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ABSTRACT
This paper introduces a new type of mutation, Context-
Aware Mutation, which is inspired by the recently intro-
duced context-aware crossover. Context-Aware mutation
operates by replacing existing sub-trees with modules from
a previously constructed repository of possibly useful sub-
trees.

We describe an algorithmic way to produce the repository
from an initial, exploratory run and test various GP set ups
for producing the repository. The results show that when the
exploratory run uses context-aware crossover and the main
run uses context-aware mutation, not only is the final result
significantly better, the overall cost of the runs in terms of
individuals evaluated is significantly lower.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Problem Solving, Control Meth-
ods, and Search

General Terms
Performance

Keywords
context-aware crossover, building blocks, modules, cascaded
run, context, constructive, crossover, cache, fitness

1. INTRODUCTION
There has been much previous work [5, 1, 2, 9, 3, 4] done

on the identification and subsequent reuse of useful modules
for GP. There are two major difficulties with this. First,
identifying the modules themselves, and second, getting GP
to use them in a consistent (with how they were originally
used) way. The major reason of these difficulties is the struc-
tural complexity of the tree representation. The tight bond-
ing between the nodes of the trees make it very difficult to
evaluate a subtree independent (out of context) of the tree
containing it.
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We believe the technique introduced in [8] is more suit-
able for calculating the fitness of a subtree due to its context
aware nature and can be used for selecting good subtrees
from a population for encapsulation. Furthermore, these
encapsulated subtrees (modules) when used in an effective
way in the successive generations/run can result in a signif-
icant performance gain.

This paper is concerned with testing the above mentioned
hypothesis and finding an effective method for the identi-
fication of the useful subtrees from a population and then
their effective use afterwards.

We employed standard GP along with two new recombi-
nation operators, context-aware mutation and module muta-
tion to test our hypothesis. The results obtained are quite
promising and show a significant performance gain over the
performance of standard crossover and context-aware crossover.

2. BACKGROUND
The idea of modularization is not new in Genetic Pro-

gramming and many efforts have been made in the past
with varying degrees of success. Koza in [5] introuduced
the idea of automatically defined function (ADFs) in GP to
solve complex problems. They are parameterized subrou-
tines and solve complex problems by combining themselves
in some useful manner. Koza demonstrated their usefulness
on numerous complex problems in [5].

Angeline and Pollack in their Module Acquisition (MA)
technique [1, 2] randomly selected subtrees from the popu-
lation and compressed them for future use. This technique
works by augmenting the evolutionary process with two ad-
ditional operators, compress which selects a subtree of a tree
and makes it immune to any further structural manipulation
by compressing it into a module, and expand which decom-
presses the compressed modules and make them available
for any future structural manipulation(s).

Rosca and Ballard addressed the random selection of the
subtree of a tree in MA and introduced their Adaptive Rep-
resentation through Learning (ARL) algorthim [9]. ARL
extends the GP function set with the subtrees (modules)
selected from the offsprings showing the best improvement
over the fitness of their parents.

Dessi et al [3] showed that random selection of program
sub-code for re-use is more effective than other heuristics
across a range of problems. Furthermore, it was also shown
that ARL does not produce highly modular solutions and
once the contents of modules are allowed to evolve they be-
come a form of ADF.

Howard employed frequency driven technique for subtree
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encapsulation in [4] and combined modularization with multi-
run. He started with many independent GP runs and after
completion of fixed number of generations the best run was
identified. The subtree database for the best run was then
analyzed to group subtrees that are operationally equivalent.
According to him, two subtrees are operationally equivalent
if they evaluate to the same fitness for the given set of fitness
cases. Lastly, the terminal set was augmented to include
a terminal for each of randomly selected subtree from the
group with size greater than one.

3. RECOMBINATION OPERATORS USED
In this study, four different recombination operators named

standard crossover, context-aware crossover [6], context-aware
mutation and module-mutation are used. Last two are in-
troduced in this study and work on the module repository
created at the end of a run. The instructions for creating a
repository are discussed in detail in section 4.1. For the time
being we will assume the existence of a module repository
in order to introduce these new operators in the following
sections.

