
On the Behavioral Diversity of Random Programs

Moshe Looks
Department of Computer Science and Engineering

Washington University in St. Louis
Saint Louis, MO 63130, USA
moshe@metacog.org

ABSTRACT
Generating a random sampling of program trees with spec-
ified function and terminal sets is the initial step of many
program evolution systems. I present a theoretical and ex-
perimental analysis of the expected distribution of uniformly
sampled programs, guided by algorithmic information the-
ory. This analysis demonstrates that increasing the sample
size is often an inefficient means of increasing the overall
diversity of program behaviors (outputs). A novel sampling
scheme (semantic sampling) is proposed that exploits se-
mantics to heuristically increase behavioral diversity. An
important property of the scheme is that no calls of the
problem-specific fitness function are required. Its effective-
ness at increasing behavioral diversity is demonstrated em-
pirically for Boolean formulae. Furthermore, it is found to
lead to statistically significant improvements in performance
for genetic programming on parity and multiplexer prob-
lems.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming –
Program synthesis; I.2.8 [Artificial Intelligence]: Problem
Solving, Control Methods, and Search

General Terms
Algorithms, Design, Experimentation

Keywords
Empirical Study, Heuristics, Optimization

1. INTRODUCTION

“Duplicate individuals in the initial random gen-
eration are unproductive deadwood; they waste
computational resources and undesirably reduce
the genetic diversity of the population.” John
Koza, Genetic Programming [7]

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007 ...$5.00.

A fundamental aspect of evolutionary optimization is vari-
ation of solutions and selection according to differential fit-
ness. Variation without differential fitness is referred to as
neutrality. In domains such as program evolution, where so-
lutions are transformed into some phenotype before fitness
evaluation takes place, we can distinguish selective neutral-
ity (identical fitness) from the generally stronger notion of
behavioral neutrality (identical behavior). For example, the
Boolean formulae and(x, x) and or(x, x) exhibit behavioral
neutrality, whereas and(x, x) and or(x, y) do not, although
the may be assigned the same score according to some fitness
function (selective neutrality).

After evolutionary search has progressed somewhat, a set
of behaviorally neutral programs in a population may ar-
guably encode useful information regarding the exploration
of surrounding regions of the space, partial immunity from
disruptive operations such as subtree crossover, etc. Certain
kinds of neutrality have indeed been shown to enhance the
performance of evolutionary algorithms [19]. In the initial
generation, however, the population consists entirely of a
random sampling of programs. Here, we may safely consider
behavioral neutrality undesirable; all things being equal, the
more unique behaviors that get sampled, the better.

It is thus of interest to investigate how diverse random
samplings of program space are, behaviorally, when drawn
according to different sampling methodologies. We shall see
that behavioral diversity is in some cases quite lacking. I
propose and validate a novel heuristic to remedy this sit-
uation, that attempts to generate a sample with maximal
behaviorally diversity (i.e., all programs corresponding to
unique behaviors). This goes well beyond the common prac-
tice of eliminating syntactic duplicates in the initial popu-
lation as suggested by Koza [7].

2. THE DISTRIBUTION OF BEHAVIORS
Previous studies [7, 10, 5, 17] have found that program

spaces, when sampled according to various schemes, com-
pute a highly skewed distribution of functions (“simpler”
functions are overrepresented). Langdon and Poli’s work
in particular contains numerous results and discussion, en-
compassing a number of specific domains, and programs-in-
general as well [10]. Furthermore, this skewed distribution
cannot be avoided in general by sampling larger or smaller
programs – convergence results can be obtained across pro-
gram spaces satisfying fairly general requirements, indicat-
ing that the distribution of behaviors as a function of pro-
gram size remains essentially fixed past a certain size [10].

These results can be qualitatively understood as corollar-

1636

0 2 4 6 8

−12

−10

−8

−6

−4

−2

Minimal Length

lo
g(

p)

Figure 1: Minimal formula length measured in lit-
erals vs. log-of-density, in the space of ternary
Boolean formulae with one hundred literals. Den-
sity (p) is the proportion of formulae sampled with a
given minimal length. The solid line is a regression
fit, log(p) ≈ −2.083 − 1.281 ·Minimal Length.

ies of: (1) the incompressibility of minimal programs [3];
and (2) that an output (i.e., behavior) x’s algorithmic prob-
ability may be effectively approximated by 2−l, where l mea-
sures (in bits) the length of the minimal program computing
x [16]. This value l may be considered x’s intrinsic com-
plexity in the given program space, corresponding to Kol-
mogorov complexity for Turing-complete program spaces.

