
Hierarchical Genetic Programming Based on Test Input
Subsets
David Jackson

Dept. of Computer Science
University of Liverpool

Liverpool L69 3BX, United Kingdom
Tel. +44 151 795 4297

d.jackson@csc.liv.ac.uk

ABSTRACT
Crucial to the more widespread use of evolutionary computation
techniques is the ability to scale up to handle complex problems.
In the field of genetic programming, a number of decomposition
and reuse techniques have been devised to address this. As an
alternative to the more commonly employed encapsulation
methods, we propose an approach based on the division of test
input cases into subsets, each dealt with by an independently
evolved code segment. Two program architectures are suggested
for this hierarchical approach, and experimentation demonstrates
that they offer substantial performance improvements over more
established methods. Difficult problems such as even-10 parity
are readily solved with small population sizes.

Categories and Subject Descriptors
D.1.2 [Programming Techniques]: Automatic Programming;
I.2.2 [Artificial Intelligence] Automatic Programming – program
synthesis; I.2.6 [Artificial Intelligence] Learning – induction.

General Terms
Algorithms, Design, Performance, Experimentation.

Keywords
Genetic programming, hierarchical GP, decomposition, program
architecture.

1. INTRODUCTION
A key area of research in genetic programming (GP) and in other
areas of evolutionary computation is that of discovering how to
scale up such techniques to deal with complex, real-world
problems. The usual approach of the human programmer is to
decompose the original problem into sub-tasks that are simpler to
solve, and then combine the resulting lower-level modules into a
solution to the full problem. It seems natural, then, that similar
divide-and-conquer approaches should form the basis for solving
difficult problems by evolutionary means.

In GP, decomposition and reuse techniques can take various
forms, the best-known paradigm being that of Koza’s
Automatically Defined Functions (ADFs) [10-12]. In this, the
architecture of programs is defined in such a way that a number of
function-defining branches are evolved in tandem with a main
value branch that may make calls to the functions. For many
problem domains, it has been found that ADF-based systems can
provide much better performance than conventional GP systems
[15].

An alternative to the use of ADFs is the technique of Module
Acquisition introduced by Angeline and Pollack [1, 2]. In this,
portions of individuals are randomly encapsulated as modules that
are protected from the effects of the usual evolutionary operators.
Modules are stored in a library, their value being determined by
how often they are used by evolving individuals.

Other approaches are more systematic (i.e. less random) in the
modularisation decisions that are made. The Adaptive
Representation through Learning (ARL) algorithm [16], for
example, identifies and extracts subroutines from offspring which
exhibit the best improvements on the fitness of their parents.
Similarly, Roberts et al [14] describe a two-stage scheme in which
module selection is based on sub-tree survival and frequency.

The importance of modularisation has also been recognised for
genetic programming systems that use representations which
differ from the tree structure usually employed. In his work on
Cartesian Genetic Programming (CGP), Miller has described
bottom-up techniques for building hardware circuits from simpler
‘cells’ [13], and for encapsulation of modules in evolving CGP
programs [18, 19].

In much of the existing research, the emphasis is on attempts to
encapsulate useful code segments as they evolve, and it is usually
not known in advance what functionality or structure these
fragments will possess. A very different approach is one in which
modules are associated with predetermined sub-tasks, so that the
evolution of each module is guided towards a specific goal.
However, if we are to avoid having to make use of intelligent
intervention to define these sub-problems, then other, more
mechanistic criteria are needed. In the next section, we explore
these alternatives more fully, and in particular we describe and
assess some previous work on a problem decomposition technique
based on the input test cases used to evaluate the fitness of
individuals in a GP population. In subsequent sections we go on
to propose two novel program architectures aimed at addressing
the limitations of the earlier work, and we assess the approaches

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’07, July 7-11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007…$5.00.

1612

experimentally before finishing with some concluding remarks
and suggestions for future research.

2. PREVIOUS WORK
In a previous paper [9] we examined the use of layered learning
[3, 4, 17] as a means for solving GP problems in a hierarchical
fashion. The essence of the layered learning approach is to
decompose a problem into subtasks, each of which is then
associated with a layer in the problem-solving process. The idea is
that the learning achieved at lower layers when solving the
simpler tasks directly facilitates the learning required in higher
subtask layers.