3.1 Context-Aware Crossover
In [6] a new, context-aware crossover operator for GP was

introduced. It works by placing a randomly selected subtree
from one parent in its best possible context in the other
parent. The detailed working of the operator is as follows:

Two parents are selected for crossover as normal, and
crossover cannot take place at the root node. A subtree
is chosen at random from one parent, and then all possible
valid offspring are generated, that is, all those individuals
that are within the depth limits, etc. Each of these indi-
viduals is then evaluated, and the best one introduced to
the next generation. The same process is repeated for the
second subtree and placed in the first selected parent.

It has been shown [7] that this context-aware crossover can
attain significantly higher fitness than standard crossover
while processing significantly fewer individuals. Although
intuitively it may seem that context-aware crossover should
process more individuals, because of the manner in which
the offspring are exhaustively generated, it has been demon-
strated that it can use much smaller populations, which
means that, although individual crossover operators are more
expensive, over the course of a run far fewer evaluations are
carried out.

Context-aware crossover is so successful because it is so
constructive, while standard crossover is mostly destruc-
tive [7]. However, it has been shown that while context-
aware crossover makes the best use of available subtrees, it
does rely on having access to subtrees that are reasonably
good. Studies have shown that, because of this, context-
aware crossover works best as an exploitation operator, and
runs using it benefit from having first using only standard
crossover, which is a good exploration operator, and then
having context-aware crossover used as the only crossover
operator after around 80% of a run.

This is effectively taking advantage of the tension that
exists in GP between exploration and exploitation. Early
on in runs [10] GP is free to create new subtrees, because
with unfit populations there is less pressure to bloat or make
incremental changes.

However, at the same time, GP is also driven to explore
the use of these subtrees, and once fit individuals begin ap-
pearing, it is very difficult for it to change the underlying
subtrees.

A common example of this is the manner in which GP
synthesises constants. When using the ephemeral real con-
stant � one rarely, if ever, is fortunate enough to have the
exact constant required appear in the initial generation, so
GP synthesises it using those that did appear. For example,
if one was trying to produce a function 2.1369X + 2.1369,
one would expect to see GP use a combination of constants
and arithmetic expressions to construct the crucial 2.1369
constant. Once something reasonably close has been discov-
ered and used in more than one place in individuals, it is
very difficult to change it.

Context-aware crossover embraces this tension by explic-
itly dividing a GP run into two distinct parts, the explo-
rative phase which uses standard crossover, and the exploita-
tive phase that uses context-aware crossover.

3.2 Context-Aware Mutation operator
We introduce a new mutation operator that is inspired by

context-aware crossover. This mutation operator attempts
to introduce a new subtree into its best possible context, in
a similar manner to context-aware crossover. The crucial
difference is that this is a new subtree rather than one taken
from another individual.

Given that context-aware crossover works best as an ex-
ploration operator, it makes sense that the subtrees intro-
duced in this way should be reasonably good, which raises
the issue of where to get these good subtrees from. We
assume the existence of repository of potentially useful sub-
trees, and always choose the new subtree from there, rather
than creating it from scratch.

3.3 Module Mutation operator
Module mutation is a modified form of standard crossover

which operates on the module repository. Like the context-
aware mutation operator, it also selects a subtree from the
module repository using some selection scheme and then
places randomly in the selected parent. The random place-
ment of the selected subtree means that it is likely to suf-
fer from the same mainly destructive nature as standard
crossover.

4. CALCULATING THE CONTRIBUTION
OF A SUBTREE

Majeed et al in [8] described a way to calculate the fitness
contribution of any subtree within a tree (container-tree).
This is a three step process. In the first step, an individ-
ual containing the subtree is evaluated, before the subtree
is replaced with an identity node. The identity node acts
as an intron in the container-tree and cancels the effect of
the subtree. After replacement, the individual is then re-
evaluated. The difference between the two fitness values is
the contribution of the subtree in the container-tree.