2.1 Experiments
Boolean formulae in particular follow this general rela-

tionship (i.e., a geometric distribution), as illustrated in
Figure 1. This shows the distribution of formulae with
one hundred literals,1 grouped by minimal program length
(the number of literals in the shortest corresponding for-
mula). Because computing the minimal program length
for functions of high arity is prohibitively expensive, data
are limited to ternary functions (i.e., the terminal set con-
tains three variables). A sampling of a million programs was
used. All ternary functions except for parity are represented;
AND/OR/NOT formulae computing 3-parity are too rare
to regularly appear in a random sampling of a million for-
mulae (their minimal formulae have ten literals). Note that
tautology and contradiction are displayed as containing zero
literals.

The graph in Figure 1 fits the theory well because for
formula with one hundred literals the limiting distribution
for ternary Boolean formulae has effectively been reached,
and because one million samples is sufficient to compute
reasonably accurate probabilities for all but the rarest of
behaviors (i.e., the parity functions). What are the con-
sequences for smaller sample sizes and samples containing
smaller programs? Consider how many unique behaviors we

1Sampled by uniformly randomly selecting a binary tree
with one hundred leaves and labeling the leaves with ran-
dom literals, and the internal nodes with either AND or OR,
chosen uniformly randomly.

can expect in a sample of m programs of a particular size (k)
in a particular space (for Boolean formulae this will grow as
a function of the arity). In particular, we will consider the
number of unique behaviors as a fraction of the total number
of programs sampled (henceforth the behavioral diversity of
a sample).

The graph on the left in Figure 2 shows that as the sam-
ple size m increases, behavioral diversity decreases, which
is to be expected given the heavy skew towards programs
with short minimal lengths outlined above. An observation
based on this result is that simply increasing our (syntactic)
sample size is often an inefficient method for achieving be-
havioral diversity. The graph on the right in Figure 2 shows
the same qualitative effect as a function of formula size (k).
However, program space grows so quickly that in practice
this can only really be observed for very small k. For k = 10
for instance, the behavioral diversity for a random sample is
nearly identical to the distribution for k = 100 (and in fact
to that for k = 2000 as well).

A final feature to consider in these graphs is the ubiq-
uitous S-shaped curve as the arity (n) increases. The left
side of the transition (n ≤ 2) can be understood as the
regime where behavioral diversity is effectively bounded by
the number of unique behaviors in the space (22n

). The
right side of the transition (around n ≥ 8), correspondingly,
is the regime where the number of unique behaviors in the
space dominates distributional skew and sample size, lead-
ing to high behavioral diversity. A future area of interest is
to consider the ubiquity of these phase transitions in pro-
gram spaces and their relationship to problem difficulty and
the underlying combinatorics of the space, as has been suc-
cessfully achieved for optimization problems such as Boolean
satisfiability [15] and the traveling salesman [4].

2.2 Discussion
A consequence of a highly skewed program distribution

is that the likelihood of generating “complex” behaviors in
a random sampling, when complex is quantified in terms
of minimal length, decreases exponentially with the target
complexity. This holds for sampling schemes where all pro-
grams generated have the same size (as above and in [9, 2]),
as well as when program size is varied (as in the common
ramped-half-and-half scheme [7], and in the ramped uniform
scheme proposed in [9]).

This may help explain the results of Luke and Panait [13],
who found little difference in the performance of genetic
programming when initialized with five different sampling
schemes. The critical difference between their study and
prior investigations was that average program size, which
presumably affected the dynamics of subtree crossover, was
controlled for. This normalization across initialization meth-
ods is of course also carried out for the comparative analyses
presented later in this paper.