In Layered Learning Genetic Programming (LLGP) [5-9],
evolution begins in an initial layer that proceeds towards the
solution of a sub-task of the overall problem. The stopping
criterion for this may be, say, that a solution to the sub-task is
found, or that a pre-defined limit on the number of generations
has been reached. The genetic material produced at the end of this
layer then forms the basis for the initial population of the next
layer, which uses what has been ‘learnt’ in layer 1 to help it
evolve towards a solution of the original problem. In practice, two
layers may be sufficient, although the approach could in principle
be extended to multiple layers. There are also various ways in
which genetic material can be propagated from one layer to the
next: the population as it stands at the end of one layer may be
simply re-cast as generation zero of the subsequent layer, or the
best individuals from the lower layer may be used exclusively to
seed the higher layer.

A key issue in layered learning is deciding how to decompose a
problem into tasks to be associated with the lower layers. There
are at least three ways in which this can be done:

1. Based on the original problem specification, identify a
component sub-task.

2. Attempt to solve a lower-order form of the same problem.

3. Make use of a subset of the test cases normally used to evaluate
the fitness of individuals.

Most of the published work on layered learning adopts the first of
these approaches. For example, in research done on the
application of layered learning to the game of keep-away soccer
[5-8], it was decided that in attempting to solve the problem of
preventing the opposing team from gaining possession of the ball,
it would be useful firstly to evolve accurate passing between
team-mates without an opposing player present. The drawback of
such prior decomposition is that it requires an intelligent
understanding of the problem at hand, plus at least some insight
into the components that would be useful in forming a solution.

The other two strategies are far more mechanistic, and were the
subject of our investigations in the earlier paper [9]. As described
there, approach number two involves the solution of a problem
(e.g. the even-5 parity problem) by reusing genetic material
obtained from solving lower order versions of that problem (e.g.
even-2 or even-3 parity). Experimentation showed that the
technique significantly out-performs not only conventional GP
systems, but also those that make use of Automatically Defined
Functions (ADFs).

The way that approach number three works is that only a subset
of the test cases normally used to evaluate the fitness of an
individual is considered in the initial layer. Once a solution to this
sub-problem has been found, or another stopping criterion
reached, the process is ramped up to a second layer in which all
test cases are used to drive evolution. For example, in the even-4
parity problem, exhaustive testing involves 16 combinations of
values on the binary inputs {D0, D1, D2, D3}. In the layered
learning approach as we tried it, a lower layer attempts to solve
for, say, 4 or 8 of these input combinations. The whole of the
population at the end of layer 1 then becomes the initial
population of the upper layer, which searches for programs that
work for all 16 test cases.

In a range of experiments, layer 1 was allowed to proceed until
given saturation levels of solutions to the sub-task were reached.
However, the performance of this strategy was disappointing:
although modest improvements were seen in some cases, in
general the approach fared little better than a standard GP system.

In the following sections we describe how, rather than abandoning
the test subset approach entirely, we have investigated alternative
ways of employing it.

3. A FUNCTION-BASED ARCHITECTURE
A possible reason for the failure of the test-subset approach to
improve on performance is that although potentially useful pieces
of code are evolved in the first layer, there is then no mechanism
for subsequently protecting those fragments from the deleterious
effects of crossover and other evolutionary operators. Perhaps
what is needed, then, is some form of encapsulation to turn the
useful code sections into indivisible modules. This suggests a
hierarchical approach to the form of genetic programming that is
used.

As mentioned earlier, the best-known of the hierarchical
approaches to GP is that of Koza’s Automatically Defined
Functions (ADFs) [10-12]. In implementing this, the structure of
population members is more tightly specified than is usual in GP.
Figure 1 shows a typical architecture for programs in an ADF-
based system.

PROGRAM

FUNCTION
DEFN.

FUNCTION
DEFN.

BODY
ACTING ON
(T, F+{ADF0, ADF1…})

NAME
(ADF0)

BODY
ACTING ON
({P1, P2…}, F)

PARAM LIST
(P1, P2,…)

Figure 1. Typical architecture of an ADF-based GP system

1613

In this architecture, a program tree comprises one or more
function-defining branches and a main branch that may invoke
those functions. Each function definition has a formal parameter
list, and only members of this list can appear as terminals in the
body of the function; the terminal set of the problem itself is not
accessible within an ADF. The body of the program as a whole –
its main branch – is built from the usual terminal set, members of
the problem function set, and members of the set of ADFs. During
evolution, operators are usually subject to some context
restrictions; in crossover, for example, if the first parent’s
crossover point is within, say, ADF0, then the second parent’s
crossover point is also confined to ADF0. In this way, all of the
function branches and the main branch evolve simultaneously
towards a solution to the problem.