The working principle of an identity node is similar to
the identity function in set theory. An identity node always
replaces some node or subtree. This replacement cancels out
the effect of the replaced node or subtree. For example, in
(* (+ X X) Y) the fitness contribution of subtree (+ X X)
is calculated in the following manner.
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1. Tree is evaluated

2. (+ X X) is replaced with the identity function of its
parent node “*”, which is ONE

3. The new tree is reevaluated

4. The difference between the two fitness values of the
trees is the fitness contribution of (+ X X)

Note, - and / are special cases of + and * respectively. As
a − b = a + (− b) and a / b = a ∗ (1 / b)

4.1 Identification of modules and repository
creation

Many researchers have devised different methods to cre-
ate their module repositories and used them in the subse-
quent runs, and have experienced varying degrees of suc-
cess. We believe that the contribution of a subtree towards
its container tree and the number of times it appeared in
the population (hit count) are good measures to calculate
its significance in the population.

In this study, we create the module repository contain-
ing unique modules by selecting the individuals from the
final generation of a run with fitness higher than the aver-
age fitness of the generation, this ensures the selection of
the fit individuals for further analysis. The maximum size1

of the module repository is fixed to the population size of
the cascaded run. The repository is created by employing
two different methods. In the first method, subtrees with
fitness contribution greater than zero, node count greater
than one and parent nodes containing only binary functions
are allowed to enter the repository. In the second approach,
the subtrees with node count greater than one and parent
nodes containing only binary functions are allowed to en-
ter the repository. Note, the second approach is consider-
ably cheaper due to elimination of the calculation of the
fitness contribution of the subtrees which requires many re-
evaluations of the same individual.

In the first approach, after filling the repository, the final
fitness of each module of the repository is calculated by using
the following equation.

0.7 × contrib
Pcnt

i=1 contribi

+
0.1 × hits
Pcnt

i=1 hitsi

+ 0.2 × (1 − node count
Pcnt

i=1 node cnti

)

where contrib , node cnt and cnt are average fitness con-
tribution of the subtree, node count of the subtree and the
size of the repository, respectively. Note that the selection of
the modules can be influenced in different ways by adjusting
the weights assigned to the used parameters. The propor-
tions used here were simply guesses, and no effort has been
made to optimise them.

In this study we only conduct two cascaded runs, i.e. one
run followed by the initial run, as this study is only a proof
of concept. In practice, a module repository needs to be
created only once after the initial run and multiple ”second
runs” can be done by using it. To make things fair and
transparent in this study, the cost of the cascaded run for
all the experiments include the cost of the creation of the
module repository after the initial run.

1Actual size of the repository can be less than the size of
the population depending on the availability of the subtrees
fulfilling the criteria of module selection.

4.2 Selection of modules
We believe that the selection of the right module from the

module repository is a critical task and can have significant
effect on the outcome of the cascaded run. To check this
hypothesis, two module selection methods were used in this
paper. The first one is based on fitness proportionate se-
lection and uses a roulette wheel for its working. It works
by first creating a roulette wheel by using the final fitness
of each module and then selecting the module by spinning
the wheel. The second selection method is the simple ran-
dom selection of modules from the repository. These two
selection methods are introduced to examine the effect of
the selection methods on the final outcome of a run.

5. EXPERIMENTAL SETUP
For this study Koza’s Quartic Polynomial Symbolic Re-

gression problem was used and three sets of experiments,
involving different recombination operators were conducted.
For each experiment, two cascaded runs were performed. Af-
ter completion of the first run, a repository of the useful
modules was created as explained in section 4.1 and used
in the subsequent run. In this fashion 50 independent runs
were conducted. The initial population was generated us-
ing the ramped half and half method with initial tree depth
varying from 2-6 and the maximum tree depth was set to
17.