I hypothesize that increasing behavioral diversity and con-
trolling the distribution of program complexities in the ini-
tial population can improve the performance of program evo-
lution. But how to test this? One simple strategy for in-
creasing behavioral diversity is to simply discard programs
leading to duplicate behaviors, much as duplicate programs
are often discarded. Three drawbacks of this scheme are:
(1) the behaviors of all programs must be computed and
indexed for comparison (e.g., via hashing), which adds a
problem-dependent computational overhead; (2) the num-

1637

2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Arity

B
eh

av
io

ra
l D

iv
er

si
ty

m=500
m=2500
m=10,000

2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Arity

k=100
k=5
k=4

Figure 2: The proportion of unique behaviors (Boolean functions) in a given sample of programs (Boolean
formulae), as a function of the arity of the function space. This can be seen to vary based on the sample
size m (left), and formula size measured in literals, k (right). Formula size for the left graph is one hundred
literals, and sample size for the right graph is ten thousand. Error bars are 95% confidence intervals based
on thirty independent trials.

ber of programs that will need to be generated and tested
may be quite large; and (3) there is still no direct control
over the distribution of program complexities. In the next
section I propose a new heuristic for sampling programs that
addresses all of these difficulties.

3. A NEW SAMPLING HEURISTIC
The goal of the new “semantic sampling” approach de-

scribed below is to approximate a uniform distribution of
minimal programs by length. That is, given a maximum
program size n and a sample size N , we want to generate
around N/n unique minimal programs for each size between
one and n. Such a hypothetical distribution is in a sense
optimal: (1) it has total behavioral diversity (by definition);
and (2) if the number of minimal programs of size l grows
exponentially (as it does for general programs), selection will
be in accordance with algorithmic probability (i.e., geomet-
ric with respect to l) [16].

3.1 Algorithm
The problem with directly implementing the scheme out-

line above is that minimal programs are often incomputable,
and at best very expensive to find. As an approximation, a
heuristic program reduction (simplification) mechanism will
be assumed; programs that cannot be reduced will be con-
sidered minimal. An idea that immediately presents itself is
to generate random programs according to some syntactic
mechanism, reduce them, and then add them to the sam-
ple (if they are not duplicates). This is more tractable, but
may still take a very long time, if many duplicates are gen-
erated. Furthermore, there are no guarantees regarding the
distribution of program lengths.

Semantic sampling exploits the heuristic that a program
of s created by combining several smaller reduced random
programs of sizes adding up to about s is more likely to
be irreducible than a completely random program of size
s. To avoid the inefficiency of discarding programs that do

not match the target size, dynamic programming is used to
cache unused program fragments.

The pseudocode shown in Algorithm 1 is based on the
uniform random tree sampling procedure described in [1].
This uses a precomputed table of the probabilities of dif-
ferent tree shapes for a given size s. A tree shape is a tu-
ple (s1, s2, ..., sa) indicating that the arity of the root node
is a, with the ith subtree containing si nodes, such thatPa

i=1 si = s.
For very small programs, complete enumeration is used; a

constant C bounds the maximum number of programs that
will be enumerated, and should be at least an order of mag-
nitude greater than n/N . This ensures that there are at
least n/N irreducible programs for sizes for which enumer-
ation does not occur, avoiding the possibility of an infinite
loop.2 In the experiments described below, C = 10, 000.
Note that the cache does not store duplicate programs.

After Generate(N,n) has been called, the cache will con-
tain all minimal programs up to the largest size where there
are less than C programs total. For every larger size up to
n, it will contain at least N/n unique, irreducible programs.
Programs are synthesized in Generate from largest to small-
est to avoid wasted effort; if we sample a program of size n
that reduces to size n − 1, there is no reason to discard it.
Thus in practice, it is generating the largest programs that
is the most computationally costly.

The worst case bound for Generate is quite bad, because
for arbitrary programming languages and simplification rou-
tines, there is no guarantee that a program randomly com-
posed of irreducible subprograms will be anywhere near ir-
reducible. In practice however, this is quite often the case.
In all of the experiments described below involving genetic
programming, for instance, GP runtimes dominated the run-
times for semantic sampling required to generate the ini-

2In the actual implementation, there is a cutoff after re-
peated failures to guarantee termination. This is omitted
for simplicity from the pseudocode.