For our own purpose, a slightly different hierarchical architecture
is proposed; this is shown in Figure 2.

PROGRAM

FUNCTION
DEFN. FOR
TEST
SUBSET 0

FUNCTION
DEFN. FOR
TEST
SUBSET 1

BODY
ACTING ON
(T+{PF0, PF1…}, F)

NAME
(PF0)

BODY
ACTING ON
(T, F)

Figure 2. Function-based architecture for test-subset
approach

As before, each program consists of several function defining
branches plus a main branch. However, there are several key
differences between this architecture and that of Figure 1. Firstly,
in the ADF approach the number of function branches is arbitrary,
whilst in our approach it is determined by the number of subsets
of test input cases. Secondly, each ADF does not evolve towards a
particular fixed and independent goal; rather, its evolutionary
worth is judged according to its contribution to the fitness of the
individual as a whole. In our new architecture, on the other hand,
each function is assessed separately, its fitness being determined
by the number of test cases it fulfils within its assigned subset.
Thirdly, as is made clear in the diagrams, ADFs are defined in
terms of formal parameter lists, whereas the functions in the new
architecture are parameterless functions (PFs). This in turn leads
to a fourth difference, which is in the composition of the function
and terminal sets. In the ADF approach, the terminals appearing
in the body of a function are taken solely from the formal
parameter list, and the function set in the main branch is
augmented with the set of ADFs. In the new architecture, the
normal terminal set for the problem is used to build function
bodies. Moreover, since these functions are parameterless, they
act as terminal nodes of the main branch, and so it is the terminal
set rather than the function set which is expanded to include them.

(Indeed, the phrase Automatically Defined Terminals (ADTs) has
been considered for these new entities).

Other differences lie in the way the evolutionary process is
conducted. Rather than evolving all branches in concert as in an
ADF-based system, the proposed approach focuses all of its
evolutionary effort on one branch at a time (at least, for a
uniprocessor machine). As soon as a PF has evolved, it is
propagated to all members of the population, since there is little
point in evolving multiple versions of functionally identical code.
Then, when all PFs have been produced, evolutionary effort is
shifted onto the main program branch.

In evaluating this architecture, we begin with the even-parity
problem, one of a class of Boolean problems that is known to be
difficult for GP to solve. In the even-4 version, the aim is to
evolve a Boolean design that returns a TRUE output if the number
of logic one values on its 4 inputs D0-D3 is even, FALSE
otherwise. The parameters for the problem as we have
implemented it in our GP systems (before any expansion of the
function and terminal sets) are given in Table 1.

Table 1. GP parameters for the even-4 parity problem

Objective To evolve a program capable of determining
if the number of logic 1s on the 4 inputs is
even

Terminal set D0, D1, D2, D3

Function set AND, OR, NAND, NOR

Initial
population

Ramped half-and-half

Evolutionar
y process

Steady-state; 5-candidate tournament
selection

Fitness cases 16, representing all combinations of inputs

Fitness Number of mismatches with expected outputs
(0-16)

Success
predicate

Zero fitness (solution found)

Other
parameters

Pop size=500; Gens=51; prob. crossover=0.9;
no mutation; prob. internal node used as
crossover point=0.9

The performance of our subset-based system can be compared
against a conventional GP system, and also against one which
makes use of ADFs. For the latter, we have followed Koza’s
precept [10] of enabling the evolution of one function for each of
the arities from 2 up to n-1, where n is the size of the terminal set
for the problem. Hence, for the even-4 parity problem, we allow
for one ADF with 2 parameters, and a second with 3 parameters
(although not all formal parameters need be accessed within the
body of a function).

For our parameterless function approach, we also need to make a
decision as to how many functions are required, and this in turn is
governed by how we choose to partition the test cases. For even-4

1614

parity, exhaustive testing using all combinations of the four inputs
{D0, D1, D2, D3} requires 16 test cases. In this experiment, we
will assess the effectiveness of declaring 2 functions, the first
dealing with the integer values 0-7 on the four binary inputs, the
other dealing with the values 8-15. We will also evaluate the
effect of using four PFs, dealing with values 0-3, 4-7, 8-11 and
12-15, respectively.