In the first set of experiments, two tests were conducted.
In the first test, during the first run only context-aware
crossover was used and in the cascaded run only context-
aware mutation operator was used. This was to check the
usefulness of the tree distribution of the identified modules
in the cascaded run. This test was repeated for fitness pro-
portionate and random module selection methods. This was
to check the effect of the introduction of the fit and randomly
selected modules on the performance of the system.

In the second test, context-aware crossover along with
context-aware mutation was used in the cascaded run. This
was to check the performance of context-aware crossover in
the presence of the subtrees from a different tree distribu-
tion. As before, this test was repeated for fitness proportion-
ate and random selection methods. For these experiments
a population of size 200 was allowed to complete 25 gen-
erations. In the second test, context-aware crossover and
context-mutation were used with equal probability, i.e. 0.5.

In the second set of experiments, for each experiment,
two tests were conducted as before. In the first test, stan-
dard crossover was used in the first run followed by the use
of only module mutation in the successive run. This test
was repeated for fitness proportionate and random selection
methods. In the second test, the first run was completed
by only using standard crossover and in the cascaded run
standard crossover was used along with module mutation.
This was to check the effect of the interaction between these
operators on the performance of the system. For these ex-
periments a population of size 1000 was allowed to complete
100 generations. In the second test, standard crossover and
modified mutation were used with equal probability, i.e. 0.5.

In the last set of experiments, for each experiment, again
two tests were conducted. In the first test, standard crossover
was used in the first run followed by the use of only context-
aware mutation operator. This was to check the behavior
of context-aware mutation using the modules generated by
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standard crossover. In the second test, the first run was
completed by using standard crossover and in the successive
run context-aware mutation and module mutation operators
were used. This was to check the efficiency of the system
using both these operators together. For these experiments
the population size and number of generations were reduced
in the second run to make the evaluation count comparable
between the two runs. The population size and number of
generations were set to 1000 and 100 respectively for the first
run and reduced to 200 and 10 respectively, in the second
run.

5.1 Does good first run guarantee good
second run ?

To answer this question, we examined the final genera-
tions of the first and second run and tried to look for the
existence of any relationship between them. To accomplish
this, coefficient of determination (r2) between the final gen-
erations of the first and second run was calculated. Recall,
coefficient of determination gives the proportion of the vari-
ance (fluctuation) of one variable that is predictable from
the other variable, so if the success of second run is de-
pendent on the success of first run then the coefficient of
determination should be high (r2 close to one means tight
relationship). We calculated r2 for all the experiments and
for all the cases the relationship between the first and sec-
ond run was quite weak (r2 was quite close to zero in almost
all the cases). This shows that the success or otherwise of
the second run is mostly dependent on the selection of the
fit repository and the way it was used in the successive run.

6. RESULTS
All the results presented here are averaged over 50 runs.

On the x-axis, the cumulative number of evaluations done
by each system is shown. The cumulative number of eval-
uations is a better measure of comparing the performance
of different recombination operators as the number of eval-
uations done by each per generation can vary drastically.
For the first run of all the experiments, the successive run
was repeated for fitness proportionate and random selection
methods. As the experiments involving fitness proportionate
selection method require additional number of evaluations at
the end of the first run therefore for these experiments, the
cost of the creating the repository is added to the cascaded
run.

To better understand the effect of the module selection
methods on the performance of the system, the modules se-
lected by the selection methods during mutation operation
were examined and their mean and standard deviation of the
fitness contributions were noted for further analysis. Mean
fitness contribution tells us about the goodness of the se-
lected modules and standard deviation the variations in the
fitness values of the selected modules.

Due to the space restriction, only mean best plots for all
the setups are shown and discussed.

6.1 Use of standard crossover in the first run
Figure 1 (Left) shows the performance of the system em-

ploying standard crossover in the first run and module muta-
tion in the second cascaded run. The plots involving fitness
proportionate selection are shifted right due to the inclusion
of the cost of creating the module repositories for these runs.
Recall, the fitness proportionate selection method uses fit-

ness contribution of the modules which requires numerous
re-evaluations of the individuals before starting the second
run. Both the successive runs show an exponential gain
over the performance of standard crossover and reach their
respective maximum fitness values quickly before flattening
out. This shows the resilience of the modules used in the
cascaded runs and their ability to overcome the destructive
effects of module mutation. Notice that the method of se-
lection of modules for the repository has little effect on the
final outcome of the run, we believe this is due to the in-
ability of module mutation to use the fit modules in a best
possible way in the selected parents.