1638

Algorithm 1 Semantic Sampling

procedure Generate(N,n)
minSize← 1
while ProgramCount(minSize) < C and

minSize ≤ n do
generate all programs of size minSize
reduce them
add those still of size minSize to the cache
++minSize

end while
for programSize← n down to minSize do

while cache contains < N/n programs
of size programSize do

insert Sample(programSize) into cache
end while

end for
end procedure

procedure ProgramCount(c)
return total number of possible programs of size c

end procedure

procedure Sample(s)
initialize a new program cache tmp
loop

(s1, s2, ..., sa)← random tree shape with s nodes
p← an empty program
root(p)← a random function of arity a
for i← 1 to a do

append GetProgram(si) as a child of root(p)
end for
if p is irreducible then

move all items from tmp to the main cache
return p

end if
add all of root(p)’s children to tmp

end loop
end procedure

procedure GetProgram(s)
if all reduced programs of size s are cached then

return a random program of size s from the cache
else if cache contains programs of size s then

p← a random program of size s from the cache
erase p from the cache
return p

end if
return Sample(s)

end procedure

tial populations. Specifically, a C++ implementation of se-
mantic sampling for Boolean formulae with the reduction
rules described below takes around a second to generate 500
unique random formulae on a modern (circa 2006) PC, and
around twenty second to generate 10,000 (i.e., the scaling is
about linear).

Calls to ProgramCount(c) simply return the total num-
ber of program trees of size c. For example, given two bi-
nary functions and three terminals ProgramCount(c) =
3c · 2c−1 · Catalan(c − 1), assuming program size is here
measured by the number of terminals (which is reasonable
for binary trees). The Catalan numbers are an integer se-
quence, Catalan(n) = (2n)!/((n + 1)!n!), corresponding to
the number of binary trees with n + 1 leaves (among other
things).

The Sample procedure generates a new random program
of a specified size. Along the way, it may generate new ran-
dom programs of smaller sizes as well, which are added to the
cache (if they are not already there). An important property
of Sample is that even though a common cache is used across
successive calls, each program that is actually sampled is
independent of the others, because any subprograms that
get composed into larger programs are themselves discarded.
GetProgram is an auxiliary procedure used by Sample to
generate subprograms (by recursively calling Sample, if nec-
essary). Subprograms that are obtained from GetProgram
and lead to a reducible overall program are put into a local
cache (tmp) rather than being returned directly to the main
cache. This keeps them from being immediately resampled,
which can lead to pathological cases where the same small
set of subprograms is endlessly recombined.

3.2 Simplification
Before applying semantic sampling, it is necessary to se-

lect domains and define simplification procedures for reduc-
ing programs. The domain studied in this paper is Boolean
formulae with the basis {AND, OR, NOT}.

Holman has developed an “elegant normal form”
(ENF) [6] for the simplification of Boolean formulae that
is both computationally efficient to derive and heuristically
effective. Holman reports for instance on experiments in-
volving randomly generated Boolean formulae with between
one hundred and five hundred literals, where 99% of the
formulae required fewer than 10,000 atomic operations to
reduce to ENF, and retained fewer than 2% of their orig-
inal literals. Formulae in ENF use the basis {AND, OR,
NOT}. To define ENF, it is convenient to introduce some
terminology:3

• The guard set of an internal node is all of its children
that are literals, and the guard set of a literal is itself.

• A branch set is the union of all of the guard sets of
conjunctions and literals on the shortest path between
some leaf and the root.

• The dominant set of a node is the union of all of the
guard sets of nodes on the shortest path between the
node and the root (excluding the node itself).

Consider the formula on the left in Figure 3. The AND
node in the lower right’s guard set is {x3, x6}, and its dom-
inant set is {x1, x2, x3, x7}. The branch set for the literal
3For clarity, these definitions are slightly different from those
presented in [6].

1639

OR

AND x7

x1 x2 OR OR

NOT(x3) NOT(x4) x5 x3 AND

x3 x6

−→

OR

AND x7

x1 x2 x3 OR

NOT(x4) x5

Figure 3: A redundant Boolean formula (left) and its equivalent in hierarchical normal form (right).

x5 (in the center) is {x1, x2, x5}. A formula is in ENF, as
defined by Holman, if all of the following hold:

1. Negation appears only in literals.

2. Levels of conjunction and disjunction alternate.

3. No conjunction or disjunction has both a literal and
its negation, or multiple copies of the same literal, as
children.