In comparing approaches, we make use of the success rate at
finding solutions over 100 runs, each of 50 generations. We also
make use of Koza’s metric of computational effort [10], defined
as the minimum number of individuals that must be processed to
achieve a 0.99 probability that a solution will be found. Table 2
presents these figures for each of the systems we have described.

Table 2. Comparative performance of the PF approach on the
even-4 parity problem

Approach Success rate (%) Comp. Effort

Standard GP 14 700,000

ADF GP 43 97,500

2 PFs, 8 cases each 55 116,000

4 PFs, 4 cases each 59 72,000

When only 2 PFs are used, the solution-finding success rate of the
subset-based approach is substantially better than standard GP; it
is also significantly better than ADF-based GP, although more
computational effort is required. When 4 PFs are used, both the
success rate and the computational effort are better than either of
the more established approaches.

Figure 3 shows the graph of best fitness for one successful run of
the subset-based approach, using 2 PFs dealing with 8 cases each.
From generations zero to 7, the system is evolving the code for
PF0, which handles test cases 0-7. In the initial population, the
best individual has a fitness value of 3, i.e. it cannot solve for 3 of
the 8 test cases. The code for PF0 is evolved at generation 7, and
in generation 8 a new population is created to evolve PF1, which
handles test cases 8-15. This is completed by generation 12, and
in generations 13-17 the main branch of the program is evolved,
the code for which must pass all 16 test cases.

0

1

2

3

4

5

0 2 4 6 8 10 12 14 16 18 20

Generation

B
es

t F
itn

es
s

PF0 PF1 MAIN

Figure 3. Graph of best fitness for one run of the PF approach

on even-4 parity

It is important to bear in mind that the code evolved for a PF is
specific to the test cases for which it is responsible, and is in no
sense a generalised solution. For example, in a two-PF program
for even-4 parity, PF1 will give correct answers for all of the
integer values 8-15 encoded on the inputs {D0, D1, D2, D3};
however it may very well give incorrect results for other integer
encodings. In a sense, these other results are ‘don’t care’ values,
and it is the job of the main program branch to screen these out
and ensure that only valid outputs are reflected in the program as
a whole.

The success of the approach for even-4 parity encouraged us to
try it for the more difficult even-5 parity problem. The only
changes to the problem parameters given in Table 1 are an
additional input D4, a corresponding increase in the fitness cases
to 32, and an increase in population size from 500 to 2000. As
before, we experimented with two versions of the subset-based
system: one with 4 PFs dealing with 8 of the 32 test cases each,
and one with 8 PFs handling 4 cases each. The results are
compared in Table 3.

Table 3. Comparative performance of the PF approach on the
even-5 parity problem

Approach Success rate (%) Comp. Effort

Standard GP 0 -

ADF GP 32 864,000

4 PFs, 8 cases each 58 564,000

8 PFs, 4 cases each 10 3,584,000

Like Koza [10], we found that discovering a solution to the even-
5 parity problem using standard GP is extremely difficult. By
incorporating an ADF mechanism we were able to get much
better results, with a success rate of 32%. When we try the test
subset approach using 4 PFs, the success rate is almost double that
achieved in the ADF system, leading to a large decrease in the
computational effort. However, when we attempt to evolve
solutions with 8 PFs, the performance drops markedly. We shall
return to the reasons for this in the next section.

To evaluate the approach further, we applied it to the majority-on
problem. In this, the aim is to evolve a program that is capable of
determining whether the majority of its Boolean inputs are set to
logic-one. Thus, in the 5-input version, a solution will deliver
TRUE if three or more inputs are logic-one, and FALSE
otherwise. The function set for the problem is F={AND, OR,
NOT}, but other parameters for the problem as we have
implemented it are the same as given for the even-parity problem.
In creating the ADF version of the GP code, we have again used
Koza’s rule of thumb, so that for the majority-5-on problem there
are three ADFs, with arities 2, 3 and 4. For the subset-based
approach, we have experimented with 2 PFs of 16 cases each, and
4 PFs of 8 cases each. The results are given in Table 4.