Figure 1 (Right) shows the performance of the system us-
ing standard crossover in the first run and module mutation
along with standard crossover in the second run. The plots
involving fitness proportionate selection are shifted right due
to the inclusion of the cost of creating the module reposi-
tories for these runs. As above, the performance of both
the runs using modules is far better than the performance
of the first run. Both the successive runs show a slight drop
in fitness prior to 20,000 evaluations and take little longer
time to reach their respective maximum fitness values. We
believe this is due to the destructive effects of the standard
crossover during the run.

6.1.1 Analysis
Figure 2 shows the detailed statistics of the selected mod-

ules from the repository by module mutation operator dur-
ing the runs. On x-axis, independent runs are shown and
on y-axis the mean and standard deviation of the selected
modules during the run are plotted.2.

Clearly, fitness proportionate selection selects quite fit
(high mean) and diverse (high standard deviation) modules
compared to random selection during the mutation opera-
tion. Surprisingly, the selection of fit and diverse modules
does not show any significant effect on the performance of
the system and mod mut fit in figure 1 performs worse than
mod mut rand. This is due to the inability of module muta-
tion to use the selected modules in the most effective way
in the selected parents.

Figure 3 shows the performance of the experiments involv-
ing context-aware mutation in the successive run. Recall, for
these experiments, the second run was reduced to 10 genera-
tions and population size was set to 200 to make evaluations
count comparison fair between the first and second run. Due
to the small sized population, the module repository size was
also reduced to 200. The cost of creating the repository is
included in ctxt mut fit and ctxt mut mod mut fit plots, in-
clusion of the cost in these plots is not noticeable due to the
low cost of creating the reduced size repositories.

Figure 3 (Left) shows the performance of the system us-
ing standard crossover in the first run and context-aware
mutation in the second run. ctxt mut fit shows significant
improvement over ctxt mut rand and std xover in the early
stages of the run due to the use of fitness proportionate
selection method. ctxt mut rand matches std xover prior to
20,00 evaluations and then improves to reach ctxt mut fit be-
yond 60,000 evaluations. Although, ctxt mut fit shows slow
progress in the early stages of the run than mod mut rand
and mod mut fit in figure 1 but does not suffer from the con-

2The runs with zero standard deviation have selected either
the same module or modules with same fitness value all the
times.
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Figure 1: Left: Plots for the system using standard crossover in the first run and module mutation in the
second run. The run using fitness proportionate selection is labeled as mod mut fit and random selection is
labeled as mod mut rand. Right: Plots for the system using standard crossover in the first run and module
mutation along with standard crossover in the second run. The run using fitness proportionate selection is
labeled as std xover mod mut fit and random selection is labeled as std xover mod mut rand.
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Figure 2: Mean and standard deviation of the modules selected for mutation during independent runs. Left:
Shows the statistics for fitness proportionate selection. Right: Shows the statistics for random selection.

vergence to a low maximum fitness and keeps on improving
in the later stages of the run.

Figure 3 (Right) shows the performance of the system us-
ing standard crossover in the first run and context-aware
mutation along with module mutation in the second run.
The use of fitness proportionate selection results in a dra-
matic improvement in fitness in the early stages of the run
without showing any sign of flattening and keeps on improv-
ing with time. ctxt mut mod mut rand is slow to respond but
very soon it catches up with ctxt mut mod mut fit and keeps
on improving after that.