4. No branch set contains a literal and its negation.

5. The intersection of all of the children of any disjunc-
tion’s guard sets is empty.

6. The intersection of any conjunction’s guard set and
dominant set is empty.

Thus, the formula in Figure 3 on the left is not in ENF,
because the intersection of the OR node in the lower right’s
children’s guard sets is non-empty – it contains x3 (condition
5). Holman [6] presents and algorithm reducing any formula
to ENF that executes in O(n·min(n, k)), where n is the arity
of the space, and k is the number of literals in the formula.
Essentially, this procedure consists of a set of eight reduction
rules that are executed iteratively over the entire formula
until no further reductions are possible. I have extended
Holman’s ENF and the corresponding reduction procedure
to obey the following additional constraints:

7 The intersection of the guard sets of the children of
a conjunction is empty – this corresponds to item 5
above, for a conjunction-of-disjunctions rather than a
disjunction-of-conjunctions.

8 No node’s guard set is a subset of any of it’s siblings’
guard sets.

9 For any pair of siblings’ guard sets having the form
{x} ∪ S1 and {NOT (x)} ∪ S2, where S1 and S2 are
sets of literals, no third sibling’s guard set is a subset
of S1 ∪ S2.

The rationale behind the the first of these additions of is
merely symmetry – there appears to be no reason to reduce
redundancy in conjunctions-of-disjunctions (item 4) and not
in disjunctions-of-conjunctions (item 7). The latter two ad-
ditions were chosen based on experimentation with small
hand-crafted formulae. Empirically, their addition can re-
duce random formulae further than ENF alone about 7% of
the time, by an average of around three literals, for formulae
with one hundred literals.4 From a computational complex-
ity standpoint, the reductions needed to implement items
8 and 9 (searching all pairs of siblings for matching liter-
als and their negations, then searching for subsets) add an
additional multiplicative term that is quadratic in the max-
imum arity of any conjunction or disjunction. Empirically
however, the impact on runtimes relative to the reduction
to ENF is negligible.5

3.3 Experiments
The first experiment to run is to compute the behavioral

diversity of programs generated via semantic sampling. Re-
sults are shown in Figure 4 for a target average program
size of twenty; qualitatively similar results are achieved for
smaller target program sizes (leading to somewhat less di-
versity at lower arities) and for larger target program sizes
(leading to somewhat more diversity at lower arities). As
can be seen, behavioral diversity for semantic sampling fol-
lows a qualitatively different pattern than for uniform ran-
dom sampling (compare to Figure 2). It is nearly perfect
for arities of six and above, and up to several times higher
than for comparable uniform random samplings for arities
four and five.

Now that we have verified that semantic sampling can
effectively generate behaviorally diverse samples, the next
step is to test the hypothesis that increased behavioral di-

4Tested on ten thousand random formulae generated as in
the last chapter with arity ten. With arity five, about 6%
of formulae reduced further than for ENF alone.
5An important implementation detail is to reduce formulae
to Holman’s ENF before searching through all pairs of sib-
lings, otherwise there can be a significant increase (typically
around 50%) in reduction times for large formulae.

1640

4 5 6 7 8 9 10 11
0.5

0.6

0.7

0.8

0.9

1

Arity

B
eh

av
io

ra
l D

iv
er

si
ty

m=500
m=2500
m=10,000

Figure 4: The proportion of unique behaviors
(Boolean functions) in a given sample of programs
(Boolean formulae), generated by semantic sam-
pling. This varies based on the sample size (m).
Error bars are 95% confidence intervals based on
thirty independent trials.

versity in the initial sample can improve the performance
of program evolution systems. Classic genetic program-
ming as described by Koza [7] is used for this. Exper-
iments were carried out with the the lil-gp system (ver-
sion 1.1., http://garage.cse.msu.edu/software/lil-gp/). Size-
seven tournaments were used for selection, with 90% cross-
over and 10% elitism (the defaults used in [8]). The maxi-
mum number of generations was set to fifty, the maximum
number of nodes allows was 1000, and the maximum allowed
depth was 17 (all standard default values). Two hundred
independent runs were carried out with population sizes of
500, 4000, and 10,000 for every problem.

