques to different fragments. In each of our experiments, all 
test subsets were of the same size, but in principle it would be 
possible to define test subsets of different sizes and other 
characteristics, and to employ a variety of techniques in solving 
them. Thirdly, the opportunities for parallel execution are 
obvious. In the PF-based architecture, it would be a simple matter 
to evolve all PFs in parallel, and then evolve the main branch. In 
the selection architecture, all branches can evolve in parallel. 

Another advantage not brought out in previous discussion is that 
of storage requirements. The abstract views of the proposed 
architectures as we have presented them imply that all branches 
are contained within all individuals. In fact, this is not necessary 
in an implemented system. Once a PF or selection branch has 
evolved, it is propagated to all individuals, but this does not 
require a physical copying of code to every member of the 
population. Instead, the evolved code fragment is moved to a 
global data structure, accessible by all individuals. In this way, 
only code for the currently evolving PF or selection branch is ever 
contained within individuals. This is in contrast to, say, an ADF 
system, in which each individual must have physical sub-trees for 
each function and the main value branch. 

An argument that could be levelled against the selection 
architecture is that it is an artificial device that absorbs some of 
the complexity that would otherwise have to be dealt with by the 
evolutionary process. Our counter-argument to this is that, far 
from being an exotic and problem-specific device, the selection 
construct is something that is found in all programming 
languages. In its implementation it is nothing more than a 
standard case statement or nested if-then-else clause. As such, its 
form remains constant across all applicable problems, and does 
not have to be tailored to a specific domain. Finally, a selection 
function could, if one wished to be so purist, be evolved as a 
separate exercise. 

That said, it is clear that any solution generated using our 
architectures is a very different animal from that which would 
arise in a more conventional GP system. A program takes the 
form of an interconnected set of relationships, rather than a single 
relationship over all inputs, and this gives rise to a number of 
questions about its properties. For example, how generalisable is 
the approach? How effective is it when the test input set is not 
exhaustive, but contains ‘gaps’ ? How well, if at all, does the 
approach extend to problems in which fitness is assessed not by 
input-output relationships but by dynamic behaviour over time? 
These questions and many others we hope to address in on-going 
work. 
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