6.1.2 Analysis
The statistics for the modules selected in this experiment

are quite similar to the ones shows in figure 2, therefore we
will use the same figure to analyze the results presented here.
In figure 3 (Left), ctxt mut fit performed better than the rest
due to the effective (due to its context-aware nature) use of
the fit modules selected by fitness proportionate selection.
ctxt mut rand, on the other hand, was provided with the
inferior modules and failed to find good placements for them
in the random population, however after a few generations
it was able to use the selected modules effectively in the
relatively matured population.

In figure 3 (Right) the use of context-aware mutation with
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Figure 3: Left: Plots for the system using standard crossover in the first run (std xover) and context-
aware mutation in the second run using fitness proportionate (ctxt mut fit) and random (ctxt mut rand)
selection methods. Right: Plots for the system using context-aware crossover in the first run (std xover)
and context-aware mutation along with mod-mutation in the second run using fitness proportionate
(ctxt mut mod mut fit) and random (ctxt mut mod mut rand) selection methods.

module mutation has proven to be quite useful. As previ-
ously discussed, context-aware crossover is a good exploita-
tion operator while standard crossover is considered to be
good for exploration of the search space. We believe that
in this experiment module mutation played the role of stan-
dard crossover and context-mutation operator improves over
that by applying small tweaks to the population.

6.2 Use of Context-Aware crossover in the first
run

Figure 4 (Left) shows the mean best fitness of the system
using context-aware crossover in the first run and context-
aware mutation in the second run. Both ctxt mut fit and
ctxt mut rand show a significant gain over ctxt aware xover
prior to 50,000 evaluations. This clearly shows the effect of
use of the modules on the fitness of the early generations of
the run. The use of different module selection methods does
not have a significantly different effect on the performance of
the two systems and both of them show same performance
throughout the run.

Figure 4 (Right) shows the mean best fitness of the sys-
tem using only context-aware crossover in the first run and
context-aware mutation along with context-aware crossover
in the successive run. In general, the use of context-aware
crossover (not mutation) in the second run results in a slightly
less fit population. We believe that the deterioration in the
performance is due to random selection of the subtree from
the parent by context-aware crossover, which can result in
the disruption of the useful modules introduced by context-
aware mutation operator in the past, while the runs that
only use context-aware mutation in the second run only ever
choose from the repository.

6.2.1 Analysis
Figure 5 shows the mean fitness and standard deviation

in the fitness of the modules selected in the cascaded run
by fitness proportionate (Left) and random selection meth-
ods (Right). The plots for the second experiment (figure 4
(Right)) are quite similar to the ones shown in figure 5,
therefore the explanation for the first is applicable to the
second without any exception.

As evident from figure 5, the modules selected by fitness
proportionate and random selections are not very different
from each other. Granted, the mean fitness of the modules
selected by fitness proportionate selection method is slightly
higher than the ones selected by random selection but still
this difference is not as big as shown by the experiments
using standard crossover in the first run (look at figure 2).
We believe this is due to the creation of a fit repository at
the end of the first run employing context-aware crossover.
The selection of the similar modules can be attributed as
one of the plausible reasons behind the similar performance
of the two systems using different module selection methods.

7. DISCUSSION
In general, the use of standard crossover in the first run

and module mutation in the successive run has resulted in
an exponential gain in the performance and in attaining a
high fitness in no time. Unfortunately, after converging to
the high fitness value it stuck there and showed no sign of
improvement despite the prolonged runs. This was mainly
due to the neutral mutation events at the end of the run
which were caused by the bloated trees.

The use of standard crossover along with module muta-
tion in the second run has deteriorated the fitness of the

1656



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300  350

F
itn

es
s

Evaluations (x1000)

Mean best fitness plots for ctxt-aware mutation

ctxt_xover
ctxt_mut_fit

ctxt_mut_rand
 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300  350

F
itn

es
s

Evaluations (x1000)