1615

Table 4. Comparative performance of the PF approach on the
majority-5-on problem

Approach Success rate (%) Comp. Effort

Standard GP 62 49,000

ADF GP 7 945,000

2 PFs, 16 cases each 86 24,000

4 PFs, 8 cases each 41 91,000

An unusual characteristic of this problem is that the performance
of the ADF version is substantially worse than that of the
conventional GP approach. Much better than either of these is the
subset-based approach with 2 PDFs, with a computational effort
only half that of standard GP. Again, however, when the number
of PFs is increased to 4, the performance drops: although still
overwhelmingly better than the ADF system, it is somewhat
worse than standard GP.

4. A SELECTION ARCHITECTURE
It is clear from the experimentation of the previous section that
the test subset approach can lead to substantially better
performance than more conventional GP methods. However, the
number of parameterless functions employed is critical to
optimum performance, and this phenomenon merits further
attention.

When the number of PFs is low, the size of the test subset
assigned to each PF must be quite high. This means that the PF
itself must be reasonably complex to deal with the relatively large
number of cases, and so it may take some time to evolve. On the
plus side, the main branch has to accommodate only a small
number of additional functions, and so may evolve quite quickly.

Conversely, a large number of PFs means that each function is
comparatively easy to evolve, because it has to deal with only a
small number of test cases. However, it becomes correspondingly
more difficult to evolve the main branch. Not only does it have to
select terminals from a greatly expanded set, it also has to
combine these in such a way that the useful outputs from the PFs
are given prominence, while the ‘don’t care’ outputs described
earlier are masked out. The difficulty of this is seen time and time
again in the experiments: the PFs evolving very quickly, often
within a generation, with the necessarily more complex main
branch subsequently failing to evolve at all.

But what if there were ways to simplify the main branch? In fact,
what if it were possible to do away with the main branch
completely?

Once a PF has evolved successfully, what is generated is a self-
contained program which, on application to a pre-determined set
of test inputs, always produces the correct results, whilst for other
test inputs it produces garbage. In other words, function X may
work for test case A, but not B. However, the complete
partitioning of test cases means that there will exist another
function Y that will work for test case B. Suppose, then, that we
define our program architecture in such a way that test case A is
always referred to function X for solving, while test case B is
always passed to function Y. If this were in place, each PF would

receive only the input values it had evolved to handle, and so
would never generate any garbage outputs.

The architecture we propose is shown in Figure 4. Since there is
no longer a main branch, there is no function calling, and code
fragments that were previously encapsulated as parameterless
functions now simply become branches of the main program. The
root node of this program takes the form of a ‘select’ function. Its
job is essentially to route control flow to the appropriate branch,
according to the current program input values. Its precise form is
left deliberately vague; its exact nature will depend on the
problem being solved and the language being used to encode
evolved programs. It will usually take the form of a ‘switch’ or
‘case’ statement, or perhaps even a nested ‘if-then-else’ construct.

SELECT

BRANCH 0 BRANCH 1 BRANCH n

INPUTS

TEST
SUBSET 0

TEST SUBSET 1

TEST
SUBSET n

Figure 4. Selection architecture for test-subset approach

The primary advantage of using this architecture is that we need
evolve only the branches responsible for the test case subsets,
exactly as we did earlier for the parameterless functions. The
select node at the root of the program tree takes care of everything
else. The total amount of evolutionary effort required to discover
a solution may therefore be greatly reduced.

Table 5 shows the performance results obtained for the even-4
parity problem when using this selection architecture. The
experiment was performed with 2 branches dealing with 8 test
cases each, and 4 branches dealing with 4 cases each.

Table 5. Performance of the selection approach on the even-4

parity problem

Approach Success rate (%) Comp. Effort

2 branches, 8 cases
each

71 59,500

4 branches, 4 cases
each

100 3,500

These figures should be compared with those given for
conventional, ADF-based and PF-based GP in Table 2. It is patent
that the selection architecture leads to substantially improved
performance. When four branches are used, the branches are
trivially easy to evolve, several often appearing together in the
initial population. Since we have eliminated the need to evolve

1616

additional code to combine these four fragments, the overall
computational effort is tiny.