The control was ramped half-and-half with a depth ramp
of 2 to 6 and duplicate rejection. In the comparative exper-
iments of [13], this configuration is compared to four other
program sampling schemes for generating the initial popu-
lation for genetic programming applied to three problems;
Boolean 11-multiplexer, artificial ant, and symbolic regres-
sion. None of the other methods were found to lead to (sta-
tistically significant) better results than ramped half-and-
half on any of these problems (no statistically significant
differences at all were observed for the first two problems).

The average tree sizes generated by ramped half-and-half
were found empirically to be between 20 and 23 for all exper-
iments (somewhat lower for smaller populations and lower
arities). This is in agreement with the average sizes found
in [13]. Semantic sampling was configured (by setting n, the
maximum program size) to generate a uniform distribution
of program sizes (starting from a single node), such that the
average tree size remained within ±2 of the average size for
ramped half-and-half on all experiments.

The problems considered were Boolean 6-multiplexer,6 11-
multiplexer, 4-parity, and 5-parity. Note that the function
set is somewhat different from that commonly used in the

6As this is a very easy problem for GP to solve, results are
only shown for a population size of 500.

literature; the same set, {AND, OR, NOT}, is used for all of
the Boolean problems. This change is not expected to quali-
tatively affect the comparative results, while simplifying the
implementation considerably.

Results are shown in Table 1. Fitness is normalized uni-
formly to fall in [0, 1] on all problems (higher is better). So
on 4-parity, for example, which has 24 = 32 test cases, a
program with 24 hits has fitness 24/32 = 0.75. Success rate
and computational effort are point measures (computed over
the complete set of runs), and hence cannot be used as a ba-
sis for claims of statistical significance. The second column
from the right, showing mean fitness after ten generations
with 95% confidence intervals, indicates that using semantic
sampling to generate the initial sampling boosts GP’s per-
formance, for all problems and population sizes tested. The
results of the last column confirm the observation in [13]
that GP dynamics tend to obliterate the effects of the ini-
tial sampling method in later generations – the differences
that remain are of smaller magnitudes and not generally
significant.

4. CONCLUSIONS
The origin of this paper was the question of how to sample

a random complex program, given that most large random
programs are not complex (when complexity is quantified in
terms of minimal program length). A prior study that in-
fluenced this work was Luke and Panait [13], which demon-
strated little difference in performance for genetic program-
ming across the most popular sampling heuristics for gen-
erating the initial population (ramped half-and-half, PCT1
and PCT2 [12], and two uniform tree generation schemes).
In the same paper, the average initial tree size is shown to
have a marked effect on performance; this is used as an argu-
ment in favor of sampling heuristics where the distribution
of tree sizes can be easily and precisely controlled. Seman-
tic sampling falls under this heading; above very small sizes,
any number of trees of any desired size may be generated
(provided irreducible trees of the target size in fact exist,
which was not an issue in any of my experiments).

Based on the experimental results, semantic sampling may
be considered most appropriate for applications where good
performance is desired quickly, after relatively few genera-
tions of evolution. Because there is some overhead involved
in comparison to other tree sampling methods, it may not
be appropriate for applications where fitness evaluation is
extremely fast. The good results demonstrated for Boolean
formulae should be expected to transfer to the symbolic re-
gression domain, where simplification systems are also quite
well developed. Since many GP systems already include sim-
plification mechanisms for analyzing the final results, imple-
menting semantic sampling should not be very difficult.

A further domain where semantic sampling should be ex-
plored is general (Turing-complete) programs. The distribu-
tion of such programs can tend towards no programs halting
(see [11] for a detailed study and analysis). A semantic
sampling procedure for generating initial populations could
heuristically eliminate many non-halting programs, and ap-
proximate a uniform (with respect to complexity) distribu-
tion of halting programs. This could accordingly be ex-
pected to have a significant positive impact on performance.

Further work hybridizing semantic sampling with alge-
braic simplification during evolution [18], and/or canonical
form functions [14], is of interest. The resulting GP system

1641

Table 1: Experiments comparing ramped half-and-half (rhh) and semantic sampling as the initialization
method for GP. The two rightmost columns show mean best fitness with 95% confidence after 10 and 50
generations of evolution, respectively. When one method leads to improved performance (with statistical
significance), the better result is shown in boldface.