Mean best fitness plots for ctxt-aware mutation with ctxt-mutation

ctxt_xover
ctxt_xover_ctxt_mut_fit

ctxt_xover_ctxt_mut_rand

Figure 4: Left: Plots for the system using context-aware crossover in the first run (ctxt xover) and context-
aware mutation in the second run using fitness proportionate (ctxt mut fit) and random (ctxt mut rand)
selection methods. Right: Plots for the system using context-aware crossover in the first run (ctxt xover)
and context-aware crossover along with context-mutation in the second run using fitness proportionate
(ctxt xover ctxt mut fit) and random (ctxt xover ctxt mut rand) selection methods.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50

V
al

ue
s

Runs

Stats of modules used by ctxt-mut with fit-prop selection

Mean Std Dev

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50

V
al

ue
s

Runs

Stats of modules used by ctxt-mut with random selection

Mean Std Dev

Figure 5: Mean and standard deviation of the modules selected for mutation during independent runs. Left:
Shows the statistics for fitness proportionate selection. Right: Shows the statistics for random selection.

system slightly and made it took bit longer to attain the
high fitness value. This was due to the destructive effects of
standard crossover operator. We believe that module mu-
tation though works like standard crossover but still is less
destructive. Standard crossover works by selecting a subtree
randomly from the first selected parent and places it again
randomly in the other parent, which increases the proba-
bility of the disruption of the good module present in the
parent. Module mutation, on the other hand copies the
whole module without any disruption in the selected parent
hence making it less destructive.

The selection of fit or less fit modules from the repository
has a minimal effect on the outcome of the runs involving

standard crossover and module mutation. This is due to the
ignorance of the standard and module mutation towards the
importance of the context of the exchanged modules in the
parent.

The use of standard crossover in the first run and context-
aware mutation in the second run has solved the problem
of convergence of the system to some fitness value. For this
setup, the selection of fit modules has shown a significant im-
provement in the performance over the performance shown
by random selection of the modules from the repository. We
believe it was mainly due to the context-aware nature of the
mutation operator used and used the provided fit module in
the best possible way. The introduction of module mutation
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in the second run has improved the results dramatically. We
believe this was due to the mutual cooperation of the used
recombination operators, in which module mutation acts as
an exploration operator and context-aware mutation as an
exploitation operator. Again due to the context-aware na-
ture of the context-aware mutation operator the selection
of fit modules during the run resulted the maximum fitness
gain.

The system employing context-aware crossover in the first
run and context-aware mutation operator in the second run
has shown the best performance. In the cascaded run context-
aware mutation has used the selected modules in the best
possible way and improved the performance of the system
significantly. The module selection methods have minimal
effect on the outcome of the run and random and fit pro-
portionate selection methods performed equally well. This
was due to the generation of the fit module repository at the
end the first run and the selection of the equally fit modules
by both the selection methods from it. The introduction of
context-aware crossover in the second run has deteriorated
the performance of the system slightly. We believe that this
behavior is due to the random selection of subtrees from
the selected parents by context-aware crossover which in-
creases the chance of the disruption of the useful modules
introduced by context-aware mutation previously.

8. CONCLUSION & FUTURE WORK
This paper discusses the significance of context aware fit-

ness evaluation of subtrees in selection of a fit module repos-
itory at the end of a run and improving the performance of
the subsequent run employing the created repository.

In general, we have recorded an exponential gain in the
performance of the cascaded run using the modules over the
performance of the first run. The module selection meth-
ods has shown a minimal effect on the performance of the
system employing only standard crossover or module muta-
tion operator due to their ignorance of the importance of
the context of the exchanged modules in the selected par-
ents. Fitness proportionate selection method has performed
significantly well when used with context-aware crossover
or context-aware mutation. This was due to the ability of
these operators to use the provided module in the best pos-
sible way in the selected parent. The best performance was
recorded by the system using context-aware crossover in the
first run and context-aware mutation with fitness propor-
tionate module selection in the cascaded run.

In this study we have only conducted one cascaded run
followed by the initial run, in future we are planning to per-
form multiple second runs after creating module repository.
This approach will distribute the cost of creating of the mod-
ule repository over multiple second runs. Also, in this study
only one problem is examined, in future we are planning to
apply the same methods to other problems in an effort to
check its robustness.
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