The following shows the form of code that is generated as a
solution to the even-4 parity problem when using four branches:

SWITCH (INT(D3..D0))

CASE 0..3:

NAND(OR(D0 D1) NAND(D0 D1))

CASE 4..7:

NOR(NOR(OR(D1 D2) OR(D1 D1)) NAND(OR(D0 D1)
NAND(D0 D1)))

CASE 8..11:

AND(AND(OR(NAND(OR(D1 D0) AND(D1 D1))
OR(NAND(D1 D0) NAND(D3 D1))) OR(NOR(NOR(D2
D0) NAND(D2 D2)) OR(D1 D0))) OR(NAND(NOR(D2
NOR(D0 D0)) NOR(NAND(D0 D0) NOR(D0 D2)))
NAND(NAND(AND(D1 D2) NOR(D0 D3)) AND(AND(D2
D3) NAND(D3 D1)))))

CASE 12..15:

OR(AND(AND(NAND(AND(D1 D0) OR(D2 D1))
AND(NAND(D0 D3) NAND(D1 D2))) AND(OR(AND(D2
D1) NAND(D3 D0)) OR(NAND(D1 D3) OR(D2 D3))))
AND(D1 D0))

and here is a solution when 2 branches are used:

SWITCH (INT(D3..D0))

CASE 0..7:

NAND(NAND(NOR(D3 D1) AND(AND(NAND(D2 D2)
NOR(D2 D0)) OR(NOR(D3 D0) NAND(D0 D2))))
NAND(NOR(NOR(NOR(AND(D1 D2) AND(D1 D3))
NOR(AND(D0 D1) AND(D2 D3))) AND(NOR(D1 D2)
NAND(D0 D1))) OR(AND(AND(D2 D1) OR(D1 D1))
OR(NOR(D1 D2) D0))))

CASE 8..15:

NOR(NOR(NOR(AND(AND(D2 D1) NAND(OR(D1 D3)
AND(D1 D0))) OR(NAND(D2 D2) OR(D3 D1)))
NAND(AND(NAND(D0 D0) AND(D2 D1)) D2))
NOR(AND(NOR(NAND(D1 D1) AND(D0 D1)) OR(D1
NAND(D0 D1))) NAND(OR(AND(D0 D2) NAND(D2
D2)) NAND(NAND(NAND(NOR(AND(D2 D2)AND(D0
D0)) OR(NAND(D0 D0) D2)) OR(AND(AND(D0 D2)
NAND(D2 D1)) AND(AND(D1 OR(D1 D0)) NAND(D2
D1)))) OR(D1 D0)))))

In each case, the integer value on the four binary inputs {D0, D1,
D2, D3} is used to select the appropriate branch to execute. An
important point to note here is that each branch is a stand-alone
piece of code that deals with a particular test case subset, and that
the garbage values it produces for unrecognised inputs are no
longer an issue. Because of this, it becomes possible to combine
branches from different programs in a ‘mix and match’ approach

to solution generation. For example, if we are looking for the
shortest solution, we can bring together the shortest branches
obtained over a sequence of runs. If we do this for the 4-branch
version of our even-4 parity problem, we can build the following
program from the various solutions:

SWITCH (INT(D3..D0))

CASE 0..3:

NAND(OR(D0 D1) NAND(D0 D1))

CASE 4..7:

NOR(NOR(D1 D0) AND(D1 D0))

CASE 8..11:

AND(OR(D0 D1) NAND(D0 D1))

CASE 12..15:

NAND(NAND(D0 D1) OR(D1 D0))

An interesting feature of this concocted program is that although
it is a solution to a four-input problem on D0-D3, the branches are
expressed in terms of the two inputs D0 and D1 only. The size of
the solution is 29 nodes (including the root node); this compares
with the 59-node smallest program found in the standard GP runs,
and the 33-node shortest solution in the ADF-based GP runs.

Table 6 shows the performance of the selection architecture when
applied to the even-5 parity problem; this can be compared with
the results given earlier in Table 3. Similarly, Table 7 shows how
the selection architecture fares on the majority-5 problem; this can
be contrasted with the results of Table 4. In both cases, the
superiority of the new approach is evident.

Table 6. Performance of the selection approach on the even-5
parity problem

Approach Success rate (%) Comp. Effort

4 branches, 8 cases
each

91 192,000

8 branches, 4 cases
each

100 16,000

Table 7. Performance of the selection approach on the
majority-5-on problem

Approach Success rate (%) Comp. Effort

2 branches, 16 cases
each

90 19,500

4 branches, 8 cases
each

100 6,500

1617

In general, as the number of test cases per branch is lowered, each
branch becomes correspondingly easier to evolve, and solutions
can be found with a comparatively small population size. At the
same time, small test subsets imply a large branch count, so that
even though only a small number of generations may be needed to
evolve each branch, the maximum number of generations per run
may have to be greatly increased in order to allow enough
evolutionary time to generate all branches. Utilising this
knowledge allows us to solve comparatively difficult problems by
using only small GP populations, simply by extending run lengths
to include a sufficient number of generations. A final
demonstration of the efficacy of the selection architecture
approach is presented in Table 8, which gives the performance
figures obtained from solving the even-10 parity problem using a
population size of only 2000. To achieve this, the program
architecture has been given 256 branches, each handling just 4
test cases, and the maximum run length is set at 500 generations.
It is perhaps worth remarking that the figure of computational
effort for this approach to the even-10 parity problem is lower
than that required for standard GP to solve the even-4 parity
problem.