Experimental Population Success Computational Mean Best Fitness
Configuration Size Rate Effort After 10 After 50

6-multiplexer rhh 500 81.5% 68,000 0.894±0.005 0.989±0.004
semantic 500 91% 40,500 0.941±0.004 0.998±0.002

11-multiplexer rhh 500 0% NA 0.711±0.002 0.847±0.006
semantic 500 0% NA 0.722±0.003 0.863±0.006
rhh 4000 23% 3,672,000 0.75±0.002 0.972±0.004
semantic 4000 32% 2,448,000 0.764±0.002 0.977±0.003
rhh 10,000 61% 2,550,000 0.764±0.002 0.992±0.002
semantic 10,000 77% 1,960,000 0.78±0.002 0.995±0.002

4-parity rhh 500 20% 495,000 0.797±0.006 0.915±0.008
semantic 500 23% 437,000 0.833±0.005 0.921±0.008
rhh 4000 85% 416,000 0.874±0.004 0.990±0.003
semantic 4000 95% 200,000 0.906±0.005 0.997±0.002
rhh 10,000 100% 270,000 0.898±0.005 1.000±0.000
semantic 10,000 99.5% 320,000 0.938±0.004 1.000±0.001

5-parity rhh 500 0% NA 0.664±0.004 0.789±0.007
semantic 500 0% NA 0.680±0.003 0.774±0.006
rhh 4000 3% NA 0.706±0.003 0.908±0.007
semantic 4000 0.5% NA 0.726±0.003 0.9±0.006
rhh 10,000 15.5% 14,000,000 0.727±0.003 0.945±0.006
semantic 10,000 12% 18,870,000 0.742±0.003 0.945±0.005

will be expected to gain a significant edge by more effectively
sampling from a smaller overall search space. Another pos-
sibility to consider is using the semantic sampling method-
ology to produce a more intelligent mutation operator, to
direct variation along semantically meaningful lines.

5. REFERENCES
[1] L. Alonso and R. Schott. Random Generation of

Trees. Kluwer Academic, 1995.

[2] W. Bohm and A. Geyer-Schulz. Exact uniform
initialization for genetic programming. In Foundations
of Genetic Algorithms, 1996.

[3] G. J. Chaitin. Algorithmic Information Theory.
Cambridge University Press, 1987.

[4] I. P. Gent and T. Walsh. The TSP phase transition.
Artificial Intelligence, 1996.

[5] S. Gustafson, E. K. Burke, and G. Kendall. Sampling
of unique structures and behaviours in genetic
programming. In European Conference on Genetic
Programming, 2004.

[6] C. Holman. Elements of an Expert System for
Determining the Satisfiability of General Boolean
Expressions. PhD thesis, Northwestern University,
1990.

[7] J. R. Koza. Genetic Programming. MIT Press, 1992.

[8] J. R. Koza. Genetic Programming II. MIT Press, 1994.

[9] W. B. Langdon. Size fair and homologous tree
crossovers for genetic programming. Genetic
Programming and Evolvable Machines, 2000.

[10] W. B. Langdon and R. Poli. Foundations of Genetic
Programming. Springer-Verlag, 2002.

[11] W. B. Langdon and R. Poli. The halting probability
in von Neumann architectures. In European
Conference on Genetic Programming, 2006.

[12] S. Luke. Two fast tree-creation algorithms for genetic
programming. IEEE Transactions on Evolutionary
Computation, 2000.

[13] S. Luke and L. Panait. A survey and comparison of
tree generation algorithms. In Genetic and
Evolutionary Computation Conference, 2001.

[14] T. McConaghy and G. Gielen. Canonical form
functions as a simple means for genetic programming
to evolve human-interpretable functions. In Genetic
and Evolutionary Computation Conference, 2006.

[15] R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman,
and L. Troyansky. Determining computational
complexity from characteristic ‘phase transitions’.
Nature, 1999.

[16] R. Solomonoff. A formal theory of inductive inference.
Information and Control, 1964.

[17] M. Tomassini, L. Vanneschi, P. Collard, and
M. Clergue. A study of fitness distance correlation as
a difficulty measure in genetic programming.
Evolutionary Computation, 2005.

[18] P. Wong and M. Zhang. Algebraic simplification of
GP programs during evolution. In Genetic and
Evolutionary Computation Conference, 2006.

[19] T. Yu and J. Miller. Neutrality and the evolvability of
Boolean function landscape. In European Conference
on Genetic Programming, 2001.

1642

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