Table 8. Performance of the selection approach on the even-10
parity problem

Approach Success rate (%) Comp. Effort

256 branches,
4 cases each

100 628,000

5. CONCLUSIONS
In this paper we have proposed two novel program architectures
for enabling the hierarchical decomposition and evolutionary
solution of problems, via consideration of subsets of the test input
cases normally used to evaluate the fitness of individuals.

In the first of these approaches, parameterless functions (PFs) are
evolved to handle each of the test case subsets. The main program
branch can include calls to these new entities via an expanded
terminal set. Our experiments have shown that it is possible to
achieve performance levels that are much improved over standard
and ADF-based GP, but that crucial to this is judicious selection
of the number of PFs, which may be difficult to determine in
advance.

In the second approach, the complexity and associated problems
of the main program branch are removed by eliminating that
branch entirely. This is achieved via an architecture which
contains a selection primitive at its root node. Experimental
results for this approach are impressive, and offer the ability to
solve complex problems such as even-10 parity with relative ease.

The proposed architectures also have additional advantages over
more conventional systems. Unlike ADFs, for example, each PF
and selection branch is evolved according to its own pre-defined
goal and fitness criterion. As such, these code fragments are
evolved independently of each other and of any main branch. This
provides several benefits. Firstly, as we saw earlier, it becomes
possible to mix-and-match fragments from different solutions.

Secondly, it becomes possible to apply different evolutionary
techniques to different fragments. In each of our experiments, all
test subsets were of the same size, but in principle it would be
possible to define test subsets of different sizes and other
characteristics, and to employ a variety of techniques in solving
them. Thirdly, the opportunities for parallel execution are
obvious. In the PF-based architecture, it would be a simple matter
to evolve all PFs in parallel, and then evolve the main branch. In
the selection architecture, all branches can evolve in parallel.

Another advantage not brought out in previous discussion is that
of storage requirements. The abstract views of the proposed
architectures as we have presented them imply that all branches
are contained within all individuals. In fact, this is not necessary
in an implemented system. Once a PF or selection branch has
evolved, it is propagated to all individuals, but this does not
require a physical copying of code to every member of the
population. Instead, the evolved code fragment is moved to a
global data structure, accessible by all individuals. In this way,
only code for the currently evolving PF or selection branch is ever
contained within individuals. This is in contrast to, say, an ADF
system, in which each individual must have physical sub-trees for
each function and the main value branch.

An argument that could be levelled against the selection
architecture is that it is an artificial device that absorbs some of
the complexity that would otherwise have to be dealt with by the
evolutionary process. Our counter-argument to this is that, far
from being an exotic and problem-specific device, the selection
construct is something that is found in all programming
languages. In its implementation it is nothing more than a
standard case statement or nested if-then-else clause. As such, its
form remains constant across all applicable problems, and does
not have to be tailored to a specific domain. Finally, a selection
function could, if one wished to be so purist, be evolved as a
separate exercise.

That said, it is clear that any solution generated using our
architectures is a very different animal from that which would
arise in a more conventional GP system. A program takes the
form of an interconnected set of relationships, rather than a single
relationship over all inputs, and this gives rise to a number of
questions about its properties. For example, how generalisable is
the approach? How effective is it when the test input set is not
exhaustive, but contains ‘gaps’ ? How well, if at all, does the
approach extend to problems in which fitness is assessed not by
input-output relationships but by dynamic behaviour over time?
These questions and many others we hope to address in on-going
work.

6. REFERENCES
[1] Angeline, P.J. and Pollack, J. Evolutionary Module

Acquisition. In Proc. 2nd Annual Conf. on Evolutionary
Programming, La Jolla, CA, 1993, 154-163.

[2] Angeline, P.J. and Pollack, J. Coevolving High-Level
Representations. In Artificial Life III, Langton, C.G. (ed.),
Addison-Wesley, 1994, 55-71.

[3] Asada, M., Noda, S., Tawaratsumida, S. and Hosoda, K.
Purposive Behaviour Acquisition for a Real Robot by
Vision-Based Reinforcement Learning. In Machine
Learning, vol. 23, 1998, 279-303.

1618

[4] deGaris, H.: Genetic Programming: Building Artificial
Nervous Systems Using Genetically Programmed Neural
Network Modules. In Proc. Seventh International Conf. on
Machine Learning (ICML-90), Porter, B.W. et al (eds), 1990,
132-139.

[5] Gustafon, S.M. Layered Learning in Genetic Programming
for a Cooperative Robot Soccer Problem. M.S. Thesis, Dept.
of Computing and Information Sciences, Kansas State
University, USA, 2000.

[6] Gustafon, S.M. and Hsu, W.H. Layered Learning in Genetic
Programming for a Cooperative Robot Soccer Problem. In
Proc. EuroGP 2001, Lecture Notes in Computer Science vol.
2038, Miller, J.F. et al (eds), Springer-Verlag, Berlin
Heidelberg, 2001, 291-301.

[7] Hsu, W.H. and Gustafon, S.M. Genetic Programming and
Multi-Agent Layered Learning by Reinforcements. In Proc.
GECCO 2002, New York, NY, USA, 2002, 764-771.

[8] Hsu, W.H., Harmon, S.J., Rodriguez, E. and Zhong, C.
Empirical Comparison of Incremental Reuse Strategies in
Genetic Programming for Keep-Away Soccer. In GECCO
2004 late-breaking papers, 2004.

[9] Jackson, D. and Gibbons, A.P. Layered Learning in Boolean
GP Problems. In Proc. EuroGP 2007, Lecture Notes in
Computer Science, vol. 4445, Springer-Verlag, Berlin
Heidelberg, 2007, 148-159.

[10] Koza, J.R. Genetic Programming: On the Programming of
Computers by Means of Natural Selection. MIT Press,
Cambridge, MA, 1992.

[11] Koza, J.R. Genetic Programming II: Automatic Discovery of
Reusable Programs. MIT Press, Cambridge, MA, 1994.

[12] Koza, J.R. Simultaneous Discovery of Reusable Detectors
and Subroutines Using Genetic Programming. In Proc. 5th

International Conf. Genetic Algorithms (ICGA-93), 1993,
295-302.

[13] Miller, J.F. and Thomson, P. A Developmental Method for
Growing Graphs and Circuits. In Proc. 5th International
Conf. on Evolvable Systems, Trondheim, Norway, 2003, 93-
104.

[14] Roberts, S.C., Howard, D. and Koza, J.R. Evolving Modules
in Genetic Programming by Subtree Encapsulation. In Proc.
EuroGP 2001, Lecture Notes in Computer Science, vol.
2038, Miller, J. et al (eds), Springer-Verlag, Berlin
Heidelberg, 2001, 160-175.

[15] Rosca, J.P. and Ballard, D.H. Hierarchical Self-Organization
in Genetic Programming. In Proc 11th International Conf.
on Machine Learning. Morgan Kaufmann, San Francisco,
CA, 1994, 251-258.

[16] Rosca, J.P. and Ballard, D.H. Discovery of Subroutines in
Genetic Programming. In Advances in Genetic Programming
2, Angeline, P. and Kinnear, K.E. Jr. (eds), ch. 9, MIT Press,
Cambridge, MA, 1996, 177-202.

[17] Stone, P. and Veloso, M. Layered Learning. In Proc. 17th
International Conf. on Machine Learning, Springer-Verlag,
Berlin Heidelberg, 2000, 369-381.

[18] Walker, J.A. and Miller, J.F.: Evolution and Acquisition of
Modules in Cartesian Genetic Programming. In Proc.
EuroGP 2004, Lecture Notes in Computer Science vol. 3003,
Keijzer, M. et al (eds), Springer-Verlag, Berlin Heidelberg,
2004, 187-197.

[19] Walker, J.A. and Miller, J.F. Improving the Performance of
Module Acquisition in Cartesian Genetic Programming. In
Proc. GECCO 2005, Beyer, H-G. and O’Reilly, U-M. (eds),
ACM Press, New York, 2005, 1649-1656.

1619

